I am working on an app where at some point I need to retrieve the website title given the URL. The following code does that
InputStream response = null;
try {
response = new URL(urlString).openStream();
Scanner scanner = new Scanner(response);
String responseBody = scanner.useDelimiter("\\A").next();
title = responseBody.substring(responseBody.indexOf("<title>") + 7, responseBody.indexOf("</title>"));
}
catch (IOException e) {
didWeGetTitle = true;
CustomLogger.log("UrlDataExtractor: retrieveWebsiteTitleAndFavicon: Retrieve title: Error IOException. " + e,'e');
e.printStackTrace();
}
The problem is that for certain web pages (For example CreditCheckTotal.com) IOException is being thrown. Here is the exception
javax.net.ssl.SSLHandshakeException: java.security.cert.CertPathValidatorException: Trust anchor for certification path not found.
It is my understanding that the reason this is happening is that SSL Certificate is not trusted. I was looking for a way to address this problem and came around a post that suggested to run the following code before establishing the connection.
private static void trustEveryone() {
try {
HttpsURLConnection.setDefaultHostnameVerifier(new HostnameVerifier(){
public boolean verify(String hostname, SSLSession session) {
return true;
}});
SSLContext context = SSLContext.getInstance("TLS");
context.init(null, new X509TrustManager[]{new X509TrustManager(){
public void checkClientTrusted(X509Certificate[] chain,
String authType) throws CertificateException {}
public void checkServerTrusted(X509Certificate[] chain,
String authType) throws CertificateException {}
public X509Certificate[] getAcceptedIssuers() {
return new X509Certificate[0];
}}}, new SecureRandom());
HttpsURLConnection.setDefaultSSLSocketFactory(
context.getSocketFactory());
} catch (Exception e) { // should never happen
e.printStackTrace();
}
}
Now, from the post, it became obvious that this solution can pose a security threat because it creates a possibility of MIMA. Now, my question is, since the only point of my above-mentioned code is to grab the title of the webpage, is it a problem for me to just trust all the certificates?
Certificate validation is done to make sure that you are talking to the correct server, i.e. protect against man in the middle attacks. If you want to grab only the title of a web page and don't transfer any sensitive data the risk of disabling certificate validation can be considered acceptable, as long as you accept the risk that you get a different content (which might result in a different title) in case of a man in the middle attack.
I am developing an Android application under Android Studio and I need to establish HTTPS connection. So far I've succeeded, but with current implementation I am trusting all hosts, which could easily lead to man-in-the-middle attack. So I was wondering is there a way to trust an exact certificate and no other? So far my code looks like this:
/**
* Trust every server - dont check for any certificate
*/
private void trustAllHosts() {
// Create a trust manager that does not validate certificate chains
TrustManager[] trustAllCerts = new TrustManager[]{new X509TrustManager() {
public java.security.cert.X509Certificate[] getAcceptedIssuers() {
return new java.security.cert.X509Certificate[]{};
}
public void checkClientTrusted(X509Certificate[] chain,String authType) throws CertificateException {
}
public void checkServerTrusted(X509Certificate[] chain,String authType) throws CertificateException {
}
}};
// Install the all-trusting trust manager
try {
SSLContext sc = SSLContext.getInstance("TLS");
sc.init(null, trustAllCerts, new java.security.SecureRandom());
HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());
} catch (Exception e) {
e.printStackTrace();
}
}
And I am using HttpsURLConnection like this:
private void postText(String URLAddress) {
try {
URL obj = new URL(URLAddress);
HttpsURLConnection con = (HttpsURLConnection) obj.openConnection();
con.setHostnameVerifier(DO_NOT_VERIFY);
con.setRequestMethod("POST");
con.setRequestProperty("User-Agent", "Mozilla/5.0");
int responseCode = con.getResponseCode();
if (responseCode == HttpURLConnection.HTTP_OK) { //success
BufferedReader in = new BufferedReader(new InputStreamReader(
con.getInputStream()));
String inputLine;
StringBuilder response = new StringBuilder();
boolean First = true;
while ((inputLine = in.readLine()) != null) {
if(First)
First=false;
else
response.append("\n");
response.append(inputLine);
}
in.close();
RequestResponse=response.toString();
}
} catch (Exception e) {
e.printStackTrace();
}
}
What should I do to be able to trust only the certificate that I want? What information for that certificate do I need and what I must use in order to achive this?
