pass JFrame to a thread - java

I have a class that creates a JFrame. When the start button is clicked, it calls my CoinCounterMechanism class. This class contains the following Thread:
Thread consumer = new Thread("CONSUMER"){
public void run ()
{
Integer coin;
while (producerFlag)
try
{
coin = queue.take();
System.out.println("Coin received: " + coin);
} catch (InterruptedException e)
{
e.printStackTrace();
}
}
};
When this thread gets called from my other class, I need to pass it the JFrame so I can modify the JFrame contents. How can I do this? This is for an intro level java course so the teacher gave us most of this code. Below is the code where the Thread gets called:
Button btnStart = new JButton("Start");
btnStart.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
cm = new CoinCounterMechanism();
cm.setConsumerFlag();
cm.setProducerFlag();
cm.producer.start();
cm.consumer.start();
}
});

Instead of an anonymous Thread, you create an actual Runnable class. You use the constructor to pass your JFrame and other fields.
public class Consumer implements Runnable {
private boolean producerFlag;
private JFrame frame;
private Queue<Integer> queue;
public Consumer(JFrame frame, Queue<Integer> queue, boolean producerFlag) {
this.frame = frame;
this.queue = queue;
this.producerFlag = producerFlag;
}
#Override
public void run() {
Integer coin;
while (producerFlag)
try {
coin = queue.take();
System.out.println("Coin received: " + coin);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
Your JButton code contains higher level code than the code that actually starts the thread. In general, you would start a thread with the Runnable class above this way:
new Thread(new Consumer(frame, queue, true)).start();

The only thread that should be modifying anything on a JFrame is the event dispatch thread.
In order to have another thread modify a Swing component like a JFrame it needs to submit the change on the event dispatch thread, for example having the worker thread use SwingUtilities#invokeLater:
SwingUtilities.invokeLater(new Runnable() {
public void run() {
// modify your JFrame here
}
});

Related

Why does SwingUtilities.invokeLater() cause JButton to freeze?

