Our OAuth2 implemention has security flaws - java

I logged in as Scott who only has read permission. The oauth2 server(JAVA based) gave me a token. Then I asked my teammate to send me his non-expired token. I updated my Angular application and hardcoded the token that was given to me. I tried to make changes to the api and I was able to make some change.
How can backend api prevent this?

You've successfully implemented a session hijack. This happens because sessions are based on tokens stored in the web page or cookies rather than IP addresses or something. This makes sense because IP addresses can be spoofed while a cryptographically secure session token is practically impossible to spoof.
While you could add strategies to make this more difficult (eg: some kind of hardware token that is involved in cryptographically signing every message), why do you feel you need to? All but the most secure sites rely on this mechanism.

Related

What is the most scalable/secure way to handle refresh tokens in a JWT authentication setup?

I am building my own authentication microservice and although I have the main setup in place (generating access tokens etc.), I am a bit lost when it comes to refresh tokens.
I feel there are a lot of different way to handle this.
You can either store them in Redis or in the database.
You can use a whitelist or a blacklist them
Right now, my idea is to add another database table that links a valid refresh token to a user entity. When a user hits the logout endpoint, the refresh token gets destroyed.
I was wondering if this was a good solution and otherwise, if there are other possible solutions to consider. I have seen a number of articles when googling but they stem from anywhere between 2015 and 2019, and they all have different approaches.
The issue with refresh tokens is not so much where or how you store them on the server side, as well if and how you store them on the client side.
It all depends on whether you can trust your client (software using the token) to keep secrets. You only want to issue refresh tokens to a client you can trust to keep these tokens secure. Typically, this means only issue refresh tokens to confidential clients, i.e. web applications that run on a web server. These clients can also have their own (client) credentials to authenticate themselves with when using the refresh token.
For public (non-confidential) clients, like Single Page Applications, some OAuth2 libraries use an hidden IFRAME and a cookie session with the authorization server to issue new access tokens.
So, the answer to your question depends on what kind of clients you will be using.

Sharing REST tokens between servers

I have a requirement for a REST API that has token-based authentication: we will have replicated application servers with a load balancer, since tokens are generated by one server when a user is authenticated, and different requests from the same client can be handled by different servers, is there a generic technique or technology to share those tokens between the different servers?
About technologies, we will be using the Java stack, more specifically Grails.
About the application servers, we might have more than one database. This comment is important because discussing with colleagues, someone suggested to manage the token sharing using the same database from all application servers. I'm looking for a solution that doesn't need a centralized database, that let us scale on the DB side.
When using token based authentication, there's a server that authenticates the user and issues a security token. Authenticating the user can be done in many ways (verifying username/password against a database, verifying a certificate on a smart card etc).
Once the token is issued and signed by the authentication server, no database communication is required to verify the token. Any service that accepts the token will just validate the digital signature of the token.
The client (caller of your service) is responsible to send the token along with the request. So no matter which server behind your load-balancers handles the incoming request, it only needs the public key associated with the signing key to verify whether the request is valid.
Which security protocol to chose depends on the requirements you have. OAuth is used often for internet applications. WS-Federation and SAML-P are used a lot in enterprise environments.
As far as I see JWT (JSON Web Token) is supported in grails - it seems that this is what you're looking for. Basically you need to separate the authentication server as in this image. Authentication verifies the user/pass being sent and issues a token that is easily parseable without any further access to DB. To only thing that needs to be shared is the key that will be used to decode the incoming JWT. See, how it works.