Thanks
If you want to handle the verification yourself the easy part is to pin the public key. But then you have to think about the revocation and then your problems starts.
Why not simply using a certificate trusted by the device?
What should I do to be able to trust only the certificate that I want?
The process of trusting only a specific certificate or public key is called certificate pinning or public key pinning. Since I don't want to repeat all the good information which already exist: please head over to the specific article at OWASP which also includes sample code for Android.
And in case this link goes down or moves - just search for android certificate pinning example.
The correct way to do this is to verify the identity of the subject of the certificate as being the identity that is authorized to be connected to, rather than abuse the authentication process as you are doing by trusting a single certificate, which among other things gives you a problem at renewal time.
At the SSL level this is done by installing a handshake listener.
At the HTTPS level this is done by installing a HostnameVerifier.
This question already has answers here:
Resolving javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path building failed Error?
(33 answers)
Closed 3 years ago.
I know, there are many different questions and so many answers about this problem... But I can't understand...
I have: ubuntu-9.10-desktop-amd64 + NetBeans6.7.1 installed "as is" from off. rep.
I need connecting to some site over the HTTPS. For this I use Apache's HttpClient.
From tutorial I read:
"Once you have JSSE correctly installed, secure HTTP communication over SSL should be as
simple as plain HTTP communication." And some example:
HttpClient httpclient = new HttpClient();
GetMethod httpget = new GetMethod("https://www.verisign.com/");
try {
httpclient.executeMethod(httpget);
System.out.println(httpget.getStatusLine());
} finally {
httpget.releaseConnection();
}
By now, I write this:
HttpClient client = new HttpClient();
HttpMethod get = new GetMethod("https://mms.nw.ru");
//get.setDoAuthentication(true);
try {
int status = client.executeMethod(get);
System.out.println(status);
BufferedInputStream is = new BufferedInputStream(get.getResponseBodyAsStream());
int r=0;byte[] buf = new byte[10];
while((r = is.read(buf)) > 0) {
System.out.write(buf,0,r);
}
} catch(Exception ex) {
ex.printStackTrace();
}
As a result I have a set of errors:
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target
at sun.security.ssl.Alerts.getSSLException(Alerts.java:192)
at sun.security.ssl.SSLSocketImpl.fatal(SSLSocketImpl.java:1627)
at sun.security.ssl.Handshaker.fatalSE(Handshaker.java:204)
at sun.security.ssl.Handshaker.fatalSE(Handshaker.java:198)
at sun.security.ssl.ClientHandshaker.serverCertificate(ClientHandshaker.java:994)
at sun.security.ssl.ClientHandshaker.processMessage(ClientHandshaker.java:142)
at sun.security.ssl.Handshaker.processLoop(Handshaker.java:533)
at sun.security.ssl.Handshaker.process_record(Handshaker.java:471)
at sun.security.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:904)
at sun.security.ssl.SSLSocketImpl.performInitialHandshake(SSLSocketImpl.java:1132)
at sun.security.ssl.SSLSocketImpl.writeRecord(SSLSocketImpl.java:643)
at sun.security.ssl.AppOutputStream.write(AppOutputStream.java:78)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
at java.io.BufferedOutputStream.flush(BufferedOutputStream.java:140)
at org.apache.commons.httpclient.HttpConnection.flushRequestOutputStream(HttpConnection.java:828)
at org.apache.commons.httpclient.HttpMethodBase.writeRequest(HttpMethodBase.java:2116)
at org.apache.commons.httpclient.HttpMethodBase.execute(HttpMethodBase.java:1096)
at org.apache.commons.httpclient.HttpMethodDirector.executeWithRetry(HttpMethodDirector.java:398)
at org.apache.commons.httpclient.HttpMethodDirector.executeMethod(HttpMethodDirector.java:171)
at org.apache.commons.httpclient.HttpClient.executeMethod(HttpClient.java:397)
at org.apache.commons.httpclient.HttpClient.executeMethod(HttpClient.java:323)
at simpleapachehttp.Main.main(Main.java:41)
Caused by: sun.security.validator.ValidatorException: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target
at sun.security.validator.PKIXValidator.doBuild(PKIXValidator.java:302)
at sun.security.validator.PKIXValidator.engineValidate(PKIXValidator.java:205)
at sun.security.validator.Validator.validate(Validator.java:235)
at sun.security.ssl.X509TrustManagerImpl.validate(X509TrustManagerImpl.java:147)
at sun.security.ssl.X509TrustManagerImpl.checkServerTrusted(X509TrustManagerImpl.java:230)
at sun.security.ssl.X509TrustManagerImpl.checkServerTrusted(X509TrustManagerImpl.java:270)
at sun.security.ssl.ClientHandshaker.serverCertificate(ClientHandshaker.java:973)
... 17 more
Caused by: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target
at sun.security.provider.certpath.SunCertPathBuilder.engineBuild(SunCertPathBuilder.java:191)
at java.security.cert.CertPathBuilder.build(CertPathBuilder.java:255)
at sun.security.validator.PKIXValidator.doBuild(PKIXValidator.java:297)
... 23 more
What have I to do to create simplest SSL connection?
