How do HashSet and HashMap work in Java? - java

I'm a bit confused about the internal implementation of HashSet and HashMap in java.
This is my understanding, so please correct me if I'm wrong:
Neither HashSet or HashMap allow duplicate elements.
HashSet is backed by a HashMap, so in a HashSet when we call .add(element), we are calling the hashCode() method on the element and internally doing a put(k,v) to the internal HashMap, where the key is the hashCode and the value is the actual object. So if we try to add the same object to the Set, it will see that the hashCode is already there, and then replace the old value by the new one.
But then, this seems inconsistent to me when I read how a HashMap works when storing our own objects as keys in a HashMap.
In this case we must override the hashCode() and equals() methods and make them consistent between each other, because, if we find keys with the same hashCode, they will go to the same bucket, and then to distinguish between all the entries with the same hashCode we have to iterate over the list of entries to call the method equals() on each key and find a match.
So in this case, we allow to have the same hashCode and we create a bucket containing a list for all the objects with the same hashCode, however using a HashSet, if we find already a hashCode, we replace the old value by the new value.
I'm a bit confused, could someone clarify this to me please?

You are correct regarding the behavior of HashMap, but you are wrong about the implementation of HashSet.
HashSet is backed by a HashMap internally, but the element you are adding to the HashSet is used as the key in the backing HashMap. For the value, a dummy value is used. Therefore the HashSet's contains(element) simply calls the backing HashMap's containsKey(element).

The value we insert in HashMap acts as a Key to the map object and for its value, java uses a constant variable.So in the key-value pair, all the keys will have the same value.
you can refer to this link
https://www.geeksforgeeks.org/hashset-in-java/

Hash Map:-Basically Hash map working as key and value ,if we want to store data as key and value pair then we will go to the hash map, basically when we insert data by using hash map basically internally it will follow 3 think,
1.hashcode
2..equale
3.==
when we insert the data in hash map it will store the data in bucket(fast in) by using hash code , if there is 2 data store in the same bocket then key collision will happen to resolve this key collision we use (==) method, always == method check the reference of the object, if both object hashcode is same then first one replace to second one if the hashcode is not same then hashing Collision will happen to resolve this hashing collision we will use (.equal) method .equal method basically it will check the content , if both the content is same then it will return true other wise it will return false, so in the hash map it will check is the content is same ? if the content is same then first one replace to the second one if both content is different the it will create another one object in the bocket and store the data

Hash Set:- Basically Hash Set is use to store bunch of object at a time ,internally hash set also use hash map only , when we insert somethink by using add method internally it will call put method and it will store data in the hashmap key bcz hash map key always unique and duplicate are not allowed that's way hashset also unique and duplicate are not allowed and if we entered duplicate also in hashst it will not through any exception first one will replace to the second one and in the value it will store constant data "PRESENT".
You can observe that internal hashmap object contains the element of hashset as keys and constant “PRESENT” as their value.
Where present is constant which is defined as
private static final Object present = new Object()

Related

Map and sets in java

I know about collections. But i was thinking , when we overide the key in map , it simply overides the previous value assigned to it.
On the otherside , we say that when we put value in map it calls hashcode() and if it goes to same bucket then equal() is been called. In case not , there is no need to call equal() method.
If thats the case, when we overide the key in hashmap. It probably calls hashcode() and as if same hashcode is returned for key/value pair. Then equal is been called and after checking that its exactly same , why it gets overide??
The HashMap (and map implementations) do not call hashCode() method on the values - they are called on the keys. There is a check performed to see if the key is null - if this is the case, hashCode() is not called and the key is stored in position 0 in the map's table.
The hash function is called on the keys. We all know that a map retrieves elements in constant time O(1). Now comes the interesting part - it is not always the case that the hash code of a key resolves to a unique value. When the number of entries is large, the HashMap in java applies another hashing function to resize the map structure but this cannot be done infinitely. At a certain point, more than one key will resolve to the same value. In this case, when more than one key gets hashed into the same bucket(location within the map structure), the collision is resolved by storing the elements as a linked list (this happens very rarely). Now the look up time for an element that has gone into a bucket which points to a linked list is linear (O(n)).

how does hashing in java works?

