Adding a statement using Javassist - java

System.out.println("A read operation on a field is encountered ");
How can I add a statement, lets say , the above statement ,
whenever a read operation has been performed on a non-local field ?
and also I need to know the details of the field which is read and the set of
details should correspond to the uniqueness of the field
Example (to remove abstraction in the question):
public class Greet{
int knowncount;
public Greet()
{
System.out.println("Hello");
knowncount++;
}
public Greet(String language)
{
if(String.equals("ENGLISH")) {System.out.println("Hello"); knowncount++; }
else if(String.equals("SPANISH")) {System.out.println("Hola"); knowncount++;}
else System.out.println("Language not recognized");
}
public void showCount()
{
System.out.println("count : "+knowncount);
}
}
and the user class test is:
class test{
public static void main(String[] args){
Greet g("SPANISH");
g.showCount();
}
}
in the above example after using javassist our code should output :
A read operation on a field is encountered
1

You can do what you ask by using Javassist's ExprEditor. ExprEditor allows you to edit what is done in a FieldAccess, to implement your request you can create an injector that does the following:
ClassPool classPool = ClassPool.getDefault();
CtClass greetCtClass = classPool.get(Greet.class.getName());
greetCtClass.instrument(new ExprEditor() {
#Override
public void edit(FieldAccess fieldAccess)
throws CannotCompileException {
if (fieldAccess.getFieldName().equals("knowncount")) {
fieldAccess
.replace(" { System.out.println(\"A read operation on a field is encountered \"); $_ = $proceed($$); } ");
}
}
});
greetCtClass
.writeFile("<ROOT DIRECTORY WHERE THE CLASSES ARE>");
Best way to explain parameter is with an example, imagine that Greet class (that happens to be in the greatPackage) is in the following path /home/user/dev/proj1/build/greetPackage/Greet.class. In this scenario your root directory will be /home/user/dev/proj1/build/.
The line of interest in all the boiler plate above is the following:
{ System.out.println(\"A read operation on a field is encountered \"); $_ = $proceed($$); }
What is happening here?
First notice that all code is between curly brackets, if you know your way in javassist this is something trivial to you, if not it might make you loose a few minutes trying to understand what is wrong.
Then you have the System.out you requested
Finally you have a magic line: $_ = $proceed($$);. You can find more information about this in the javassist tutorial (search for FieldAccess in that section, since they don't have a direct anchor for it, sorry!) but basically what this line is saying is that the resulting value of the field access is the the value of the virtual method that's being invoked for the field access, so in other words the actual value of the field.
Keep in mind that you have to rewrite your Greet class with the injector in a separated JVM process and only afterwards you'll be able to use the class with the injected behavior, unless you do some tricks with classloading to make sure you load the modified version. I'm not going into those topics because it's out of the scope, but if you need help with that as well please say so. I'll gladly help you out.

Related

Find all Java methods using only one specific property of a specific type of parameter