(Probably without KeyManager and Trust manager etc. while.)
https://mms.nw.ru uses a self-signed certificate that's not in the default trust manager set. To resolve the issue, do one of the following:
Configure SSLContext with a TrustManager that accepts any certificate (see below).
Configure SSLContext with an appropriate trust store that includes your certificate.
Add the certificate for that site to the default Java trust store.
Here's a program that creates a (mostly worthless) SSL Context that accepts any certificate:
import java.net.URL;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.KeyManager;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSession;
import javax.net.ssl.TrustManager;
import javax.net.ssl.X509TrustManager;
public class SSLTest {
public static void main(String [] args) throws Exception {
// configure the SSLContext with a TrustManager
SSLContext ctx = SSLContext.getInstance("TLS");
ctx.init(new KeyManager[0], new TrustManager[] {new DefaultTrustManager()}, new SecureRandom());
SSLContext.setDefault(ctx);
URL url = new URL("https://mms.nw.ru");
HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();
conn.setHostnameVerifier(new HostnameVerifier() {
#Override
public boolean verify(String arg0, SSLSession arg1) {
return true;
}
});
System.out.println(conn.getResponseCode());
conn.disconnect();
}
private static class DefaultTrustManager implements X509TrustManager {
#Override
public void checkClientTrusted(X509Certificate[] arg0, String arg1) throws CertificateException {}
#Override
public void checkServerTrusted(X509Certificate[] arg0, String arg1) throws CertificateException {}
#Override
public X509Certificate[] getAcceptedIssuers() {
return null;
}
}
}
https://mms.nw.ru likely uses a certificate not issued by a certification authority. Consequently, you need to add the certificate to your trusted Java key store as explained in unable to find valid certification path to requested target:
When working on a client that works
with an SSL enabled server running in
https protocol, you could get error
'unable to find valid certification
path to requested target' if the
server certificate is not issued by
certification authority, but a self
signed or issued by a private CMS.
Don't panic. All you need to do is to
add the server certificate to your
trusted Java key store if your client
is written in Java. You might be
wondering how as if you can not access
the machine where the server is
installed. There is a simple program
can help you. Please download the Java
program and run
% java InstallCert _web_site_hostname_
This program opened a connection to
the specified host and started an SSL
handshake. It printed the exception
stack trace of the error that occured
and shows you the certificates used by
the server. Now it prompts you add the
certificate to your trusted KeyStore.
If you've changed your mind, enter
'q'. If you really want to add the
certificate, enter '1', or other
numbers to add other certificates,
even a CA certificate, but you usually
don't want to do that. Once you have
made your choice, the program will
display the complete certificate and
then added it to a Java KeyStore named
'jssecacerts' in the current
directory.
To use it in your program, either
configure JSSE to use it as its trust
store or copy it into your
$JAVA_HOME/jre/lib/security directory.
If you want all Java applications to
recognize the certificate as trusted
and not just JSSE, you could also
overwrite the cacerts file in that
directory.
After all that, JSSE will be able to
complete a handshake with the host,
which you can verify by running the
program again.
