I'm monitoring a Java application running on a Jvm 6.
Here a screenshot of the jvisualVM panel 1.
I notice that when the heap size is small (before 12:39 in the picture) the garbage collector runs frequently.
Then I run a memory expensive task a couple of times (from 12:39 to 12:41) and the heap space grows. Why from that point on the garbage collector runs less frequently?
After one hour or more, if I avoid executing the expensive tasks on the application the heap space slowly decrease.
Why the used heap space takes so long to decrease?
Is there something I can do to avoid this behaviour?
Does the new Java8 VM have a different behaviour?
Is there something I can do to avoid this behaviour?
Set -XX:MaxHeapFreeRatio=30 -XX:MinHeapFreeRatio=15, that'll shrink the heap size more aggressively. Note that not all GC implementations yield the memory they don't use back to the OS. At least G1 does, but that's not available on java 6.
The behaviour looks normal.
Up until 12:39 on your attached profile snapshot there isn't a lot of GC going on.
Then you run your tasks and as objects that are no longer reachable become eligible for GC the sweep marks them and they get removed.
You do not necessarily need to worry about the size of the heap unless you are maxing out and crashing frequently due to some memory leak. The GC will take care of removing eligible objects from the heap and you are limited in terms of how you can impact GC (unless of course you switch GC implementation).
Each major release of the platform includes some JVM and GC changes/improvements but the behaviour of application will be very similar in Hotspot 7/8. Try it.
Modern JVMs have highly optimized garbage collectors and you shouldn't need to worry about how/when it reclaims memory, but more about making sure you release objects so that they become eligible for collection. How often after startup do you experience out of memory issues?
If you are getting crashes due to out of memory configure the JVM to take a heap dump on exit:
-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=date.hprof
Related
The support team in our company reported our API process is consuming too much RAM, so I started analyzing the issue, I've used visualvm and jconsole to monitor the process, and when I call an endpoint that has JNI calls to C++ native code, I see the resident memory (RES) in my process on the top linux monitoring software grow above the maximum heap size (-Xmx JVM flag). For example -Xmx3G but top shows 6G after hitting the endpoint many times.
Initially we thought it could be a native memory leak but I've run a test where I called the GC manually with System.gc() every five seconds and RES memory behaved properly.
With that result in mind, I started studying JVM flags and garbage collection. I've made a test with the serial collector and RES memory did well, but since it's an API I prefered using the G1GC collector. Calling the garbage collection more often without doing it explicitly seemed like an interesting fix. However, the solution I found is to set the new generation size to a low value, I've noticed that significant spike in RES memory was directly related to a spike in eden space analyzing the JConsole.
So i set the flag to -Xmn256M to try and control this RES memory spike that doesn't seem to be allocated inside normal Heap space, and to try and force garbage collection to be run more often, at least the collection from young to old gen. However, I've noticed G1GC is making many young colllections and no old collections.
As you can see young collections were called 47 times, but old ones were never called.
So, in summary: I've controlled memory spikes in resident memory by running young collections frequently with the G1GC because I've noticed that the garbage collection fixes this memory surplus (RES >> Max Heap Size), even though wasn't able to explain it, and even though I know this frequent young collection may affect application performace a little, because G1GC young generation is collected by stopping all application threads (from Java Performance by Scott Oaks). Is this a bad idea? Should I dedicate more time to diagnosing a memory leak (Java or native C++)?
My time with this task is almost up
We are having frecuent outages in our app, basically the heap grows over time to the point were the GC takes a lot of CPU time and execute for several minutes, decreasing the app perfomance drastically. The app is in JSF with a tomcat server.
In the mean time, we:
Increased the heap size from 15G to 26G (-Xms27917287424 -Xmx27917287424)
Take several heap dumps (we are trying to determine the problem using these)
Activated GC logs
With the heap size increase, GC is not executing for that much time but still takes a lot of CPU and frezees the app.
So the question is:
Is this normal? When the GC executes it frees memory, so i think this probably isn't a memory leak (Am I right?)
Is there a way of optimize the GC or maybe this behavior is just a sympthom of something wrong in the app itself?