What is the point of Authentication tokens on REST services

What is the value of using a authentication token when using a REST webservice instead of sending a username, password over HTTPS/Encryption each time you make a request?
I understand that for instance OAUTH has some benefits cause you don't need to give away your password to 3rd parties, you can pass a token to trusted 3rd parties whom you dont want to share the username/password..etc
But other than this special benefits above which I certainly dont need in my case, why would I use tokens instead of sending username/password everytime.
This might be to make life easy for client, and it does not have to send the username/password everytime. Well ok but then now client has to remember my token and send me the token on every request. So instead of remembering/sending username/password now it will do the same for tokens! So client implementation code does not get any less.
So what is the real value here?
It really depends on the scenario - it's hard to tell without knowing more about the API - but usage of "authentication tokens" is far from universal, you're right that many APIs don't need (and don't use) them. Many APIs simply require an API key to be sent with every request (often via HTTPS to prevent it from being intercepted), or require an API key to identify the user and also a digital signature with a "secret key" to prove the user's identity (see When working with most APIs, why do they require two types of authentication, namely a key and a secret? ).
Usernames/passwords are not often used in public APIs because they're not flexible enough and do not provide enough "separation" between the user identity and the application identity. E.g. you register as a developer to use the Flickr API and create an iPhone app that uses that API - would you really want your developer username/password to be built into the app? What if you change your password later? What if you want to develop 5 apps and track usage for them separately and be able to shut off any app at any time without affecting the others?
However, for cases where you truly want to identify a human user only, not an appplication (e.g. a private API back-end that will only serve your own applications, not a public API), in most scenarios I don't see anything wrong with what you suggested, i.e. username/password over HTTPS with every request. Oh, by the way, auth tokens have the added advantage of being "restrictable" (can expire at a certain time, can be restricted to certain actions only, etc), but obviously this is only useful in very specific scenarios.
ALSO: As user "Dan" pointed out above, when designing an API that requires sending the username/password with every request (or with any request really, even if it's just the login request), be careful how you do it. If you're using a technique which browsers support by default (e.g. HTTP Basic Auth), you're preventing yourself from ever exposing the API safely to cross-domain users (i.e. most likely your API can never be safely called directly from the browser, i.e. from AJAX / Flash / Silverlight code).
This is a complex topic which can't be explained fully here, but just remember that if your API is relying on any security credentials that the browser can remember and then "silently" inject in every request (e.g. HTTP Basic Auth, cookies), then it's NOT safe to enable cross-domain access to that API using any cross-domain technique (CORS, JSONP, crossdomain.xml, etc).
The best way I can answer this is to point you to this page describing REST security. It belongs to the restlet wiki, not to Jersey, but it can be applied to Jersey as well as they are both REST implementations.
This is extracted from the link I provided:
"For the most resistance, the server can present the client with an application level authorization token, an opaque value that the server can verify belongs to the right authenticated user.
Such a token should be be difficult for a third party to calculate, e.g. a server-salted MD5 or SHA1 hash of the user's identification credential.
To defeat XSRF, this application-level token needs to be transmitted by means that the user-agent does not automatically return with each request. For example, it can be sent in the HTML of a form as a hidden field, and returned via POST in the encoded form entity."