Consider this basic Swing program, consisting out of two buttons:
public class main {
public static void main(String[] args) {
JFrame jf = new JFrame("hi!");
JPanel mainPanel = new JPanel(new GridLayout());
JButton longAction = new JButton("long action");
longAction.addActionListener(event -> doLongAction());
JButton testSystemOut = new JButton("test System.out");
testSystemOut.addActionListener(event -> System.out.println("this is a test"));
mainPanel.add(longAction);
mainPanel.add(testSystemOut);
jf.add(mainPanel);
jf.pack();
jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
jf.setVisible(true);
}
public static void doLongAction() {
SwingUtilities.invokeLater(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
System.out.println("Interrupted!");
}
System.out.println("Finished long action");
});
}
}
I want my second button testSystemOut to be usable while the first one is working on its long action (here, I put a 3 second sleep in it). I can do that by manually putting doLongAction() in a Thread and call start(). But I've read I should use SwingUtilities instead, which works exactly like EventQueue here. However, if I do so, my Button freezes for the duration of its action.
Why?
By using SwingUtilities.invokeLater, you are calling the enclosed code, including the Thread.sleep(...) call, on the Swing event thread, which is something you should never do since it puts the entire event thread, the thread responsible for drawing your GUI's and responding to user input, to sleep -- i.e., it freezes your application. Solution: use a Swing Timer instead or do your sleeping in a background thread. If you are calling long-running code and using a Thread.sleep(...) to simulate it, then use a SwingWorker to do your background work for you. Please read Concurrency in Swing for the details on this. Note that there is no reason for the SwingUtilities.invokeLater where you have it since the ActionListener code will be called on the EDT (the Swing event thread) regardless. I would however use SwingUtilities.invokeLater where you create your GUI.
e.g.,
import java.awt.*;
import java.awt.event.*;
import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangeListener;
import java.util.concurrent.ExecutionException;
import javax.swing.*;
public class Main {
public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
#Override
public void run() {
JFrame jf = new JFrame("hi!");
JPanel mainPanel = new JPanel(new GridLayout());
JButton testSystemOut = new JButton("test System.out");
testSystemOut.addActionListener(new ActionListener() {
#Override
public void actionPerformed(ActionEvent e) {
System.out.println("this is a test");
}
});
mainPanel.add(new JButton(new LongAction("Long Action")));
mainPanel.add(new JButton(new TimerAction("Timer Action")));
mainPanel.add(testSystemOut);
jf.add(mainPanel);
jf.pack();
jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
jf.setVisible(true);
}
});
}
#SuppressWarnings("serial")
public static class LongAction extends AbstractAction {
private LongWorker longWorker = null;
public LongAction(String name) {
super(name);
int mnemonic = (int) name.charAt(0);
putValue(MNEMONIC_KEY, mnemonic);
}
#Override
public void actionPerformed(ActionEvent e) {
setEnabled(false);
longWorker = new LongWorker(); // create a new SwingWorker
// add listener to respond to completion of the worker's work
longWorker.addPropertyChangeListener(new LongWorkerListener(this));
// run the worker
longWorker.execute();
}
}
public static class LongWorker extends SwingWorker<Void, Void> {
private static final long SLEEP_TIME = 3 * 1000;
#Override
protected Void doInBackground() throws Exception {
Thread.sleep(SLEEP_TIME);
System.out.println("Finished with long action!");
return null;
}
}
public static class LongWorkerListener implements PropertyChangeListener {
private LongAction longAction;
public LongWorkerListener(LongAction longAction) {
this.longAction = longAction;
}
#Override
public void propertyChange(PropertyChangeEvent evt) {
if (evt.getNewValue() == SwingWorker.StateValue.DONE) {
// if the worker is done, re-enable the Action and thus the JButton
longAction.setEnabled(true);
LongWorker worker = (LongWorker) evt.getSource();
try {
// call get to trap any exceptions that might have happened during worker's run
worker.get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
}
}
#SuppressWarnings("serial")
public static class TimerAction extends AbstractAction {
private static final int TIMER_DELAY = 3 * 1000;
public TimerAction(String name) {
super(name);
int mnemonic = (int) name.charAt(0);
putValue(MNEMONIC_KEY, mnemonic);
}
#Override
public void actionPerformed(ActionEvent e) {
setEnabled(false);
new Timer(TIMER_DELAY, new TimerListener(this)).start();
}
}
public static class TimerListener implements ActionListener {
private TimerAction timerAction;
public TimerListener(TimerAction timerAction) {
this.timerAction = timerAction;
}
#Override
public void actionPerformed(ActionEvent e) {
timerAction.setEnabled(true);
System.out.println("Finished Timer Action!");
((Timer) e.getSource()).stop();
}
}
}
Don't use SwingUtilities.invokeLater(...) when you want to execute some long-running code. Do that in a separate normal thread.
Swing is not multi-threaded, it's event-driven. Because of that there are methods like SwingUtilities.invokeLater(...). You have to use those methods if you want to alter Swing-Components from a different thread (since Swing is not thread-safe), for example if you want to change a Button's text.
Everything thats GUI-Related runs in that Swing-Thread, e.g. Cursor-Blinks, Messages from the OS, User Commands, etc.
Since its a single thread, every long running Code in this thread it will block your GUI.
If you just do some long-running code that isn't GUI-related, it shouldn't run in the Swing-Event-Thread, but in its own separated thread.
See
https://weblogs.java.net/blog/kgh/archive/2004/10/multithreaded_t.html
for why Swing is not Multi-Threaded.