How can I monitor and analyze this without taking a heap dump?
UPDATE:
I changed JSF from 2.2 to 2.3 because some heap dumps were pointing that JSF was using a lot of memory.
That didn't work out, and yesterday we had and outage again, but this time a little different (from my point of view). Also this time, we had to reset tomcat because the app didn't work anymore after a while
In this case, the garbage collector is running when de old gen heap is not full, and the new generation GC is running all the time.
¿What can be the cause of this?
As has been said in the comments, the behaviour of the application does not look unreasonable. Your code is continually allocating objects that leads to heap space filling up, causing the GC to run. There does not appear to be a memory leak since GC reclaims a lot of space and the overall used space is not continually increasing.
What does appear to be an issue is that a significant number of objects are being promoted to the old-gen before being collected. Major GC cycles are more expensive in terms of CPU due to the relocation and remapping of objects (assuming you're using a compacting algorithm).
To reduce this, you could try increasing the size of the young generation. This will have happened when you increased the overall heap size but not by enough. Ideally, you want the majority of objects to be collected during a minor GC cycle since this is effectively free (the GC does nothing to the objects in Eden space as they are collected). You can do this with the -XX:NewRatio= or -XX:NewSize= flags. You could also try changing the survivor space sizes, again to increase the number of objects collected before tenuring. (use the -XX:SurvivorRatio= flag for this).
For monitoring, I find Flight Recorder and Mission Control very useful as you can drill down into details of how many objects of specific types are allocated. It's also easy to connect to a running JVM or take dumps for later analysis.
When the garbage collector runs and releases memory does this memory go back to the OS or is it being kept as part of the process. I was under the strong impression that the memory is never actually released back to OS but kept as part of the memory area/pool to be reused by the same process.
As a result the actual memory of a process would never decrease. An article that reminded me was this and Java’s Runtime is written in C/C++ so I guess the same thing applies?
Update
My question is about Java. I am mentioning C/C++ since I assume the Java’s allocation/deallocation is done by JRE using some form of malloc/delete
The HotSpot JVM does release memory back to the OS, but does so reluctantly since resizing the heap is expensive and it is assumed that if you needed that heap once you'll need it again.
In general shrinking ability and behavior depends on the chosen garbage collector, the JVM version since shrinking capability was often introduced in later versions long after the GC itself was added. Some collectors may also require additional options to be passed to opt into shrinking. And some most likely never will support it, e.g. EpsilonGC.
So if heap shrinking is desired it should be tested for a particular JVM version and GC configuration.
JDK 8 and earlier
There are no explicit options for prompt memory reclamation in these versions but you can make the GC more aggressive in general by setting -XX:GCTimeRatio=19 -XX:MinHeapFreeRatio=20 -XX:MaxHeapFreeRatio=30 which will allow it to spend more CPU time on collecting and constrain the amount of allocated-but-unused heap memory after a GC cycle.
If you're using a concurrent collector you can also set -XX:InitiatingHeapOccupancyPercent=N with N to some low value to let the GC run concurrent collections almost continuously, which will consume even more CPU cycles but shrink the heap sooner. This generally is not a good idea, but on some types of machines with lots of spare CPU cores but short on memory it can make sense.
If you're using G1GC note that it only gained the ability to yield back unused chunks in the middle of the heap with jdk8u20, earlier versions were only able to return chunks at the end of the heap which put significant limits on how much could be reclaimed.
If you're using a collector with a default pause time goal (e.g. CMS or G1) you can also relax that goal to place fewer constraints on the collector, or you can switch go the parallel collector to prioritize footprint over pause times.
To verify that shrinking occurs or to diagnose why a GC decides not to shrink you can use GC Logging with -XX:+PrintAdaptiveSizePolicy may also provide insight, e.g. when the JVM tries to use more memory for the young generation to meet some goals.
JDK 9
Added the -XX:-ShrinkHeapInSteps option which can be be used to apply the shrinking caused by the options mentioned in the previous section more aggressively. Relevant OpenJDK bug.