To get more details, you can check out
Leeland's blog No more 'unable to find
valid certification path to requested
target'
In addition to Pascal Thivent's correct answer, another way is to save the certificate from Firefox (View Certificate -> Details -> export) or openssl s_client and import it into the trust store.
You should only do this if you have a way to verify that certificate. Failing that, do it the first time you connect, it will at least give you an error if the certificate changes unexpectedly on subsequent connections.
To import it in a trust store, use:
keytool -importcert -keystore truststore.jks -file servercert.pem
By default, the default trust store should be $JAVA_HOME/jre/lib/security/cacerts and its password should be changeit, see JSSE Reference guide for details.
If you don't want to allow that certificate globally, but only for these connections, it's possible to create an SSLContext for it:
TrustManagerFactory tmf = TrustManagerFactory
.getInstance(TrustManagerFactory.getDefaultAlgorithm());
KeyStore ks = KeyStore.getInstance("JKS");
FileInputStream fis = new FileInputStream("/.../truststore.jks");
ks.load(fis, null);
// or ks.load(fis, "thepassword".toCharArray());
fis.close();
tmf.init(ks);
SSLContext sslContext = SSLContext.getInstance("TLS");
sslContext.init(null, tmf.getTrustManagers(), null);
Then, you need to set it up for Apache HTTP Client 3.x by implementing one if its SecureProtocolSocketFactory to use this SSLContext. (There are examples here).
Apache HTTP Client 4.x (apart from the earliest version) has direct support for passing an SSLContext.
For Apache HttpClient 4.5+ & Java8:
SSLContext sslContext = SSLContexts.custom()
.loadTrustMaterial((chain, authType) -> true).build();
SSLConnectionSocketFactory sslConnectionSocketFactory =
new SSLConnectionSocketFactory(sslContext, new String[]
{"SSLv2Hello", "SSLv3", "TLSv1","TLSv1.1", "TLSv1.2" }, null,
NoopHostnameVerifier.INSTANCE);
CloseableHttpClient client = HttpClients.custom()
.setSSLSocketFactory(sslConnectionSocketFactory)
.build();
But if your HttpClient use a ConnectionManager for seeking connection, e.g. like this:
PoolingHttpClientConnectionManager connectionManager = new
PoolingHttpClientConnectionManager();
CloseableHttpClient client = HttpClients.custom()
.setConnectionManager(connectionManager)
.build();
The HttpClients.custom().setSSLSocketFactory(sslConnectionSocketFactory) has no effect, the problem is not resolved.
Because that the HttpClient use the specified connectionManager for seeking connection and the specified connectionManager haven't register our customized SSLConnectionSocketFactory. To resolve this, should register the The customized SSLConnectionSocketFactory in the connectionManager. The correct code should like this:
PoolingHttpClientConnectionManager connectionManager = new
PoolingHttpClientConnectionManager(RegistryBuilder.
<ConnectionSocketFactory>create()
.register("http",PlainConnectionSocketFactory.getSocketFactory())
.register("https", sslConnectionSocketFactory).build());
CloseableHttpClient client = HttpClients.custom()
.setConnectionManager(connectionManager)
.build();
The Apache HttpClient 4.5 way:
org.apache.http.ssl.SSLContextBuilder sslContextBuilder = SSLContextBuilder.create();
sslContextBuilder.loadTrustMaterial(new org.apache.http.conn.ssl.TrustSelfSignedStrategy());
SSLContext sslContext = sslContextBuilder.build();
org.apache.http.conn.ssl.SSLConnectionSocketFactory sslSocketFactory =
new SSLConnectionSocketFactory(sslContext, new org.apache.http.conn.ssl.DefaultHostnameVerifier());
HttpClientBuilder httpClientBuilder = HttpClients.custom().setSSLSocketFactory(sslSocketFactory);
httpClient = httpClientBuilder.build();
NOTE: org.apache.http.conn.ssl.SSLContextBuilder is deprecated and org.apache.http.ssl.SSLContextBuilder is the new one (notice conn missing from the latter's package name).
