Well, I have a string in my Java code that needs to be converted into an integer with padding of 10.
Ex. Consider this is the string... Str = "52112"
I need to convert this string into an integer and the result should be like "0000052112". The result should be an integer. Can anyone help me with this, please?
As far as I know you cannot have an integer typed variable with leading zeros. You can pad the number with zeros but then it will become a String.
Take a look at:
http://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/StringUtils.html#leftPad(java.lang.String,%20int)
In order to conform to the signature you have to convert the number to a string first, but that is no great deal.
The leading zeroes have no meaning if the data type you require is an Integer (or any other numeric type). If on the other hand you need a String with leading zeroes, you can use this (works only if required string length is >= number of digits of the number you want to pad) :
String myNumber = Integer.toString(42);
String myNumberWithLeadingZeroes = "0000000000" + myNumber;
// 10 zeroes if you need a string of length 10 in the end
myNumberWithLeadingZeroes = myNumberWithLeadingZeroes.substring(myNumber.length());
Related
I am working on the problem to find the next greatest number with the same set of digits.
For this I take a integer value input from the user and I want to convert to char array or int array so that I can access individual digits.
But when I take
int value=09 as the input and convert to char array it gives only 9 as it considers it to be octal value. How can I overcome this ?
it is not possible in java to take the int values with leading zeros.
so for the value with leading zeros take it in string format.
but we can insert zeros
int n=7;
String str=String.format("%04d", n); //4 denotes the size of the string
System.out.println(str); // o/p->0007
It is not possible convert a 09 int value to a String of 9 since the value 09 can not be stored in an int.
int is not capable of storing trailing zeros.
Take this sample.
int foo = Integer.valueOf("09");
System.out.println(foo);
Output
9
So to solve your problem you should get a String from the user, validate it and parse it to an Integer[].
Solution
public Integer[] parseToInteger(String number) {
return Arrays.asList(number.toCharArray())
.stream()
.map(c -> Integer.valueOf(c.toString()))
.toArray(size -> new Integer[size]);
}
Now you have an Array of Integer.
Since leading 0's are dropped from integers there is no reason to support assigning such a value to an int.
If I want to convert 9 to '9' I usually just add '0' to it.
You can also do the following:
char c = Character.forDigit(9,10);
If you have a string of characters, you can do the following:
String str = "09";
List<Character> chrs =
str.chars().mapToObj(a -> Character.valueOf((char) a))
.collect(Collectors.toList());
System.out.println(chrs);
Prints
[0,9]
You are asking how to parse a number starting with a leading zero, but I get the feeling that you are actually on the worng track given the problem you are trying to resolve. So let's take one step backward, and lets make sure I understand your problem correctly.
You say that you have to find the "next greatest number with the same set of digits". So you are playing "Scrabble" with digits, trying to find the smalest number composed with the same digits that is strictly greater to the original number. For example, given the input "09", you would output "90", and for "123", you would output "132". Is that right? Let assume so.
Now, the real challenge here is how to determine the smalest number composed with thise digits that is stricly greater to the original number. Actually, there's a few possible strategies:
Enumerate all possible permutations of those digits, then filter out those that are not strictly greater to the original number, and then, among the remaining values, find the smallest value. That would be a very innefficient strategy, requiring both disproportionate memory and processing power. Please, don't consider this seriously (that is, unless you are actually coding for a Quantum Computer ;) ).
Set a variable to the initial number, then iteratively increment that variable by one until you eventually get a number that is composed of the same digits as the original values. That one might look simple to implement, but it actually hides some complexities (i.e. determining that two numbers are composed from the same digits is not trivial, special handling would be required to avoid endless loop if the initial number is actually the greatest value that can be formed with those digits). Anyway, this strategy would also be rather innefficient, requiring considerable processing power.
Iterate over the digits themselves, and determine exactly which digits have to be swapped/reordered to get the next number. This is actually very simple to implement (I just wrote it in less that 5 minutes), but require some thinking first. The algorithm is O(n log n), where n is the length of the number (in digits). Take a sheet of paper, write example numbers in columns, and try to understand the logic behind it. This is definitely the way to go.