For logging -XX:+PrintAdaptiveSizePolicy has been replaced with -Xlog:gc+ergo
JDK 12
Introduced the option to enable prompt memory release for G1GC via the G1PeriodicGCInterval (JEP 346), again at the expense of some additional CPU. The JEP also mentions similar features in Shenandoah and the OpenJ9 VM.
JDK 13
Adds similar behavior for ZGC, in this case it is enabled by default. Additionally XXSoftMaxHeapSize can be helpful for some workloads to keep the average heap size below some threshold while still allowing transient spikes.
The JVM does release back memory under some circumstances, but (for performance reasons) this does not happen whenever some memory is garbage collected. It also depends on the JVM, OS, garbage collector etc. You can watch the memory consumption of your app with JConsole, VisualVM or another profiler.
Also see this related bug report
If you use the G1 collector and call System.gc() occasionally (I do it once a minute), Java will reliably shrink the heap and give memory back to the OS.
Since Java 12, G1 does this automatically if the application is idle.
I recommend using these options combined with the above suggestion for a very compact resident process size:
-XX:+UseG1GC -XX:MaxHeapFreeRatio=30 -XX:MinHeapFreeRatio=10
Been using these options daily for months with a big application (a whole Java-based guest OS) with dynamically loading and unloading classes - and the Java process almost always stays between 400 and 800 MB.
this article here explains how the GC work in Java 7. In a nutshell, there are many different garbage collectors available. Usually the memory is kept for the Java process and only some GCs release it to the system (upon request I think). But, the memory used by the Java process will not grow indefinitely, as there is an upper limit defined by the Xmx option (which is 256m usually, but I think it is OS/machine dependant).
ZGC released in 13 java and it can return unused heap memory to the operating system
Please see the link
I am running an application server on Linux 64bit with 8 core CPUs and 6 GB memory.
The server must be highly responsive.
After some inspection I found that the application running on the server creates rather a huge amount of short-lived objects, and has only about 200~400 MB long-lived objects(as long as there is no memory leak)
After reading http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html
I use these JVM options
-server -Xms2g -Xmx2g -XX:MaxPermSize=256m -XX:NewRatio=1 -XX:+UseConcMarkSweepGC
Result: the minor GC takes 0.01 ~ 0.02 sec, the major GC takes 1 ~ 3 sec
the minor GC happens constantly.
How can I further improve or tune the JVM?
larger heap size? but will it take more time for GC?
larger NewSize and MaxNewSize (for young generation)?
other collector? parallel GC?
is it a good idea to let major GC take place more often? and how?
Result: the minor GC takes 0.01 ~ 0.02 sec, the major GC takes 1 ~ 3 sec the minor GC happens constantly.
Unless you are reporting pauses, I would say that the CMS collector is doing what you have asked it to do. By definition, CMS will use a larger percentage of the CPU than the Serial and Parallel collectors. This is the penalty you pay for low pause times.
If you are seeing 1 to 3 second pause times, I'd say that you need to do some tuning. I'm no expert, but it looks like you should start by reducing the value of CMSInitiatingOccupancyFraction from the default value of 92.
Increasing the heap size will improve the "throughput" of the GC. But if your problem is long pauses, increasing the heap size is likely to make the problem worse.
Careful .... GC can be a hairy subject if you are not cautious. Within any runtime (JVM for Java / CLR for .Net) there are several processes that take place. Generally there is an early stage optimization of memory (Young Generational Garbage Collection / Young Gen GC & Old Generational Garbage Collection / Old Gen GC). The young gen gc happens on a regular basis and is commonly attributed to your smaller pauses / hiccups. The old gen gc is normally what is going on when you see the long "stop the world" pauses.
Why you might ask? The reason you get pauses with your runtime / JVM is that when the runtime does its cleanup of the Heap it has to go through what is called a phase change. It stops the threads running your application in order to mark and swap pointers to optimize your available memory. Yong gen is faster as it is mainly releasing objects that are only temporary. Old gen, however, evaluates all the objects on the heap and when you run out of memory will it will kick of to free up much needed memory.
