Should JPA Entities match the constraints of the database they're mapping?
What about database triggers used for data generation, should those be match as well?
Yes, you should model the constraints in your JPA model, as it is best to state those constraint explicit in your entities.
On one side because just of documentation purposes (many developers will look into your entity model while nearly none of them will look into the database model when using your beans).
On the other because you can catch wrong input as early as possible (potentially even in your UI), because many frameworks like JSF will look at them.
And you should try to move triggers from your database to your entities - to keep the application logic in one place and make such things explicit. But it makes no sense to double that logic - so if you need to keep these triggers in the database, don't add the same in the entities (but you should mention the triggers in the JavaDoc then).
Related
I'm Using Seedstack 16.7 and its Business framework with JPA plugin support.
There's 2 ways to acquire data from a datasource.
Repositories http://seedstack.org/docs/business/manual/repositories/
They are pretty much the ones that acts in behalf of an traditional EntityManager on JPA, keeping the type safety.
Finders http://seedstack.org/docs/business/manual/finders/
They retrieve Dto from a datasource.
The only apparent difference between them is that finder is a read only interface to a datasource.
Most of the queries that a finder requires can be done just by calling a repository and converting from a Aggregate to a Dto
Is there any real difference between them, or on their intended?
other than stated on this question.
It is somewhat complex to explain it in a few lines because that modeling decission comes from deep understanding of DDD, CQ(R)S, fast readmodels, eventual consistency, etc.
Finders
As the manual says: "Query the persistence layer or any data source to obtain objects specific to an interface of the application".
The keyword here is Interface. In the case of a graphical UI the use of finders is to retrieve a concrete view to present it in a desktop form or webpage. In a non CRUD app the UI should be Task-Based so:
Your views does not match your Entities and Aggregates.
Your Entities and Aggregates does not (should not) contain the full lists of selection data i.e.: States and Cities (classic cascading dependency comboboxes)
Your Aggregates and Entities does not (should not) contain the full list of referenced Entities (A Customer class with a hurge list of Orders, with all order data, placed inside is wrong DDD aggregate modeling) but somewhere in your app you have to show full order list.
Your Views and Aggregates can be retrieved from different data sources (usually for query performance and/or eventural consistency). i.e NoSql readmodels, a non normalized relational database or precomputed views (instead of tables representing your Entities) in your domain relational database.
So you have a impedance mischatch betwen UI and Aggregates/Entities. The best way to resolve this is create, explicitly, a way to deal from persistence to view. Finders comes into play.
Repoisitories
When a user issue a command that implies a change in your domain you have to retrieve an aggegate and use the aggregate root as entry point of the action. This ensures consistency and invariants (rules) of your domain. Aggregate modeling has a lot of nuances (take a look here) that makes bad idea to try using aggregates and entities for your views. So you need a way to read and build in memory aggregates from data sources. This is the job of repositories. Sometimes repositories gives you extra features that you do not need when retrieve data for views like entity change tracking, creation of unique identifications to persist, etc. You do not need anything of this when dealing with views. Repositories comes to play.
My question is this: Is there ever a role for JPA merge in a stateless web application?
There is a lot of discussion on SO about the merge operation in JPA. There is also a great article on the subject which contrasts JPA merge via a more manual Do-It-Yourself process (where you find the entity via the entity manager and make your changes).
My application has a rich domain model (ala domain-driven design) that uses the #Version annotation in order to make use of optimistic locking. We have also created DTOs to send over the wire as part of our RESTful web services. The creation of this DTO layer also allows us to send to the client everything it needs and nothing it doesn't.
So far, I understand this is a fairly typical architecture. My question is about the service methods that need to UPDATE (i.e. HTTP PUT) existing objects. In this case we have these two approaches 1) JPA Merge, and 2) DIY.
What I don't understand is how JPA merge can even be considered an option for handling updates. Here's my thinking and I am wondering if there is something I don't understand:
1) In order to properly create a detached JPA entity from a wire DTO, the version number must be set correctly...else an OptimisticLockException is thrown. But the JPA spec says:
An entity may access the state of its version field or property or
export a method for use by the application to access the version, but
must not modify the version value[30]. Only the persistence provider
is permitted to set or update the value of the version attribute in
the object.
2) Merge doesn't handle bi-directional relationships ... the back-pointing fields always end up as null.
3) If any fields or data is missing from the DTO (due to a partial update), then the JPA merge will delete those relationships or null-out those fields. Hibernate can handle partial updates, but not JPA merge. DIY can handle partial updates.
4) The first thing the merge method will do is query the database for the entity ID, so there is no performance benefit over DIY to be had.
5) In a DYI update, we load the entity and make the changes according to the DTO -- there is no call to merge or to persist for that matter because the JPA context implements the unit-of-work pattern out of the box.
Do I have this straight?
Edit:
6) Merge behavior with regards to lazy loaded relationships can differ amongst providers.
Using Merge does require you to either send and receive a complete representation of the entity, or maintain server side state. For trivial CRUD-y type operations, it is easy and convenient. I have used it plenty in stateless web apps where there is no meaningful security hazard to letting the client see the entire entity.