From http://hc.apache.org/httpclient-3.x/sslguide.html:
Protocol.registerProtocol("https",
new Protocol("https", new MySSLSocketFactory(), 443));
HttpClient httpclient = new HttpClient();
GetMethod httpget = new GetMethod("https://www.whatever.com/");
try {
httpclient.executeMethod(httpget);
System.out.println(httpget.getStatusLine());
} finally {
httpget.releaseConnection();
}
Where MySSLSocketFactory example can be found here. It references a TrustManager, which you can modify to trust everything (although you must consider this!)
want to paste the answer here:
in Apache HttpClient 4.5.5
How to handle invalid SSL certificate with Apache client 4.5.5?
HttpClient httpClient = HttpClients
.custom()
.setSSLContext(new SSLContextBuilder().loadTrustMaterial(null, TrustAllStrategy.INSTANCE).build())
.setSSLHostnameVerifier(NoopHostnameVerifier.INSTANCE)
.build();
Once you have a Java Cert Store (by using the great InstallCert class created above), you can get java to use it by passing the "javax.net.ssl.trustStore" param at java startup.
Ex:
java -Djavax.net.ssl.trustStore=/path/to/jssecacerts MyClassName
Another issue you may run into with self signed test certs is this:
java.io.IOException: HTTPS hostname wrong: should be ...
This error occurs when you are trying to access a HTTPS url. You might have already installed the server certificate to your JRE's keystore. But this error means that the name of the server certificate does not match with the actual domain name of the server that is mentioned in the URL. This normally happens when you are using a non CA issued certificate.
This example shows how to write a HttpsURLConnection DefaultHostnameVerifier that ignore the certificates server name:
http://www.java-samples.com/showtutorial.php?tutorialid=211
EasySSLProtocolSocketFactory was giving me problems so I ended up implementing my own ProtocolSocketFactory.
First you need to register it:
Protocol.registerProtocol("https", new Protocol("https", new TrustAllSSLSocketFactory(), 443));
HttpClient client = new HttpClient();
...
Then implement ProtocolSocketFactory:
class TrustAllSSLSocketFactory implements ProtocolSocketFactory {
public static final TrustManager[] TRUST_ALL_CERTS = new TrustManager[]{
new X509TrustManager() {
public void checkClientTrusted(final X509Certificate[] certs, final String authType) {
}
public void checkServerTrusted(final X509Certificate[] certs, final String authType) {
}
public X509Certificate[] getAcceptedIssuers() {
return null;
}
}
};
private TrustManager[] getTrustManager() {
return TRUST_ALL_CERTS;
}
public Socket createSocket(final String host, final int port, final InetAddress clientHost,
final int clientPort) throws IOException {
return getSocketFactory().createSocket(host, port, clientHost, clientPort);
}
#Override
public Socket createSocket(final String host, final int port, final InetAddress localAddress,
final int localPort, final HttpConnectionParams params) throws IOException {
return createSocket(host, port);
}
public Socket createSocket(final String host, final int port) throws IOException {
return getSocketFactory().createSocket(host, port);
}
private SocketFactory getSocketFactory() throws UnknownHostException {
TrustManager[] trustAllCerts = getTrustManager();
try {
SSLContext context = SSLContext.getInstance("SSL");
context.init(null, trustAllCerts, new SecureRandom());
final SSLSocketFactory socketFactory = context.getSocketFactory();
HttpsURLConnection.setDefaultSSLSocketFactory(socketFactory);
return socketFactory;
} catch (NoSuchAlgorithmException | KeyManagementException exception) {
throw new UnknownHostException(exception.getMessage());
}
}
}
Note: This is with HttpClient 3.1 and Java 8
For a way to easily add hosts you trust at runtime without throwing out all checks, try the code here: http://code.google.com/p/self-signed-cert-trust-manager/.
I happened to face the same issue, all of a sudden all my imports were missing. I tried deleting all the contents in my .m2 folder. And trying to re-import everything , but still nothing worked.
Finally what I did was opened the website for which the IDE was complaining that it couldn't download in my browser. And saw the certificate it was using, and saw in my
$ keytool -v -list PATH_TO_JAVA_KEYSTORE
Path to my keystore was /Library/Java/JavaVirtualMachines/jdk1.8.0_171.jdk/Contents/Home/jre/lib/security/cacerts
that particular certificate was not there.