SwingWorker calls a JFrame Class ..window shows nothing

class class1{
public class1(){//here is my GUI commants}
#Override
public void actionPerformed(ActionEvent evt) //this is my action performed from a jframe window
{
worker = new SwingWorker<Void, Void>(){//ia m creating a worker
protected WaitWindow waitWindow;
#Override
protected Void doInBackground() throws Exception {
waitWindow= new WaitWindow();//i call waitWindow class to pop up my new window with the progressBar
return null;
}
#Override
protected void done(){
waitWindow.CloseWaitWindow();
}
};
try{
String option = (String)serversList.getSelectedItem();
if (evt.getSource().equals(Button1))//when client presses button1
{
if(option.equals("icsd Server"))
{//here is my connection
Registry registry = LocateRegistry.getRegistry("localhost",1080);
icsdserver = (ICSDinterface)registry.lookup("RmiCheckICSD");
worker.execute(); //i am calling execute until the server return 0 this might take a long time
if (icsdserver.RequestForEntry("icsd",0)==0)
{
worker.cancel(true); //when server tell its all ok (with 0) i call cancel(true)
AddGrade d = new AddGrade(icsdserver,"icsd");
}
}
}
}
catch (RemoteException ex) {System.out.println(ex);}
catch (NotBoundException ex) {System.out.println(ex);}
}}
The Wait Window class follows
class WaitWindow extends JFrame //my WaitWindow Class
{
private JProgressBar bar ;
public WaitWindow(){
super("Wait Until Connection Is ready");
setSize(100,200);
bar = new JProgressBar();
bar.setIndeterminate(true);
bar.setPreferredSize(new Dimension(300,330));
add(bar);
getContentPane();
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
}
public void CloseWaitWindow()
{
removeNotify();
}
}
What am I doing wrong here? I want the wait Window to shown until server's RequestForEntry method return 0 this might take some time. Also there is no error with RMI connection.
You're blocking the Event Dispathing Thread, with the call to RequestForEntry, which should be within the doInBackground method of the SwingWorker, for example
public void actionPerformed(ActionEvent ev) //this is my action performed from a jframe window
{
try {
final String option = (String) serversList.getSelectedItem();
if (evt.getSource().equals(Button1))//when client presses button1
{
final WaitWindow waitWindow = new WaitWindow();
worker = new SwingWorker<Void, Void>() {//ia m creating a worker
#Override
protected Void doInBackground() throws Exception {
if (option.equals("icsd Server")) {//here is my connection
Registry registry = LocateRegistry.getRegistry("localhost", 1080);
icsdserver = (ICSDinterface) registry.lookup("RmiCheckICSD");
worker.execute(); //i am calling execute until the server return 0 this might take a long time
if (icsdserver.RequestForEntry("icsd", 0) == 0) {
worker.cancel(true); //when server tell its all ok (with 0) i call cancel(true)
AddGrade d = new AddGrade(icsdserver, "icsd");
}
}
return null;
}
#Override
protected void done() {
waitWindow.CloseWaitWindow();
}
};
}
} catch (RemoteException ex) {
System.out.println(ex);
} catch (NotBoundException ex) {
System.out.println(ex);
}
}
Swing is a single threaded framework and isn't thread safe. This means that anything the blocks the Event Dispatching Thread will prevent it from processing new events, including paint requests.
Swing components should also only be updated from within the context of the EDT, which is where SwingWorker comes in.
See Concurrency in Swing and Worker Threads and SwingWorker for more details

Query on creating separate thread in java?