We're in the process of trying to identify everywhere that a specific type of object is used only to get a specific property from it, and pass that property into the method instead.
I'm thinking IntelliJ IDEA's "Structural Search" might be a good tool for this, but I'm not sure how to formulate the search template.
A concrete example:
public class MyClass {
public Long getId() {...}
public void setSomethingElse(int se) {...}
}
public class SomeOtherClasses {
public void shouldBeMatched(MyClass mc) {
doSomething();
mc.getId();
doSomethingElse();
}
public void shouldNotBeMatched(MyClass mc) {
doSomething();
mc.getId();
mc.setSomethingElse(14);
doSomethingElse();
}
public void alsoShouldNotBeMatched(MyClass mc) {
shouldBeMatched(mc);
}
}
In the above example, if I'm looking for methods that only use getId, then I should find shouldBeMatched, but not be bothered with shoudNotBeMatched and alsoShouldNotBeMatched, because they do something with the mc object other than call getId().
I'm thinking IntelliJ IDEA's "Structural Search" might be a good tool for this
And it is indeed. The documentation can be tough though.
Let's check Search templates, filters, and script constraints page. It goes as follows.
Let's say, you have a variable that matches a method, a toString()
method. Then this variable is actually a PsiMethod node. Retrieving
variable.parent will produce a PsiClass node, and so forth.
variable.text then will give you the entire text of the method. If you
just need the name of the method, you can use variable.name.
It seems that the task can be done by choosing the right template and writing a corresponding Groovy script.
The template is called methods of the class and can be found under Existing templates. They provide __context__variable to be used with a script.
We have to be sure matched methods have parameters. It is simple enough, just put a count filter on a $Parameter$ variable.
Then we need to extract the name of a parameter of desired type and see if it is called in the body of the method. The following script will do.
def parameters = __context__.getParameterList().getParameters();
def parameter = parameters.find { p -> p.getType().getName().equals('MyClass') };
if (parameter == null) return false;
String parameterName = parameter.getName();
String methodText = __context__.getText();
String occurrence = "${parameterName}.";
String methodCall = "${parameterName}.getId()";
return methodText.count(occurrence) > 0 && methodText.count(occurrence) == methodText.count(methodCall);
Put it in the $Method$ variable filter and verify the results.

Beginner assistance with transferring information between classes

I am working on a homework assignment that takes input from a .csv file and will prompt the user for different questions pertaining to the information contained within (crime statistics).
My code is as follows and it's still really early so I just have some placeholder variables in there as I have been wracking my head trying to figure out the best approach to this problem.
import java.io.*;
public class USCrimeArray {
String crimeArray[][] = new String[21][20];
public void createCrimeArray() throws Exception{
String crimeArrayInputString;
int crimeArrayRowValue = -1;
try (BufferedReader crimeArrayInput = new BufferedReader(new FileReader("C:/Users/Joey/Documents/Crime.csv"))) {
while ((crimeArrayInputString = crimeArrayInput.readLine()) != null) {
crimeArrayRowValue++;
crimeArray[crimeArrayRowValue] = crimeArrayInputString.split(",");
}
} catch (IOException io) {
io.getMessage();
}
}
public USCrimeArray(){
String[][] thisArray = crimeArray.clone();
}
public String[][] getCrimeArray(){
return crimeArray.clone();
}
}
This is the code for my first class and if I do a deepToString inside of createCrimeArray I get the information back that I want. The constructor for USCrimeArray hasn't really been thought out yet my main question is how to write the information to the crimeArray[][] so that I can carry it back over to other classes.
Once again this test main hasn't been thought out too far because I am still struggling with why my method is not writing over the crimeArray[][] with the while loop and it is as follows:
import java.util.Arrays;
public class USCrimeClass {
public static void main(String[] args) {
USCrimeArray crimeArray = new USCrimeArray();
String[][] test = crimeArray.getCrimeArray();
System.out.println(Arrays.deepToString(test));
}
}
I know there's a lot I'm doing wrong here, but this is the end result so far after having altered everything over and over again and not making any progress. The result of the system out in this is obviously just a 21x20 array of null elements. Any help would be greatly appreciated.
You need to call createCrimeArray() in USCrimeClass
public class USCrimeClass {
public static void main(String[] args) {
USCrimeArray crimeArray = new USCrimeArray();
crimeArray.createCrimeArray();
String[][] test = crimeArray.getCrimeArray();
System.out.println(Arrays.deepToString(test));
}
}
Also,
in the constructor of USCrimeArray you are clonning the array into a local variable thisArray but never use it. this is redundant and can be safely removed.
in getCrimeArray() you are returning a clone of the array. this is not needed (unless you want to keep USCrimeArray immutable). you can just return the array itself
Instance variables
instance variables are non static class level variables (much like crimeArray).
One can consider instance variables as serving two purposes:
"details" of the problem domain of the class. For example Person class will have instance variables such as firstName and lastName that are details of one person.
"configuration" variables holding information related to the technological environment and not pertaining to the problem domain of the class. For example, one sometimes might find a class with a boolean deleted instance variable that signifies a "soft deleted" instance that is not to be presented to the user or included in calculations. the purpose behind this is to support undo of deletion.
so crimeArray is of category details of USCrimeArray. common best practice is to initialise instance variables in the class constructor, so by the time you finish creating a new instance, you have one that has full and valid details. So I would move all of the code of createCrimeArray() into the constructor.
If you need to modify an instance variable after it was initialised, then a "setter" method can be used. these have a standardized signature: public void setCrimeArray(crimeArray[][]). having a standardized signature allows your class to be used by frameworks and libraries that add functionality. For example, storing the data in a relational database, sending/recieving the data over the internet, etc.
Now, I see that the external input that is used to populate the array comes from a file. The way it is coded now, USCrimeArray can only read one specific file from predetermined file syatem location. a more flexible way would be for the class to receive the specification for external input as an argument:
public USCrimeArray(String filename) {
...
try (BufferedReader crimeArrayInput = new BufferedReader(new FileReader(filename))) {
...
}
now the same class can be used to process an array from different files.
now you can even make the file name an argument of the java program:
public class USCrimeClass {
public static void main(String[] args) {
USCrimeArray crimeArray = new USCrimeArray(arg[0]);
System.out.println(Arrays.deepToString(test));
}
}
now the same java program can process different files without need for recompile.