So all you have to do is put the certificate into the JAVA JVM keystore again.
It can be done using the below command.
$ keytool -import -alias ANY_NAME_YOU_WANT_TO_GIVE -file PATH_TO_YOUR_CERTIFICATE -keystore PATH_OF_JAVA_KEYSTORE
If it asks for password, try the default password 'changeit'
If you get permission error when running the above command.
In windows open it in administration mode.
In mac and unix use sudo.
After you have successfully added the key,
You can view it using :
$ keytool -v -list /Library/Java/JavaVirtualMachines/jdk1.8.0_171.jdk/Contents/Home/jre/lib/security/cacerts
You can view just the SHA-1 using teh command
$ keytool -list /Library/Java/JavaVirtualMachines/jdk1.8.0_171.jdk/Contents/Home/jre/lib/security/cacerts
This link explains the requirement you have step by step. If You are not really concerned which certificate you can proceed with the process in below link.
Note You might want to double check what you are doing since, this is a unsafe operation.
Using the InstallCert to generate the jssecacerts file and do
-Djavax.net.ssl.trustStore=/path/to/jssecacerts worked great.
I'm useing httpclient 3.1.X ,and this works for me
try {
SSLContext sslContext = SSLContext.getInstance("TLS");
TrustManager trustManager = new X509TrustManager() {
#Override
public void checkClientTrusted(X509Certificate[] x509Certificates, String s) throws CertificateException {
}
#Override
public void checkServerTrusted(X509Certificate[] x509Certificates, String s) throws CertificateException {
}
#Override
public X509Certificate[] getAcceptedIssuers() {
return null;
}
};
sslContext.init(null, new TrustManager[]{trustManager}, null);
SslContextSecureProtocolSocketFactory socketFactory = new SslContextSecureProtocolSocketFactory(sslContext,false);
Protocol.registerProtocol("https", new Protocol("https", (ProtocolSocketFactory) socketFactory, 443));//同样会影响到HttpUtils
} catch (Throwable e) {
e.printStackTrace();
}
public class SslContextSecureProtocolSocketFactory implements SecureProtocolSocketFactory {
private SSLContext sslContext;
private boolean verifyHostname;
public SslContextSecureProtocolSocketFactory(SSLContext sslContext, boolean verifyHostname) {
this.verifyHostname = true;
this.sslContext = sslContext;
this.verifyHostname = verifyHostname;
}
public SslContextSecureProtocolSocketFactory(SSLContext sslContext) {
this(sslContext, true);
}
public SslContextSecureProtocolSocketFactory(boolean verifyHostname) {
this((SSLContext)null, verifyHostname);
}
public SslContextSecureProtocolSocketFactory() {
this((SSLContext)null, true);
}
public synchronized void setHostnameVerification(boolean verifyHostname) {
this.verifyHostname = verifyHostname;
}
public synchronized boolean getHostnameVerification() {
return this.verifyHostname;
}
public Socket createSocket(String host, int port, InetAddress clientHost, int clientPort) throws IOException, UnknownHostException {
SSLSocketFactory sf = this.getSslSocketFactory();
SSLSocket sslSocket = (SSLSocket)sf.createSocket(host, port, clientHost, clientPort);
this.verifyHostname(sslSocket);
return sslSocket;
}
public Socket createSocket(String host, int port, InetAddress localAddress, int localPort, HttpConnectionParams params) throws IOException, UnknownHostException, ConnectTimeoutException {
if(params == null) {
throw new IllegalArgumentException("Parameters may not be null");
} else {
int timeout = params.getConnectionTimeout();
Socket socket = null;
SSLSocketFactory socketfactory = this.getSslSocketFactory();
if(timeout == 0) {
socket = socketfactory.createSocket(host, port, localAddress, localPort);
} else {
socket = socketfactory.createSocket();
InetSocketAddress localaddr = new InetSocketAddress(localAddress, localPort);
InetSocketAddress remoteaddr = new InetSocketAddress(host, port);
socket.bind(localaddr);
socket.connect(remoteaddr, timeout);