Below is the compiled program replica of actual problem code,
import javax.swing.JOptionPane;
import javax.swing.SwingUtilities;
public class Dummy {
public static boolean getUserCheck(int size, boolean Check) {
if (Check) {
int ret = JOptionPane.showConfirmDialog(null, size + " entries, Yes or no?",
"Warning", 0);
if (ret > 0) {
System.out.println("User said No: " + ret);
return false;
} else if (ret <= 0) {
System.out.println("user said Yes: " + ret);
return true;
}
}
return true;
}
public static void workerMethod1() {
System.out.println("am worker method 1");
}
public static void workerMethod2() {
System.out.println("am worker method 2");
}
public static void main(String[] args) {
System.out.println("mainthread code line 1");
int size = 13;
boolean thresholdBreach = true;
if (getUserCheck(size, thresholdBreach)) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {
workerMethod1();
}
});
SwingUtilities.invokeLater(new Runnable() {
public void run() {
workerMethod2();
}
});
}
System.out.println("mainthread code line 2");
System.out.println("mainthread code line 3");
}
}
where i would like to run the if{} block in main() on separate thread. Because these 2 lines,
System.out.println("mainthread code line 2");
System.out.println("mainthread code line 3");
need not wait for completion of if(){} block
Another problem is, experts recommend to run confirm-dialog methods on event thread.
int ret = JOptionPane.showConfirmDialog(null, size + " entries, Yes or no?",
"Warning", 0);
Please help me!!!!
JOptionPane is a Swing method and should be called on the EDT, the Event Dispatch Thread, and only on this thread, and so it suggests that all your code above should be on the EDT, and that most of your SwingUtilities.invokeLater(new Runnable() calls are completely unnecessary. The only necessary ones will be the main one, where you launch your Swing GUI code, and any areas where Swing calls need to be made from within background threads. Again, if any of the above code is being made within background threads, then the JOptionPane should not be in that thread.
For more specific information in this or any other answer, please provide more specific information in your question. Let's end all confusion. The best way to get us to fully and quickly understand your problem would be if you were to to create and post a minimal example program, a small but complete program that only has necessary code to demonstrate your problem, that we can copy, paste, compile and run without modification.
I have a sneaking suspicion that a decent refactoring along MVC lines could solve most of your problems. Your code is very linear with its lines of code that must follow one another and its if blocks, and it is also tightly coupled with your GUI, two red flags for me. Perhaps better would be less linear code, more event and state-driven code, code where your background code interacts with the GUI via observer notification, and where the background code likewise responds to state changes in the GUI from control notification.
Your control needs two SwingWorkers, one to get the row count and the other to get the rest of the data if the user decides to do so. I'd add a PropertyChangeListener to the first SwingWorker to be notified when the row count data is ready, and then once it is, present it to the view for the user to select whether or not to proceed. If he decides to proceed, I'd then call the 2nd SwingWorker to get the main body of the data.
For example, a rough sketch of what I'm talking about:
import java.awt.Dialog.ModalityType;
import java.awt.Dimension;
import java.awt.Window;
import java.awt.event.ActionEvent;
import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangeListener;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.ExecutionException;
import javax.swing.*;
#SuppressWarnings("serial")
public class SwingWorkerFooView extends JPanel {
private static final int PREF_W = 400;
private static final int PREF_H = 300;
private JProgressBar progressBar;
private JDialog dialog;
public SwingWorkerFooView() {
add(new JButton(new ButtonAction("Foo", this)));
}
#Override
public Dimension getPreferredSize() {
if (isPreferredSizeSet()) {
return super.getPreferredSize();
}
return new Dimension(PREF_W, PREF_H);
}
public boolean showOptionGetAllData(int numberOfRows) {
String message = "Number of rows = " + numberOfRows + ". Get all of the data?";
String title = "Get All Of Data?";
int optionType = JOptionPane.YES_NO_OPTION;
int result = JOptionPane.showConfirmDialog(this, message, title, optionType);
return result == JOptionPane.YES_OPTION;
}