Listing all unimplemented methods called from within a method

We have a huge project where many methods have been declared upfront and implementations are in progress. All declared methods have a body which simply throws an exception, say, UnimplException.
Now since the methods have been declared and a valid (compilable) body has been provided, they can be called from within other methods.
Now the question is that is there any way to list all such unimplemented (having just a compilable body throwing a particular exception) methods given a particular method?
To illustrate more(the code is to convey the idea and not strictly compiler friendly):
class A {
methA () {
throw new UnimplException();
}
}
class B {
methB () {
// proper body
// and calls methA
A.methA();
// does something else
// and returns.
}
}
class C {
methC () {
// proper body
// calls methB
B.methB();
}
}
So, if we start from, say, methC, then we want to travel all the way down the method tree to reach to methA because methC calls methB (which is properly implemented and we are not interested) which in turn calls methA which is not properly implemented and that is what we want to find.
We want to search for all such unimplemented methods starting from a method and going few levels deep until we cover all such unimplemented methods.
We thought of JavaAssist but we aren't sure how to go down all the levels because it seems to be giving us all methods called from within a method but not recursively.
Any help is greatly appreciated :)
Have you seen this project: https://github.com/gousiosg/java-callgraph? This appears to do the Java introspection part, listing every method call from every method in a jar file. I'd try using that to do the heavy lifting of parsing your code, then just recurse through the results.
Something like:
Use the callgraph code to build a list of all method calls.
Save that data somewhere.
Recursively parse that structure to find matching methods.
So from your example, step 1 would give something like the following:
A:methA -> UnimplException:<init>
B:methB -> A:methA
C:methC -> B:methB
Then shove those in a Multimap and do a fairly straightforward recursive search:
// this is populated from the output of the callgraph code
com.google.common.collect.Multimap<String, String> methodMap;
void checkAllMethods() {
for (String method : methodMap.keySet()) {
List<String> callStack = new ArrayList<>();
if (doesMethodThrowUnimplException(method, callStack)) {
System.out.println(method);
// can print callStack too if interested
}
}
}
boolean doesMethodThrowUnimplException(String method, List<String> callStack) {
for (String child : methodMap.get(method)) {
// have to check the exact method name from callgraph
if (child.equals("UnimplException:<init>")) {
return true;
}
// recurse into child if not already seen
if (!callStack.contains(child)) {
callStack.add(child);
if (doesMethodThrowUnimplException(child, callStack)) {
return true;
}
callStack.remove(callStack.size() - 1);
}
}
return false;
}
Doesn't strictly satisfy your requirements as this will report any method which throws the UnimplException, not those who only throw the exception, but not sure if that matters.
Standard disclaimer - just typed this in - haven't compiled / run it, so may well be typos, but hopefully the idea helps.