}
this.verifyHostname((SSLSocket)socket);
return socket;
}
}
public Socket createSocket(String host, int port) throws IOException, UnknownHostException {
SSLSocketFactory sf = this.getSslSocketFactory();
SSLSocket sslSocket = (SSLSocket)sf.createSocket(host, port);
this.verifyHostname(sslSocket);
return sslSocket;
}
public Socket createSocket(Socket socket, String host, int port, boolean autoClose) throws IOException, UnknownHostException {
SSLSocketFactory sf = this.getSslSocketFactory();
SSLSocket sslSocket = (SSLSocket)sf.createSocket(socket, host, port, autoClose);
this.verifyHostname(sslSocket);
return sslSocket;
}
private void verifyHostname(SSLSocket socket) throws SSLPeerUnverifiedException, UnknownHostException {
synchronized(this) {
if(!this.verifyHostname) {
return;
}
}
SSLSession session = socket.getSession();
String hostname = session.getPeerHost();
try {
InetAddress.getByName(hostname);
} catch (UnknownHostException var10) {
throw new UnknownHostException("Could not resolve SSL sessions server hostname: " + hostname);
}
X509Certificate[] certs = (X509Certificate[])((X509Certificate[])session.getPeerCertificates());
if(certs != null && certs.length != 0) {
X500Principal subjectDN = certs[0].getSubjectX500Principal();
List cns = this.getCNs(subjectDN);
boolean foundHostName = false;
Iterator i$ = cns.iterator();
AntPathMatcher matcher = new AntPathMatcher();
while(i$.hasNext()) {
String cn = (String)i$.next();
if(matcher.match(cn.toLowerCase(),hostname.toLowerCase())) {
foundHostName = true;
break;
}
}
if(!foundHostName) {
throw new SSLPeerUnverifiedException("HTTPS hostname invalid: expected \'" + hostname + "\', received \'" + cns + "\'");
}
} else {
throw new SSLPeerUnverifiedException("No server certificates found!");
}
}
private List<String> getCNs(X500Principal subjectDN) {
ArrayList cns = new ArrayList();
StringTokenizer st = new StringTokenizer(subjectDN.getName(), ",");
while(st.hasMoreTokens()) {
String cnField = st.nextToken();
if(cnField.startsWith("CN=")) {
cns.add(cnField.substring(3));
}
}
return cns;
}
protected SSLSocketFactory getSslSocketFactory() {
SSLSocketFactory sslSocketFactory = null;
synchronized(this) {
if(this.sslContext != null) {
sslSocketFactory = this.sslContext.getSocketFactory();
}
}
if(sslSocketFactory == null) {
sslSocketFactory = (SSLSocketFactory)SSLSocketFactory.getDefault();
}
return sslSocketFactory;
}
public synchronized void setSSLContext(SSLContext sslContext) {
this.sslContext = sslContext;
}
}
For HttpClient, we can do this :
SSLContext ctx = SSLContext.getInstance("TLS");
ctx.init(new KeyManager[0], new TrustManager[] {new DefaultTrustManager()}, new SecureRandom());
SSLContext.setDefault(ctx);
String uri = new StringBuilder("url").toString();
HostnameVerifier hostnameVerifier = new HostnameVerifier() {
#Override
public boolean verify(String arg0, SSLSession arg1) {
return true;
}
};
HttpClient client = HttpClientBuilder.create().setSSLContext(ctx)
.setSSLHostnameVerifier(hostnameVerifier).build()
follow the instruction given below for Java 1.7, to create an SSL certificate using InstallCert.java program file.
https://github.com/escline/InstallCert
you must restart the tomcat
Used the following along with DefaultTrustManager and it worked in httpclient like charm. Thanks a ton!! #Kevin and every other contributor
SSLContext ctx = null;
SSLConnectionSocketFactory sslsf = null;
try {
ctx = SSLContext.getInstance("TLS");
ctx.init(new KeyManager[0], new TrustManager[] {new DefaultTrustManager()}, new SecureRandom());
SSLContext.setDefault(ctx);
sslsf = new SSLConnectionSocketFactory(
ctx,
new String[] { "TLSv1" },
null,
SSLConnectionSocketFactory.getDefaultHostnameVerifier());
} catch (Exception e) {
e.printStackTrace();
}
CloseableHttpClient client = HttpClients.custom()
.setSSLSocketFactory(sslsf)
.build();