public void showProgressBarDialog() {
progressBar = new JProgressBar();
progressBar.setIndeterminate(true);
Window window = SwingUtilities.getWindowAncestor(this);
dialog = new JDialog(window, "Hang on", ModalityType.APPLICATION_MODAL);
JPanel panel = new JPanel();
panel.add(progressBar);
dialog.add(panel);
dialog.pack();
dialog.setLocationRelativeTo(this);
dialog.setVisible(true);
}
public void closeProgressBarDialog() {
dialog.dispose();
}
private static void createAndShowGui() {
JFrame frame = new JFrame("SwingWorkerFoo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add(new SwingWorkerFooView());
frame.pack();
frame.setLocationRelativeTo(null);
frame.setVisible(true);
}
public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {
createAndShowGui();
}
});
}
}
#SuppressWarnings("serial")
class ButtonAction extends AbstractAction {
Workers workers = new Workers();
private SwingWorker<Integer, Void> firstWorker;
private SwingWorker<List<String>, Void> secondWorker;
private SwingWorkerFooView mainGui;
public ButtonAction(String name, SwingWorkerFooView mainGui) {
super(name);
this.mainGui = mainGui;
}
#Override
public void actionPerformed(ActionEvent e) {
firstWorker = workers.createFirstWorker();
firstWorker.addPropertyChangeListener(new FirstPropertyChangeListener());
firstWorker.execute();
mainGui.showProgressBarDialog();
}
private class FirstPropertyChangeListener implements PropertyChangeListener {
#Override
public void propertyChange(PropertyChangeEvent evt) {
if (evt.getNewValue() == SwingWorker.StateValue.DONE) {
mainGui.closeProgressBarDialog();
try {
int numberOfRows = firstWorker.get();
boolean getAllData = mainGui.showOptionGetAllData(numberOfRows);
if (getAllData) {
secondWorker = workers.createSecondWorker();
secondWorker.addPropertyChangeListener(new SecondPropertyChangeListener());
secondWorker.execute();
mainGui.showProgressBarDialog();
} else {
// user decided not to get all data
workers.cleanUp();
}
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
}
}
private class SecondPropertyChangeListener implements PropertyChangeListener {
#Override
public void propertyChange(PropertyChangeEvent evt) {
if (evt.getNewValue() == SwingWorker.StateValue.DONE) {
mainGui.closeProgressBarDialog();
try {
List<String> finalData = secondWorker.get();
// display finalData in the GUI
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
}
}
}
class Workers {
// database object that may be shared by two SwingWorkers
private Object someDataBaseVariable;
private Random random = new Random(); // just for simulation purposes
private class FirstWorker extends SwingWorker<Integer, Void> {
#Override
protected Integer doInBackground() throws Exception {
// The Thread.sleep(...) is not going to be in final production code
// it's just to simulate a long running task
Thread.sleep(4000);
// here we create our database object and check how many rows there are
int rows = random.nextInt(10 + 10); // this is just for demonstration purposes only
// here we create any objects that must be shared by both SwingWorkers
// and they will be saved in a field of Workers
someDataBaseVariable = "Fubar";
return rows;
}
}
private class SecondWorker extends SwingWorker<List<String>, Void> {
#Override
protected List<String> doInBackground() throws Exception {
// The Thread.sleep(...) is not going to be in final production code
// it's just to simulate a long running task
Thread.sleep(4000);
List<String> myList = new ArrayList<>();
// here we go through the database filling the myList collection
return myList;
}
}
public SwingWorker<Integer, Void> createFirstWorker() {
return new FirstWorker();
}
public void cleanUp() {
// TODO clean up any resources and database stuff that will not be used.
}
public SwingWorker<List<String>, Void> createSecondWorker() {
return new SecondWorker();
}
}
The key to all of this is to not to think in a linear console program way but rather to use observer design pattern, i.e., listeners of some sort to check for change of state of both the GUI and the model.
It's essentially:
create worker
add observer to worker (property change listener)
execute worker
show progress bar dialog or notify user in some way that worker is executing.
The listener will be notified when the worker is done, and then you can query the worker (here via the get() method call) as to its end result.
Then the progress dialog can be closed
And the view can display the result or get additional information from the user.
Yes; SwingUtilities.invokeLater() simply places your runnable on the AWT event queue to be processed later, and it is safe to do so at any time.