Translating a string-representation of a function's parameter list to actual parameters, for a reflective call

UPDATE: After getting an unexpected-in-a-good-way answer, I've added some context to the bottom of this question, stating exactly how I'll be using these string-function-calls.
I need to translate a string such as
my.package.ClassName#functionName(1, "a string value", true)
into a reflective call to that function. Getting the package, class, and function name is not a problem. I have started rolling my own solution for parsing the parameter list, and determining the type of each and returning an appropriate object.
(I'm limiting the universe of types to the eight primitives, plus string. null would be considered a string, and commas and double-quotes must be strictly escaped with some simple marker, such as __DBL_QT__, to avoid complications with unescaping and splitting on the comma.)
I am not asking how to do this via string-parsing, as I understand how. It's just a lot of work and I'm hoping there's a solution already out there. Unfortunately it's such generic terminology, I'm getting nowhere with searching.
I understand asking for an external existing library is off topic for SO. I'm just hoping to get some feedback before it's shutdown, or even a suggestion on better search terms. Or perhaps, there is a completely different approach that might be suggested...
Thank you.
Context:
Each function call is found within a function's JavaDoc block, and represents a piece of example code--either its source code or its System.out output--which will be displayed in that spot.
The parameters are for customizing its display, such as
indentation,
eliminating irrelevant parts (like the license-block), and
for JavaDoc-linking the most important functions.
This customization is mostly for the source-code presentation, but may also be applied to its output.
(The first parameter is always an Appendable, which will do the actual outputting.)
The user needs to be be able to call any function, which in many cases will be a private-static function located directly below the JavaDoc-ed function itself.
The application I'm writing will read in the source-code file (the one containing the JavaDoc blocks, in which these string-function-calls exist), and create a duplicate of the *.java file, which will subsequently processed by javadoc.
So for every piece of example code, there will be likely two, and possibly more of these string-function-calls. There may be more, because I may want to show different slices of the same example, in different contexts--perhaps the whole example in the overall class JavaDoc block, and snippets from it in the relevant functions in that class.
I have already written the process that parses the source code (the source code containing the JavaDoc blocks, which is separate from the one that reads the example-code), and re-outputs its source-code blindly with insert example-code here and insert example-code-output here markers.
I'm now at the point where I have this string-function-call in an InsertExampleCode object, in a string-field. Now I need to do as described at the top of this question. Figure out which function they want to invoke, and do so.
Change the # to a dot (.), write a class definition around it so that you have a valid Java source file, include tools.jar in your classpath and invoke com.sun.tools.javac.Main.
Create your own instance of a ClassLoader to load the compiled class, and run it (make it implement a useful interface, such as java.util.concurrent.Callable so that you can get the result of the invocation easily)
That should do the trick.
The class I created for this, called com.github.aliteralmind.codelet.simplesig.SimpleMethodSignature, is a significant piece of Codelet, used to translate the "customizer" portion of each taglet, which is a function that customizes the taglet's output.