However, if you've already reduced operations to only passing the immediately relevant information, then you need to also manually write the corresponding services.
Just remember that when doing your 'DIY' update you still need to pass a Version number around on the DTO and manually compare it to the one that comes out of the database. Otherwise you don't get the Optimistic Locking that spans 'user think-time' that you would have if you were using the simpler approach with merge.
You can't change the version on an entity created by the provider, but when you have made your own instance of the entity class with the new keyword it is fine and expected to set the version on it.
It will make the persistent representation match the in-memory representation you provide, this can include making things null. Remember when an object is merged that object is supposed to be discarded and replaced with the one returned by merge. You are not supposed to merge an object and then continue using it. Its state is not defined by the spec.
True.
Most likely, as long as your DIY solution is also using the entity ID and not an arbitrary query. (There are other benefits to using the 'find' method over a query.)
True.
I would add:
7) Merge translates to insert or to update depending on the existence of the record on DB, hence it does not deal correctly with update-vs-delete optimistic concurrency. That is, if another user concurrently deletes the record and you update it, it must (1) throw a concurrency exception... but it does not, it just inserts the record as new one.
(1) At least, in most cases, in my opinion, it should. I can imagine some cases where I would want this use case to trigger a new insert, but they are far from usual. At least, I would like the developer to think twice about it, not just accept that "merge() == updateWithConcurrencyControl()", because it is not.
I'm building an application using JPA 2.0 (Hibernate implementation), Spring, and Wicket. Everything works, but I'm concerned that my form behaviour is based around side effects.
As a first step, I'm using the OpenEntityManagerInViewFilter. My domain objects are fetched by a LoadableDetachableModel which performs entityManager.find() in its load method. In my forms, I wrap a CompoundPropertyModel around this model to bind the data fields.
My concern is the form submit actions. Currently my form submits pass the result of form.getModelObject() into a service method annotated with #Transactional. Because the entity inside the model is still attached to the entity manager, the #Transactional annotation is sufficient to commit the changes.
This is fine, until I have multiple forms that operate on the same entity, each of which changes a subset of the fields. And yes, they may be accessed simultaneously. I've thought of a few options, but I'd like to know any ideas I've missed and recommendations on managing this for long-term maintainability:
Fragment my entity into sub-components corresponding to the edit forms, and create a master entity linking these together into a #OneToOne relationship. Causes an ugly table design, and makes it hard to change forms later.
Detach the entity immediately it's loaded by the LoadableDetachableModel, and manually merge the correct fields in the service layer. Hard to manage lazy loading, may need specialised versions of the model for each form to ensure correct sub-entities are loaded.
Clone the entity into a local copy when creating the model for the form, then manually merge the correct fields in the service layer. Requires implementation of a lot of copy constructors / clone methods.
Use Hibernate's dynamicUpdate option to only update changed fields of the entity. Causes non-standard JPA behaviour throughout the application. Not visible in the affected code, and causes a strong tie to Hibernate implementation.
EDIT
The obvious solution is to lock the entity (i.e. row) when you load it for form binding. This would ensure that the lock-owning request reads/binds/writes cleanly, with no concurrent writes taking place in the background. It's not ideal, so you'd need to weigh up the potential performance issues (level of concurrent writes).
Beyond that, assuming you're happy with "last write wins" on your property sub-groups, then Hibernate's 'dynamicUpdate' would seem like the most sensible solution, unless your thinking of switching ORMs anytime soon. I find it strange that JPA seemingly doesn't offer anything that allows you to only update the dirty fields, and find it likely that it will in the future.
Additional (my original answer)
Orthogonal to this is how to ensure you have a transaction open when when your Model loads an entity for form binding. The concern being that the entities properties are updated at that point and outside of transaction this leaves a JPA entity in an uncertain state.
The obvious answer, as Adrian says in his comment, is to use a traditional transaction-per-request filter. This guarantees that all operations within the request occur in single transaction. It will, however, definitely use a DB connection on every request.
There's a more elegant solution, with code, here. The technique is to lazily instantiate the entitymanager and begin the transaction only when required (i.e. when the first EntityModel.getObject() call happens). If there is a transaction open at the end of the request cycle, it is committed. The benefit of this is that there are never any wasted DB connections.
The implementation given uses the wicket RequestCycle object (note this is slightly different in v1.5 onwards), but the whole implementation is in fact fairly general, so and you could use it (for example) outwith wicket via a servlet Filter.
After some experiments I've come up with an answer. Thanks to #artbristol, who pointed me in the right direction.
I have set a rule in my architecture: DAO save methods must only be called to save detached entities. If the entity is attached, the DAO throws an IllegalStateException. This helped track down any code that was modifying entities outside a transaction.
Next, I modified my LoadableDetachableModel to have two variants. The classic variant, for use in read-only data views, returns the entity from JPA, which will support lazy loading. The second variant, for use in form binding, uses Dozer to create a local copy.
I have extended my base DAO to have two save variants. One saves the entire object using merge, and the other uses Apache Beanutils to copy a list of properties.