Java Swing: How do I wake up the main thread from the event-dispatch thread?

I want to cause the "main thread" (the thread started which runs main()) to do some work from the actionPerformed() method of a button's ActionListener, but I do not know how to achieve this.
A little more context:
I am currently programming a 2D game using Swing (a flavour of Tetris).
When the application starts, a window opens which displays the main menu of the game.
The user is presented several possibilities, one of them is to start the game by pushing a "Start" button, which causes the game panel to be displayed and triggers the main loop of the game.
To be able to switch between the two panels (that of the main menu and that of the game), I am using a CardLayout manager, then I can display one panel by calling show().
The idea is that I would like my start button to have a listener that looks like this:
public class StartListener implements ActionListener {
StartListener() {}
public void actionPerformed(ActionEvent e) {
displayGamePanel();
startGame();
}
}
but this does not work because actionPerformed() is called from the event-dispatch thread, so the call to startGame() (which triggers the main loop: game logic update + repaint() call at each frame) blocks the whole thread.
The way I am handling this right now is that actionPerformed() just changes a boolean flag value: public void actionPerformed(ActionEvent e) {
startPushed = true;
}
which is then eventually checked by the main thread:
while (true) {
while (!g.startPushed) {
try {
Thread.sleep(100);
} catch (Exception e) {}
}
g.startPushed = false;
g.startGame();
}
But I find this solution to be very inelegant.
I have read the Concurrency in Swing lesson but I am still confused (should I implement a Worker Thread – isn't that a little overkill?). I haven't done any actual multithreading work yet so I am a little lost.
Isn't there a way to tell the main thread (which would be sleeping indefinitely, waiting for a user action) "ok, wake up now and do this (display the game panel and start the game)"?.
Thanks for your help.
EDIT:
Just to be clear, this is what my game loop looks like:
long lastLoopTime = System.currentTimeMillis();
long dTime;
int delay = 10;
while (running) {
// compute the time that has gone since the last frame
dTime = System.currentTimeMillis() - lastLoopTime;
lastLoopTime = System.currentTimeMillis();
// UPDATE STATE
updateState(dTime);
//...
// UPDATE GRAPHICS
// thread-safe: repaint() will run on the EDT
frame.repaint()
// Pause for a bit
try {
Thread.sleep(delay);
} catch (Exception e) {}
}
This doesn't make sense:
but this does not work because actionPerformed() is called from the event-dispatch thread, so the call to startGame() (which triggers the main loop: game logic update + repaint() call at each frame) blocks the whole thread.
Since your game loop should not block the EDT. Are you using a Swing Timer or a background thread for your game loop? If not, do so.
Regarding:
while (true) {
while (!g.startPushed) {
try {
Thread.sleep(100);
} catch (Exception e) {}
}
g.startPushed = false;
g.startGame();
}
Don't do this either, but instead use listeners for this sort of thing.
e.g.,
import java.awt.CardLayout;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.*;
public class GameState extends JPanel {
private CardLayout cardlayout = new CardLayout();
private GamePanel gamePanel = new GamePanel();
private StartPanel startpanel = new StartPanel(this, gamePanel);
public GameState() {
setLayout(cardlayout);
add(startpanel, StartPanel.DISPLAY_STRING);
add(gamePanel, GamePanel.DISPLAY_STRING);
}
public void showComponent(String displayString) {
cardlayout.show(this, displayString);
}
private static void createAndShowGui() {
GameState mainPanel = new GameState();
JFrame frame = new JFrame("GameState");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add(mainPanel);
frame.pack();
frame.setLocationByPlatform(true);
frame.setVisible(true);
}
public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {
createAndShowGui();
}
});
}
}
class StartPanel extends JPanel {
public static final String DISPLAY_STRING = "Start Panel";
public StartPanel(final GameState gameState, final GamePanel gamePanel) {
add(new JButton(new AbstractAction("Start") {
#Override
public void actionPerformed(ActionEvent e) {
gameState.showComponent(GamePanel.DISPLAY_STRING);
gamePanel.startAnimation();
}
}));
}
}
class GamePanel extends JPanel {
public static final String DISPLAY_STRING = "Game Panel";
private static final int PREF_W = 500;
private static final int PREF_H = 400;
private static final int RECT_WIDTH = 10;
private int x;
private int y;
public void startAnimation() {
x = 0;
y = 0;
int timerDelay = 10;
new Timer(timerDelay , new ActionListener() {
#Override
public void actionPerformed(ActionEvent e) {
x++;
y++;
repaint();
}
}).start();
}
#Override
protected void paintComponent(Graphics g) {
super.paintComponent(g);
g.fillRect(x, y, RECT_WIDTH, RECT_WIDTH);
}
#Override
public Dimension getPreferredSize() {
return new Dimension(PREF_W, PREF_H);
}
}
you should be using a SwingWorker this will execute the code in doInBackground() in a background thread and the code in done() in the EDT after doInBackground() stops
The easiest way: use a CountDownLatch. You set it to 1, make it available in the Swing code by any means appropriate, and in the main thread you await it.
You can consider showing a modal dialog with the game panel using SwingUtilities.invokeAndWait() so that when the dialog is closed the control returns back to main thread.
You can make all code except the EDT run on single thread execution service and then just post runnables whenever you need some code executed.