All three strategies have one thing in common: they all require that you work (at some point at least) with digits rather than with the number itself. In the last strategy, you actually never need the actual value itself. You are simply playing Scrabble, with digits rather than letters.
So assuming you indeed want to implement strategy 3, here is what your main method might looks like (I wont expand more on this one, comments should be far enough):
public static void main(String[] args) {
// Read input number and parse it into an array of digit
String inputText = readLineFromUser();
int[] inputDigits = parseToDigits(inputText);
// Determine the next greater number
int[] outputDigits = findNextGreaterNumber(inputDigits);
// Output the resulting value
String outputText = joinDigits(outputDigits);
println(outputText);
}
So here's the point of all this discussion: the parseToDigits method takes a String and return an array of digits (I used int here to keep things simpler, but byte would actually have been enough). So basically, you want to take the characters of the input string, and convert that array to an array of integer, with each position in the output containing the value of the corresponding digit in the input. This can be written in various ways in Java, but I think the most simple would be with a simple for loop:
public static int[] parseToDigits(String input) {
char[] chars = input.toCharArray();
int[] digits = new int[chars.length];
for (int i = 0 ; i < chars.length ; i++)
digits[i] = Character.forDigit(chars[i], 10);
return digits;
}
Note that Character.forDigit(digit, radix) returns the value of character digit in base radix; if digit is not valid for the given base, forDigit returns 0. For simplicity, I'm skipping proper validation checking here. One could consider calling Character.isDigit(digit, radix) first to determine if a digit is acceptable, throwing an exception if it is not.
As to the opposite opperation, joinDigits, it would looks like:
public static String joinDigits(int[] digits) {
char[] chars = new char[digits.length];
for (int i = 0 ; i < digits.length ; i++)
chars[i] = Character.digit(digits[i], 10);
return new String(chars);
}
Hope that helps.
I have hexadecimal String eg. "0x103E" , I want to convert it into integer.
Means String no = "0x103E";
to int hexNo = 0x103E;
I tried Integer.parseInt("0x103E",16); but it gives number format exception.
How do I achieve this ?
You just need to leave out the "0x" part (since it's not actually part of the number).
You also need to make sure that the number you are parsing actually fits into an integer which is 4 bytes long in Java, so it needs to be shorter than 8 digits as a hex number.
No need to remove the "0x" prefix; just use Integer.decode instead of Integer.parseInt:
int x = Integer.decode("0x103E");
System.out.printf("%X%n", x);
I want to display the length of a 4-digit number displayed by the user, the problem that I'm running into is that whenever I read the length of a number that is 4-digits long but has trailing zeros the length comes to the number of digits minus the zeros.
Here is what I tried:
//length of values from number input
int number = 0123;
int length = (int)Math.log10(number) + 1;
This returns to length of 3
The other thing I tried was:
int number = 0123;
int length = String.valueOf(number).length();
This also returned a length of 3.
Are there any alternatives to how I can obtain this length?
Because int number = 0123 is the equivalent of int number = 83 as 0123 is an octal constant. Thanks to #DavidConrad and #DrewKennedy for the octal precision.
Instead declare it as a String if you want to keep the leading 0
String number = "0123";
int length = number.length();
And then when you need the number, simply do Integer.parseInt(number)
Why is the syntax of octal notation in java 0xx ?
Java syntax was designed to be close to that of C, see eg page 20 at
How The JVM Spec Came To Be keynote from the JVM Languages Summit 2008
by James Gosling (20_Gosling_keynote.pdf):
In turn, this is the way how octal constants are defined in C language:
If an integer constant begins with 0x or 0X, it is hexadecimal. If it
begins with the digit 0, it is octal. Otherwise, it is assumed to be
decimal...