I am trying to figure something out about hashing in java.
If i want to store some data in a hashmap for example, will it have some kind of underlying hashtable with the hashvalues?
Or if someone could give a good and simple explanation of how hashing work, I would really appreciate it.
HashMap is basically implemented internally as an array of Entry[]. If you understand what is linkedList, this Entry type is nothing but a linkedlist implementation. This type actually stores both key and value.
To insert an element into the array, you need index. How do you calculate index? This is where hashing function(hashFunction) comes into picture. Here, you pass an integer to this hashfunction. Now to get this integer, java gives a call to hashCode method of the object which is being added as a key in the map. This concept is called preHashing.
Now once the index is known, you place the element on this index. This is basically called as BUCKET , so if element is inserted at Entry[0], you say that it falls under bucket 0.
Now assume that the hashFunction returns you same index say 0, for another object that you wanted to insert as a key in the map. This is where equals method is called and if even equals returns true, it simple means that there is a hashCollision. So under this case, since Entry is a linkedlist implmentation, on this index itself, on the already available entry at this index, you add one more node(Entry) to this linkedlist. So bottomline, on hashColission, there are more than one elements at a perticular index through linkedlist.
The same case is applied when you are talking about getting a key from map. Based on index returned by hashFunction, if there is only one entry, that entry is returned otherwise on linkedlist of entries, equals method is called.
Hope this helps with the internals of how it works :)
Hash values in Java are provided by objects through the implementation of public int hashCode() which is declared in Object class and it is implemented for all the basic data types. Once you implement that method in your custom data object then you don't need to worry about how these are used in miscellaneous data structures provided by Java.
A note: implementing that method requires also to have public boolean equals(Object o) implemented in a consistent manner.
If i want to store some data in a hashmap for example, will it have some kind of underlying hashtable with the hashvalues?
A HashMap is a form of hash table (and HashTable is another). They work by using the hashCode() and equals(Object) methods provided by the HashMaps key type. Depending on how you want you keys to behave, you can use the hashCode / equals methods implemented by java.lang.Object ... or you can override them.
Or if someone could give a good and simple explanation of how hashing work, I would really appreciate it.
I suggest you read the Wikipedia page on Hash Tables to understand how they work. (FWIW, the HashMap and HashTable classes use "separate chaining with linked lists", and some other tweaks to optimize average performance.)
A hash function works by turning an object (i.e. a "key") into an integer. How it does this is up to the implementor. But a common approach is to combine hashcodes of the object's fields something like this:
hashcode = (..((field1.hashcode * prime) + field2.hashcode) * prime + ...)
where prime is a smallish prime number like 31. The key is that you get a good spread of hashcode values for different keys. What you DON'T want is lots of keys all hashing to the same value. That causes "collisions" and is bad for performance.
When you implement the hashcode and equals methods, you need to do it in a way that satisfies the following constraints for the hash table to work correctly:
1. O1.equals(o2) => o1.hashcode() == o2.hashcode()
2. o2.equals(o2) == o2.equals(o1)
3. The hashcode of an object doesn't change while it is a key in a hash table.
It is also worth noting that the default hashCode and equals methods provided by Object are based on the target object's identity.
"But where is the hash values stored then? It is not a part of the HashMap, so is there an array assosiated to the HashMap?"
The hash values are typically not stored. Rather they are calculated as required.
In the case of the HashMap class, the hashcode for each key is actually cached in the entry's Node.hash field. But that is a performance optimization ... to make hash chain searching faster, and to avoid recalculating hashes if / when the hash table is resized. But if you want this level of understanding, you really need to read the source code rather than asking Questions.
This is the most fundamental contract in Java: the .equals()/.hashCode() contract.
The most important part of it here is that two objects which are considered .equals() should return the same .hashCode().
The reverse is not true: objects not considered equal may return the same hash code. But it should be as rare an occurrence as possible. Consider the following .hashCode() implementation, which, while perfectly legal, is as broken an implementation as can exist:
#Override
public int hashCode() { return 42; } // legal!!
While this implementation obeys the contract, it is pretty much useless... Hence the importance of a good hash function to begin with.
Now: the Set contract stipulates that a Set should not contain duplicate elements; however, the strategy of a Set implementation is left... Well, to the implementation. You will notice, if you look at the javadoc of Map, that its keys can be retrieved by a method called .keySet(). Therefore, Map and Set are very closely related in this regard.
If we take the case of a HashSet (and, ultimately, HashMap), it relies on .equals() and .hashCode(): when adding an item, it first calculates this item's hash code, and according to this hash code, attemps to insert the item into a given bucket. In contrast, a TreeSet (and TreeMap) relies on the natural ordering of elements (see Comparable).
However, if an object is to be inserted and the hash code of this object would trigger its insertion into a non empty hash bucket (see the legal, but broken, .hashCode() implementation above), then .equals() is used to determine whether that object is really unique.
Note that, internally, a HashSet is a HashMap...
Hashing is a way to assign a unique code for any variable/object after applying any function/algorithm on its properties.
HashMap stores key-value pair in Map.Entry static nested class implementation.
HashMap works on hashing algorithm and uses hashCode() and equals() method in put and get methods.
When we call put method by passing key-value pair, HashMap uses Key hashCode() with hashing to find out
the index to store the key-value pair. The Entry is stored in the LinkedList, so if there are already
existing entry, it uses equals() method to check if the passed key already exists, if yes it overwrites
the value else it creates a new entry and store this key-value Entry.
When we call get method by passing Key, again it uses the hashCode() to find the index
in the array and then use equals() method to find the correct Entry and return it’s value.
Below image will explain these detail clearly.
The other important things to know about HashMap are capacity, load factor, threshold resizing.
HashMap initial default capacity is 16 and load factor is 0.75. Threshold is capacity multiplied
by load factor and whenever we try to add an entry, if map size is greater than threshold,
HashMap rehashes the contents of map into a new array with a larger capacity.
The capacity is always power of 2, so if you know that you need to store a large number of key-value pairs,
for example in caching data from database, it’s good idea to initialize the HashMap with correct capacity
and load factor.