Why the Caution? Old gen gets exponentially worse in pause time the more heap you use. at 2-4 GB in total heap size you should be fine on modern runtimes like Java 6 (JDK 1.6+). Once you go beyond that threashold you will see exponential increases in pause times. I have run into some clients that have to restart servers - as in some rare cases where a heap is large GC pause times can take longer than a full restart.
There are some new tools out there that are pretty cool and can give you a leading edge on evaluating if GC is your pain. JHiccup is one and it is free from the azulsystemswebsite. At this time I think it is only for Linux though. They also have a JVM that has a re-built GC algorithm that runs pauseless ... but if you are on a single server deployment with a non-critical app it may not be cost effective (that one is not free).
To sum up - if your runtime / JVM / CLR heap is less than 2 GB adding more memory will help. Be sure to give yourself some overhead. You never want to hit 100% Heap size / memory size if possible. That is when the long pauses are the longest. Give yourself an extra 20%+ memory over what you think you will need. That way you have room for the GC algorithms to move objects around for optimization. If you ever plan to go large ... there is one tool that fixes the circa 1990 JVM technology (Azul Systems Zing JVM), but it is not free. They do offer an open source tool to diagnose GC issues. The JVM (as I have tried it) also has a really cool thread level visibility tool that lets you report on any leaks, bugs, or locks in production without overhead (some trick with offloading data the JVM already deals with and time stamping). That has saved tons of dev test time ... but again, not for small apps.
Stay below 4 GB. Give extra headroom. And if you want you can turn on these flags to monitor GC for Java / JVM:
java -verbose:gc myProgram
java -Xloggc:D:/log/myLogFile.log -XX:+PrintGCDetails myProgram
You may try some of the other collectors Hotspot uses. There are more than one.
If you are on Linux go ahead and try the JHiccup tool as well. It is free.
You may be interested in trying the low-pause Garbage-First collector instead of concurrent mark-sweep (although it's not necessarily more performant for all collections, it's supposed to have a better worst case). It's enabled by -XX:+UseG1GC and is supposed to be really awesomesauce, but you may want to give it a thorough evaluation before using it in production. It has probably improved since, but it seems to have been a bit buggy a year ago, as seen in Experience with JDK 1.6.x G1 (“Garbage First”)
It is perfectly fine for the garbage collection to run in parallel with your program, if you have plenty of cpu, which you do.
What you want, is to make absolutely certain that you will not run into a scenario where the garbage collection PAUSES your main program.
Have you tried simply not stating any flags except saying you want the server VM (for the Sun JVM), and then put your server under heavy load to see how it behaves? Only then can you see, if you get any improvements from tinkering with options.
This actually sounds like a throughput app and should probably use the throughput collector. I would balance the size of the new gen making it big enough to not GC too often and small enough to prevent long pauses. 20ms sounds like a long minor GC to me. I also suspect your survivor space is set too large and is just being wasted. If you don't have much surviving to old gen, you shouldn't have that much surviving your minor GCs.
In the end, you should use jvmstat and VisualGC to really get a feel for how your app is using memory.
For high responsive server application, I think you want to see the major GC happens less frequently. Here is the list of parameters would help.
-XX:+CMSParallelRemarkEnabled
-XX:+CMSScavengeBeforeRemark
-XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=50
-XX:CMSWaitDuration=300000
-XX:GCTimeRatio=40
Larger heap size may not help on low pause, as long as your app doesn't run out of memory.
Larger NewSize and MaxNewSize would help on throughput, may not help on low pause. If you choose to take this approach, you may consider give GC threads more execution time by setting -XX:GCTimeRatio lower. The point is to remember to take a holistic when tuning JVM.
I think previous posters have missed something very obvious- the Perm Generation size is too low. If the system uses 200 to 400 MB as permanent generation- then it may be best to set Max Perm Gen to 400 MB. the PerGen size should also be set to the same value. You will then never run out of Permanent Generation Space.