Note that this part is a C&P of #gnat answer on programmers.stackexchange.
https://softwareengineering.stackexchange.com/questions/221797/reasoning-behind-the-syntax-of-octal-notation-in-java
Use a string instead:
String number = "0123";
int length = number.length(); // equals 4
This doesn't work with an int, as the internal representation of 0123 is identical to 123. The program doesn't remember how the value was written, only the actual value.
What you can do is declare a string:
String number = "0123";
int numberLengthWithLeadingZeroes = number.length(); // == 4
int numberValue = Integer.parseInt(number); // == 123
If you really want to include leading 0's you could always store it in an array of of characters
example:
char[] abc = String.valueOf(number).toCharArray();
Then obviously you can figure out the length of the array.
As several people have pointed out already though, integers don't have leading 0's.
String abc=String.format("%04d", yournumber);
for zero-padding with length=4.
Refer to this link .
http://download.oracle.com/javase/7/docs/api/java/util/Formatter.html
this might help u ..
Integers in Java don't have leading zeroes. If you assign the value 0123 to your int or Integer variable, it will be interpreted as an octal constant rather than a decimal one, which can lead to subtle bugs.
Instead, if you want to keep leading zeroes, use a String, e.g.
String number = "0123";
This way you can also measure the length:
String number = "0123";
System.out.println(number.length());
I can't think of a better way to left pad an integer with zeroes without first converting it to a String. Is there a way to do this? I've found numerous questions regarding this but they all require a String conversion. I understand we can find the length with this approach:
int length = (num==0) ? 1 : (int)Math.log10(num) + 1;
However, this will still require me to convert it to a String and back afterwards. Surely, there's a better way?
No. An int represents a mathematical integer value, represented as 32 bits. The number 0001 is 1, and has a unique binary representation. Left-padded integers are not integers. they are Strings.
No. Numeric types cannot contain leading zeros. This a feature of the formatted textual representation i.e. Strings
Since you already have the length I'm guessing the leading zero's are simply for output, but ultimately your question was answered by the other two posters.
int length = (num==0) ? 1 : (int)Math.log10(num) + 1;
String zeros;
for(int i=0; i<length; i++) {
zeros = zeros.concat("0");
}
System.out.println(zeros + num);
i have code that looks like this
public static void main(String[] args) {
String string= "11011100010000010001000000000000";
String string1= "00000000010000110000100000101100";
System.out.println(Integer.toHexString(Integer.parseInt(string1,2)));
System.out.println(Integer.toHexString(Integer.parseInt(string,2)));
}
the first string convert just fine but the second one has an error of java.lang.NumberFormatException
dont know what the problem is
try this:
Long.toHexString(Long.parseLong(string,2))
(edited from parsLong to parseLong)
For what's worth, you can also use the BigInteger class :
String string = "11011100010000010001000000000000";
String string1 = "00000000010000110000100000101100";
System.out.println(new BigInteger(string1, 2).toString(16));
System.out.println(new BigInteger(string, 2).toString(16));
When the most significant bit of a 32-character binary number is set to 1, the resultant value exceeds the range of positive numbers supported by int, and can no longer be interpreted as a valid integer number. This causes the exception according to the documentation:
An exception of type NumberFormatException is thrown if any of the following situations occurs:
The first argument is null or is a string of length zero.
The radix is either smaller than Character.MIN_RADIX or larger than Character.MAX_RADIX.
Any character of the string is not a digit of the specified radix, except that the first character may be a minus sign '-' ('\u002D') provided that the string is longer than length 1.
The value represented by the string is not a value of type int. (emphasis is mine)
In order to enter this negative binary value, use - sign in front of your number, and convert the remaining bits to 2-s complement representation.
If you need numbers that are longer than 32 bits, or if you would like the value to continue being interpreted as a positive number, you would need to switch to the 64-bit integer data type.
You can use Long instead of Integer, (Long.parseLong and Long.toHexString methods).
If you want to parse to integer, the range should be
10000000000000000000000000000000 to 01111111111111111111111111111111