How to secure Android App that pulls data from OAuth protected resource

My company is building a RESTful API that will return moderately sensitive information (i.e. financial information, but not account numbers). I have control over the RESTful API code/server and also am building the Android app. I've setup the API to use OAuth 2 with authorization code grant flow (with client ID and secret), and I auto-approve users without them having to approve the client since we own both client and provider. We use CAS for SSO and I am using this for the Authorization server as part of the OAuth 2 process when the user logs in to retrieve the token.
I am contemplating various ways to secure the data on the Android app. I've concluded that storing the client id and secret on the device is definitely not going to happen, but am thinking that storing the auth token might work, since it is only risk to the individual user (and really only if they happen to have a rooted phone).
Here are two options I have thought of. They both require me to have a sort of proxy server that is CAS protected, does the dance with the API server, and returns the auth token. This gets rid of the need for storing the client id and secret in the app code.
Here are what I've come up with:
1) Require the user to enter their password to access data each time they startup the App. This is definitely the most foolproof method. If this were done, I'd probably want to save the userID for convenience, but in that case couldn't use the CAS login (since it's web-based). I might be able to use a headless browser on the backend to log the user into CAS and retrieve the token based on what they enter in the Android form, but this seems hacky. Saving the userID is similar to what the Chase app does (if you happen to use this one) - it saves the userID but not your password between sessions.
2) Store the auth token on the Android device. This is a little less secure, but almost foolproof. When the user starts the app for the first time, open the webpage to the CAS login of the proxy server that returns the token (similar to https://developers.google.com/accounts/docs/MobileApps). After the user logs in and the token is returned to the app, encrypt it and store it private to the application. Also, use ProGuard to obfuscate the code, making the encryption algorithm more difficult to reverse engineer. I could also work in a token refresh, but I think this would be more of a false sense of security.
3) Don't use CAS but come up with another way to get an auth token for the service.
Any advice of how others have implemented similar scenarios (if it's been done)?
Thanks.
Well the reason why standards like OAuth are developed is that not everyone has to rethink the same attack vectors again and again. So most often it is your best choice to stick to something already available instead of baking your own thing.
The first problem with clients that are not capable of secretly storing data is that the user's data could be accessed by some attacker. As it is technically not possible to prevent this (code obfuscation won't help you against an expert attacker), the access token in OAuth 2 typically expires after short time and doesn't give an attacker full access (bounded by scope). Certainly you shouldn't store any refresh token on such a device.
The second problem is client impersonation. An attacker could steal your client secret and access your API in his own (maybe malicious) app. The user would still have to login there himself. The OAuth draft there requires the server to do everything it can to prevent this, but it is really hard.
The authorization server MUST authenticate the client whenever possible. If the authorization server cannot authenticate the client due to the client's nature, the authorization server MUST require the registration of any redirection URI used for receiving authorization responses, and SHOULD utilize other means to protect resource owners from such potentially malicious clients. For example, the authorization server can engage the resource owner to assist in identifying the client and its origin.
I think Google are the first to try another approach to authenticate a client on such devices, by checking the signature of the application, but they are not yet ready for prime time. If you want more insight into that approach, see my answer here.
For now, your best bet is to stay on the OAuth way, i.e. having the access token, client ID and client secrect (when using the authorization code grant flow) on the device, and configure your server to do additional checks. If you feel more secure obfuscating these, just do it, but always think of it as if these values were publicly available.

Securing a REST API

I am in the middle of developing a PHP social media web application which will be supported by various web services each operating a REST API. Web services will probably be implemented in Java with MySQL data layer but the whole point of what I am trying to do is make it really easy to implement modules in different languages/data stores depending on what is approriate.
So for example when the user logs into the application via a login form the PHP code connects to a web service and POSTs the username and password to check if they should be authenticated. I would normally at this point start a session and store it in a session data store.
Another example could be if a user sends a private message to another user. The message would be POSTed to the private messaging web service which would take care of all the storage. Similarly the web service could be contacted to retrieve messages for a user.
Although I understand how to implement the REST web service in Java and make the connection to it in PHP I am totally unsure as to how to secure the data being passed and make sure that it is the users data being returned. If for example I want to get all of user As private messages how does the web service know to return that users. I could pass that users identifier as part of the GET url but then surely any old user could just figure out the GET url and use it to look up other peoples messages. I thought maybe I could pass over the session identifier and IP address which would allow me to check the session data store and make sure it is the correct user?
To secure the data that is important - like the username/password I thought I would just pass it over SSL.
Hope this explains my problem better.
Thanks
Take a look at HTTP Digest authentication. Most clients should support it, and it means the auth details can be passed securely with each request as part of the headers without interfering with the payload of the request itself.
I think requiring OAuth is a good choice. Your end users should appreciate that other websites don't need to ask usernames and passwords to access their data. As far as SSL, it's clearly worth doing if you can. You'll have to see if the performance trade-off is acceptable.
Keep in mind that your api must mimic the HTTP protocol.
Http is stateless, and by adding any Sessions or so, you're trying to fake an "Alwaysconnected" method.
With a LoginForm, it's like I'll have to send two requests for each calls ;)
These are basically 2 questions.
When privacy is a concern I'd go for the safest option: Serve data over SSL (via HTTPS).
As far as authentication is concerned, there are several possibilities. Basic over SSL is one of them, but a simple login form with a cookie can be another one. (ASP.Net Forms Authentication for example.) This all depends on how you want to implement your authentication mechanism.

Categories