Currently- it looks like the JVM has to spend a lot of time moving objects in and out of Permanent Generation. This can take time. JVM tries to allocate contiguous memory areas to Java Objects- this speeds memory access due to hardware level features. In order to do that, it is very helpful to have plenty of buffer in memory. If Permanent Generation is almost full, newly discovered permanent objects must be split or existing objects must be shuffled. This is what triggers a full GC, as well as causes long full GC pauses.
The question states that the Permanent Generation size has already been measured- if this has not been done, it should be measured using a tool. These tools process logs generated by the JVM with the verboseGC option turned on.
All the mark and sweep options listed above- may not be needed with this basic improvement.
People throw GC options as solutions without evaluating how mature they have proven to be in actual use.
Does the Sun JVM slow down when more memory is available and used via -Xmx? (Assumption: The machine has enough physical memory so that virtual memory swapping is not a problem.)
I ask because my production servers are to receive a memory upgrade. I'd like to bump up the -Xmx value to something decadent. The idea is to prevent any heap space exhaustion failures due to my own programming errors that occur from time to time. Rare events, but they could be avoided with my rapidly evolving webapp if I had an obscene -Xmx value, like 2048mb or higher. The application is heavily monitored, so unusual spikes in JVM memory consumption would be noticed and any flaws fixed.
Possible important details:
Java 6 (runnign in 64-bit mode)
4-core Xeon
RHEL4 64-bit
Spring, Hibernate
High disk and network IO
EDIT: I tried to avoid posting the configuration of my JVM, but clearly that makes the question ridiculously open ended. So, here we go with relevant configuration parameters:
-Xms256m
-Xmx1024m
-XX:+UseConcMarkSweepGC
-XX:+AlwaysActAsServerClassMachine
-XX:MaxGCPauseMillis=1000
-XX:MaxGCMinorPauseMillis=1000
-XX:+PrintGCTimeStamps
-XX:+HeapDumpOnOutOfMemoryError
By adding more memory, it will take longer for the heap to fill up. Consequently, it will reduce the frequency of garbage collections. However, depending on how mortal your objects are, you may find that how long it takes to do any single GC increases.
The primary factor for how long a GC takes is how many live objects there are. Thus, if virtually all of your objects die young and once you get established, none of them escape the young heap, you may not notice much of a change in how long it takes to do a GC. However, whenever you have to cycle the tenured heap, you may find everything halting for an unreasonable amount of time since most of these objects will still be around. Tune the sizes accordingly.
If you just throw more memory at the problem, you will have better throughput in your application, but your responsiveness can go down if you're not on a multi core system using the CMS garbage collector. This is because fewer GCs will occur, but they will have more work to do. The upside is that you will get more memory freed up with your GCs, so allocation will continue to be very cheap, hence the higher througput.
You seem to be confusing -Xmx and -Xms, by the way. -Xms just sets the initial heap size, whereas -Xmx is your max heap size.
More memory usually gives you better performance in garbage collected environments, at least as long as this does not lead to virtual memory usage / swapping.
The GC only tracks references, not memory per se. In the end, the VM will allocate the same number of (mostly short-lived, temporary) objects, but the garbage collector needs to be invoked less often - the total amount of garbage collector work will therefore not be more - even less, since this can also help with caching mechanisms which use weak references.
I'm not sure if there is still a server and a client VM for 64 bit (there is for 32 bit), so you may want to investigate that also.
According to my experience, it does not slow down BUT the JVM tries to cut back to Xms all the time and try to stay at the lower boundary or close to. So if you can effort it, bump Xms as well. Sun is recommending both at the same size. Add some -XX:NewSize=512m (just a made up number) to avoid the costly pile up of old data in the old generation with leads to longer/heavier GCs on the way. We are running our web app with 700 MB NewSize because most data is short-lived.
So, bottom line: I do not expect a slow down, but put your more of memory to work. Set a larger new size area and set Xms to Xmx to lower the stress on the GC, because it does not need to try to cut back to Xms limits...
It typically will not help your peformance/throughput,if you increase -Xmx.
Theoretically there could be longer "stop the world" phases but in practice with the CMS that's not a real problem.
Of course you should not set -Xmx to some insane value like 300Gbyte unless you really need it :)