Calling a Background Thread in Swing

First code:
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class cos {
public static int a;
private static JLabel labeler;
// public static Runnable r1;
private JFrame frame;
/**
* Launch the application.
*/
public static void main(String[] args) {
a = 0;
EventQueue.invokeLater(new Runnable() {
public void run() {
try {
cos window = new cos();
window.frame.setVisible(true);
} catch (Exception e) {
e.printStackTrace();
}
}
});
}
/**
* Create the application.
*/
public cos() {
initialize();
}
/**
* Initialize the contents of the frame.
*/
public void initialize() {
frame = new JFrame();
frame.setBounds(100, 100, 205, 194);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JLabel lblTime = new JLabel("Time:");
frame.getContentPane().add(lblTime, BorderLayout.WEST);
final JLabel labeler = new JLabel("");
frame.getContentPane().add(labeler, BorderLayout.CENTER);
JButton btnNewButton = new JButton("New button");
btnNewButton.addActionListener(new ActionListener() {
Runnable r1 = new Runnable() {
public void run() {
while (a <= 10) {
a = a + 1;
labeler.setText(Integer.toString(a));
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
};
public void actionPerformed(ActionEvent arg0) {
Thread threder = new Thread(r1);
threder.start();
// liczniczek bla = new liczniczek();
}
});
frame.getContentPane().add(btnNewButton, BorderLayout.SOUTH);
}
public void licznik() {
while (a < 60) {
a = a + 1;
labeler.setText(Integer.toString(a));
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
}
And now my question. I wanna use code like this:
Runnable r1 = new Runnable(){
public void run(){
licznik();
}
};
But that doesen't work. What i must do to separate this code ? Sorry for my bad english
Sierran.
never use Thread#sleep(int) during EDT, sure if is there only this thread then works correctly (with blockng EDT),
Runnable r1 = new Runnable(){
public void run(){
licznik();
}
};
is wrong than same as you call plain licznik();, you have to wrap that this way
Runnable r1 = new Runnable(){
public void run(){
labeler.setText(Integer.toString(a));
}
};
but again without Thread#sleep(int), you have three choises
1) change Thread to the javax.swing.Timer
2) change Thread to the Runnable#Thread, there you can delaying with Thread#sleep(int), but output to the GUI must be
Runnable r1 = new Runnable(){
public void run(){
labeler.setText(Integer.toString(a));
}
};
3) use SwingWorker, where output is in the EDT and you can use Thread#sleep(int) too
example Thread#sleep(int) during EDT
put all together
EDIT
don't use reserved words as class, method, variable, whatever Name in the Programing languages (meaning cos)
your code works by implements all three options that I post here,
What do you mean "it doesn't work"? It works for me. How are you trying to use this code, and what errors or problems are you having when you run it? Myself, I'd use a SwingWorker though and I'd set the JLabel's text via the SwingWorker's publish/process method pair. To learn more on how to use this, please see this tutorial: Concurrency in Swing
Edit
Actually, an easier way to accomplish what you want is to not use threads or Runnables directly at all but to use a Swing Timer as they're built for just this case. For more on this, please check out the Swing Timer Tutorial
I gather that you want the function licznik() to run in a separate thread. You create a Runnable, but you have to do something more to make its run() method execute. There are a couple of ways to do this:
Runnable r1 = new Runnable(){
public void run(){
licznik();
}
};
new Thread(r1).start();
or you can just subclass Thread directly:
Thread r1 = new Thread(){
public void run(){
licznik();
}
};
r1.start();
Runnable interface has no method licznik(). You can create class that implements Runnable with licznik() method.
Or if you do not need to reuse this method and use it just once, then the fastest way is to move its implementation inside new Runnable() block
Runnable r1 = new Runnable(){
public void run(){
this.licznik();
}
public void licznik(){
while (a < 60){
a = a + 1 ;
labeler.setText(Integer.toString(a));
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
};
Look on GitHub under at https://github.com/greggwon/Ham. Look at the source code in https://github.com/greggwon/Ham/blob/master/SwingUtil/src/org/wonderly/swing/ComponentUpdateThread.java to see how I've packaged this whole detail into a single class which uses anonymous inner classes to do the work. It would be possible to change this to lambdas now, but I have not used Java in several years and thus haven't made that change.
new ComponentUpdateThread( new Action[] { add, del, edit } ) {
public void setup() {
super.setup();
list.setEnabled(false);
list.clearSelection();
}
public Object construct() {
try {
Vector v = remote.getData();
Collections.sort( v );
return v;
} catch( Exception ex ) {
reportException(ex);
}
return null;
}
public void finished() {
try {
Vector v = (Vector)getValue();
if( v != null ) list.setListData(v);
} finally {
super.finished();
list.setEnabled(true);
edit.setEnabled(false);
del.setEnaled(false);
}
}
}.start();
With this style of work, you can use final values from surrounding blocks or other class visible data to control various aspects of what happens before, during and after background thread execution.
I've change this code around over the years in various ways and there are other variations of this that exist.
The arguments to the ComponentUpdateThread constructor are controls/actions to be "disabled" while the background thread is running. Other enable/disable activities can be more literally embedded into the activities in setup() and finished() (which are run in the AWT event thread) before "construct" is run in the background thread.

Categories