(Installation instructions. The only jars that must be in your classpath are codelet and xbnjava.)
Example string signatures, in taglets:
{#.codelet.and.out com.github.aliteralmind.codelet.examples.adder.AdderDemo%eliminateCommentBlocksAndPackageDecl()}
The customizer portion is everything following the percent sign (%). This customizer contains only the function name and empty parameters. This implies that the function must exist in one of a few, strictly-specified, set of classes.
{#.codelet.and.out com.github.aliteralmind.codelet.examples.adder.AdderDemo%lineRange(1, false, "Adder adder", 2, false, "println(adder.getSum())", "^ ")}
This specifies parameters as well, which are, by design, "simple"--either non-null strings, or a primitive type.
{#.codelet.and.out com.github.aliteralmind.codelet.examples.adder.AdderDemo%com.github.aliteralmind.codelet.examples.LineRangeWithLinksCompact#adderDemo_lineSnippetWithLinks()}
Specifies the explicit package and class in which the function exists.
Because of the nature of these taglets and how the string-signatures are implemented, I decided to stick with direct string parsing instead of dynamic compilation.
Two example uses of SimpleMethodSignature:
In this first example, the full signature (the package, class, and function name, including all its parameters) are specified in the string.
import com.github.aliteralmind.codelet.simplesig.SimpleMethodSignature;
import com.github.xbn.lang.reflect.InvokeMethodWithRtx;
import java.lang.reflect.Method;
public class SimpleMethodSigNoDefaults {
public static final void main(String[] ignored) {
String strSig = "com.github.aliteralmind.codelet.examples.simplesig." +
"SimpleMethodSigNoDefaults#getStringForBoolInt(false, 3)";
SimpleMethodSignature simpleSig = null;
try {
simpleSig = SimpleMethodSignature.newFromStringAndDefaults(
String.class, strSig, null, null,
null); //debug (on=System.out, off=null)
} catch(ClassNotFoundException cnfx) {
throw new RuntimeException(cnfx);
}
Method m = null;
try {
m = simpleSig.getMethod();
} catch(NoSuchMethodException nsmx) {
throw new RuntimeException(nsmx);
}
m.setAccessible(true);
Object returnValue = new InvokeMethodWithRtx(m).sstatic().
parameters(simpleSig.getParamValueObjectList().toArray()).invokeGetReturnValue();
System.out.println(returnValue);
}
public static final String getStringForBoolInt(Boolean b, Integer i) {
return "b=" + b + ", i=" + i;
}
}
Output:
b=false, i=3
This second example demonstrates a string signature in which the (package and) class name are not specified. The potential classes, one in which the function must exist, are provided directly.
import com.github.aliteralmind.codelet.simplesig.SimpleMethodSignature;
import com.github.xbn.lang.reflect.InvokeMethodWithRtx;
import java.lang.reflect.Method;
public class SimpleMethodSigWithClassDefaults {
public static final void main(String[] ignored) {
String strSig = "getStringForBoolInt(false, 3)";
SimpleMethodSignature simpleSig = null;
try {
simpleSig = SimpleMethodSignature.newFromStringAndDefaults(
String.class, strSig, null,
new Class[]{Object.class, SimpleMethodSigWithClassDefaults.class, SimpleMethodSignature.class},
null); //debug (on=System.out, off=null)
} catch(ClassNotFoundException cnfx) {
throw new RuntimeException(cnfx);
}
Method m = null;
try {
m = simpleSig.getMethod();
} catch(NoSuchMethodException nsmx) {
throw new RuntimeException(nsmx);
}
m.setAccessible(true);
Object returnValue = new InvokeMethodWithRtx(m).sstatic().
parameters(simpleSig.getParamValueObjectList().toArray()).invokeGetReturnValue();
System.out.println(returnValue);
}
public static final String getStringForBoolInt(Boolean b, Integer i) {
return "b=" + b + ", i=" + i;
}
}
Output:
b=false, i=3