Why is HashMap faster than HashSet?

I have been reading/researching the reason why HashMapis faster than HashSet.
I am not quite understanding the following statements:
HashMap is faster than HashSet because the values are associated to a unique key.
In HashSet, member object is used for calculating hashcode value which can be same for two objects so equals() method is used to check for equality. If it returns false, that means the two objects are different. In HashMap, the hashcode value is calculated using the key object.
The HashMap hashcode value is calculated using the key object. Here, the member object is used to calculate the hashcode, which can be the same for two objects, so equals() method is used to check for equality. If it returns false, that means the two objects are different.
To conclude my question:
I thought HashMap and HashSet calculate the hashcode in the same way. Why are they different?
Can you provide a concrete example how HashSet and HashMap calculating the hashcode differently?
I know what a "key object" is, but what does it mean by "member object"?
HashMap can do the same things as HashSet, and faster. Why do we need HashSet? Example:
HashMap <Object1, Boolean>= new HashMap<Object1, boolean>();
map.put("obj1",true); => exist
map.get("obj1"); =>if null = not exist, else exist
Performance:
If you look at the source code of HashSet (at least JDK 6, 7 and 8), it uses HashMap internally, so it basically does exactly what you are doing with sample code.
So, if you need a Set implementation, you use HashSet, if you need a Map - HashMap. Code using HashMap instead of HashSet will have exactly the same performance as using HashSet directly.
Choosing the right collection
Map - maps keys to values (associative array) - http://en.wikipedia.org/wiki/Associative_array.
Set - a collection that contains no duplicate elements - http://en.wikipedia.org/wiki/Set_(computer_science).
If the only thing you need your collection for is to check if an element is present in there - use Set. Your code will be cleaner and more understandable to others.
If you need to store some data for your elements - use Map.
None of these answers really explain why HashMap is faster than HashSet. They both have to calculate the hashcode, but think about the nature of the key of a HashMap - it is typically a simple String or even a number. Calculating the hashcode of that is much faster than the default hashcode calculation of an entire object. If the key of the HashMap was the same object as that stored in a HashSet, there would be no real difference in performance. The difference comes in the what sort of object is the HashMap's key.

what should be used HashMap or HashSet?

If you are given a set of records (say, User records with Id, Name and age fields) and you need to send a collection of it
to the view for simple traversal. Then which collection would be preferable for use between HashMap and HashSet
and why? What hashcode generation code would you use in the User class for efficiency?
A HashSet is in itself an implementation of the HashMap so in the end it does not really make much of a difference. However, since you are dealing with users, I think that eventually you will need to access User objects by ID.
Assuming that each user has a unique ID, you could use a HashMap with ID's as a key and the entire User object as value. This will allow you to both traverse and access specific user data.
HashMap and HahSet use diffrent data structure to store objects.
In a HashMap you store objects in key-value pairs
In a HashSet you store only the keys as objects.
Following are some of the difference between them:
HashSet is implementation of Set interface. HashMap is the implementation of Map interface.
HashSet Store only value. HashMap Stores data in form of key value
pair.
HashSet does not allow duplicate values/objects HashMap allows
duplicate value/objects but would not allow duplicate key.
HashSet is slower than hashmap. HashMap is faster than hashset
because the values are associated to unique key
In HashSet, member object is used for calculating hashcode value
which can be same for two objects so equal () method is used to
check for equality if it returns false that means two objects are
different.In HashMap, hashcode value is calculated using key object.

two keys are same hashMap over write" the existing one?

How exactly hash map store data internally ... I knew it will calculate HashCode value of key and store it.If two key having same hash code it will put into same bucket. But why if "two keys are same hashMap over write" the existing one?
Well, that's what it's designed to do. It's a mapping of key/value pairs, where any key is associated with 0 or 1 value. If you put a second value for a key, the entry for that key will be replaced.
It's not based just on the hash code though - it will test the keys for equality, too. Two keys can be unequal but have the same hash code. The important thing is that two equal keys must have the same hash code.
If you want to store multiple values for a single key, you should use something like Guava's Multimap.
It will not overwrite the value if the hashCode() is same. It will overwrite only if they are equal by the equals method.
See http://en.wikipedia.org/wiki/Hash_table and http://www.docjar.com/html/api/java/util/HashMap.java.html
A hash table or hash map is an array of linked lists, keyed by hashcode.
Hashcode code main purpose is to reduce the number of invocation of equals method in the hash based collection. Same hash code need not return true for equals method. But if you say its equals is true, then it hascode should be true.
Hash functions are generallyy used for eliminating duplicate data.That is why collections type
like Hashmap not allowing to store duplicate data.
This algorithms has been used in database as well to eliminate possible duplicates while retrieval.

Categories