Is it ok to handle a class metadata through reflection to ensure a DRY approach?

The title might seem unsettling, but let me explain.
I'm facing an interesting challenge, where I have a hierarchy of classes that have associated an object that stores metadata related to each one of its attributes (an int-valued enum with edit flags like UPDATED or NO_UPDATE).
The problem comes when merging two objects, because I dont want to check EVERY field on a class to see if it was updated and skip or apply the changes.
My idea: Reflection.
All the objects are behind an interface, so I could use IObject.class.getMethods() and iterate over that array in this fashion:
IClass class = //Instance of the first class;
IAnotherClass anotherClass = //Instance of the second class;
for(Method m : IObject.class.getMethods()) {
if(m.getName().startsWith("get")) {
try {
//Under this method (which is a getter) I cast it on
//both classes who implement interfaces that extend an
//interface that defines the getters to make them
//consistent and ensure I'll invoke the same methods.
String propertyClass = (String)m.invoke(class);
String propertyAnotherClass = (String)m.invoke(anotherClass);
if(propertyClass != propertyAnotherClass) {
//Update attribute and attribute status.
}
} catch (Exception e) {
}
}
}
Is there another way to implement this or should I stick to lengthy methods invoking attribute per attribute and doing the checks like that?. The objects are not going to change that much and the architecture is quite modular, so there is not much update involved if the fields change but having to change a method like that worries me a little.
EDIT 1: I'm posting a working code of what I have got so far. This code is a solution for me but, tough it works, I'm using it as a last resource not because I have time to spend but because I don't want to rediscover the wheel. If I use it, I'll make a static list with the methods so I only have to fetch that list once, considering the fact that AlexR pointed out.
private static void merge(IClazz from, IClazz to) {
Method methods[] = from.getClass().getDeclaredMethods();
for(Method m : methods) {
if(m.getName().startsWith("get") && !m.getName().equals("getMetadata")) {
try {
String commonMethodAnchor = m.getName().split("get")[1];
if(!m.getReturnType().cast(m.invoke(from)).equals(m.getReturnType().cast(m.invoke(to)))) {
String setterMethodName = "set" + commonMethodAnchor;
Method setter = IClazz.class.getDeclaredMethod(setterMethodName, m.getReturnType());
setter.invoke(to, m.getReturnType().cast(m.invoke(from)));
//Updating metadata
String metadataMethodName = "set" + commonMethodAnchor + "Status";
Method metadataUpdater = IClazzMetadata.class.getDeclaredMethod(metadataMethodName, int.class);
metadataUpdater.invoke(to.getMetadata(), 1);
}
} catch (Exception e) {
}
}
}
}
metadataUpdater sets the value to 1 just to simulate the "UPDATED" flag I'm using on the real case scenario.
EDIT 3: Thanks Juan, David and AlexR for your suggestions and directions! They really pointed me to consider things I did not consider at first (I'm upvoting all your answers because all of them helped me).
After adding what AlexR sugegsted and checking jDTO and Apache Commons (finding out that in the end the general concepts are quite similar) I've decided to stick to my code instead of using other tools, since it is working given the object hierarchy and metadata structure of the solution and there are no exceptions popping up so far. The code is the one on the 2nd edit and I've placed it on a helper class that did the trick in the end.
Apache Commons Bean Utils may resolve your problem: http://commons.apache.org/beanutils/
If you want to copy all properties, try to use copyProperties: http://commons.apache.org/beanutils/v1.8.3/apidocs/src-html/org/apache/commons/beanutils/BeanUtils.html#line.134
Look an example from: http://www.avajava.com/tutorials/lessons/how-do-i-copy-properties-from-one-bean-to-another.html
FromBean fromBean = new FromBean("fromBean", "fromBeanAProp", "fromBeanBProp");
ToBean toBean = new ToBean("toBean", "toBeanBProp", "toBeanCProp");
System.out.println(ToStringBuilder.reflectionToString(fromBean));
System.out.println(ToStringBuilder.reflectionToString(toBean));
try {
System.out.println("Copying properties from fromBean to toBean");
BeanUtils.copyProperties(toBean, fromBean);
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
System.out.println(ToStringBuilder.reflectionToString(fromBean));
System.out.println(ToStringBuilder.reflectionToString(toBean));
I think the best approach would be using proxy objects, either dynamic proxies or cglib enhancers or something like it, so you decorate the getters and setters and you can keep track of the changes there.
Hope it helps.
Your approach is OK, but keep in mind that getMethod() is much slower than invoke(), so if your code is performance critical you will probably want to cache the Method objects.

Categories