This at least avoids repetitive code. The downsides are the requirement to configure Dozer so that it doesn't pull in the entire database by following lazy loaded references, and having yet more code that refers to properties by name, throwing away type safety.
We are in the beginning coding phase for project that we are using JPA with. We used the tools in Netbeans to generate our JPA entities based on our schema. It worked pretty well, but as always we have had to customize the entities a good bit since then.
We made a decent size change to our schema (added a table, and swapped around relationships between others) and as such needed to update our entities. We could not regenerate them, as we would have to go and reapply all the customizations we had, so we did it all by hand. Not a big deal, just more time consuming then I expected.
The customizations were Named Queries we added, Cascade Types, our own to String methods, equals and hash code methods. I thought about creating classes that extended the entities to add in the toString, equals, and hascode methods, that way if we regenerated them, they would not be lost. But I was not sure about the Cascade Types and named queries.
Is there a better way, or is this just wishful thinking?
I believe this is just wishful thinking. Generating your entities and extending them just gives you a different set of problems. You generated entities will have to be annotated as #MappedSuperclass and won't have table names - plus your extensions may have to repeat some of the annotations, plus you'll have to tweak you named query customizations anyway sometimes....its all just a hassle.
In general, the generation of entities from a database schema is a one-time thing, to be forever maintained by hand.
Generation of a database schema from entities is however, possible to do over longer periods of time. However, even then, you'll have to manage the issues around schema migration carefully.
Bottom line -- synchronising persistent entities and database schemas takes careful, manual work.
I'm asking this question given my chosen development frameworks of JPA (Hibernate implementation of), Spring, and <insert MVC framework here - Struts 1, Struts 2, Spring MVC, Stripes...>.
I've been thinking a bit about relationships in my entity layer - for example I have an order entity that has many order lines. I've set up my app so that it eagerly loads the order lines for every order. Do you think this is a lazy way to get around the lazy initialization problems that I would come across if I was to set the fetch strategy to false?
The way I see it, I have the following alternatives when retrieving entities and their associations:
Use the Open Session In View pattern to create the session on each request and commit the transaction before returning the response.
Implement a DTO (Data Transfer Object) layer such that every DAO query I execute returns the correctly initialized DTO for my purposes. I don't really like this option much because in my experience I've found that it creates a lot of boilerplate copying code and becomes messy to maintain.
Don't map any associations in JPA so that every query I execute returns only the entities I'm interested in - this will probably require me to have DTOs anyway and will be a pain to maintain and I think defeats the purpose of having an ORM in the first place.
Eagerly fetch all (or most associations) - in the example above, always fetch all order lines when I retrieve an order.
So my question is, when and under what circumstances would you use which of these options? Do you always stick with one way of doing it?
I would ask a colleague but I think that if I even mentioned the term 'Open Session in View' I would be greeted with blank stares :( What I'm really looking for here is some advice from a senior or very experienced developer.
Thanks guys!
Open Session in View has some problems.
For example, if the transaction fails, you might know it too late at commit time, once you are nearly done rendering your page (possibly the response already commited, so you can't change the page !) ... If you had know that error before, you would have followed a different flow and ended up rendering a different page...
Other example, reading data on-demand might turn to many "N+1 select" problems, that kill your performance.
Many projects use the following path:
Maintain transactions at the business layer ; load at that point everything you are supposed to need.
Presentation layer runs the risk of LazyExceptions : each is considered a programming error, caught during tests, and corrected by loading more data in the business layer (you have the opportunity to do it efficiently, avoiding "N+1 select" problems).
To avoid creating extra classes for DTOs, you can load the data inside the entity objects themselves. This is the whole point of the POJO approach (uses by modern data-access layers, and even integration technologies like Spring).
I've successfully solved all my lazy initialization problems with Open Session In View -pattern (ie. the Spring implementation). The technologies I used were the exact same as you have.
Using this pattern allows me to fully map the entity relationships and not worry about fetching child entities in the dao. Mostly. In 90% of the cases the pattern solves the lazy initialization needs in the view. In some cases you'll have to "manually" initialize relationships. These cases were rare and always involved very very complex mappings in my case.
When using Open Entity Manager In View pattern it's important to define the entity relationships and especially propagation and transactional settings correctly. If these are not configured properly, there will be errors related to closed sessions when some entity is lazily initialized in the view and it fails due to the session having been closed already.
I definately would go with option 1. Option 2 might be needed sometimes, but I see absolutely no reason to use option 3. Option 4 is also a no no. Eagerly fetching everything kills the performance of any view that needs to list just a few properties of some parent entities (orders in tis case).
N+1 Selects
During development there will be N+1 selects as a result of initializing some relationships in the view. But this is not a reason to discard the pattern. Just fix these problems as they arise and before delivering the code to production. It's as easy to fix these problems with OEMIV pattern as it's with any other pattern: add the proper dao or service methods, fix the controller to call a different finder method, maybe add a view to the database etc.
I have successfully used the Open-Session-in-View pattern on a project. However, I recently read in "Spring In Practice" of an interesting potential problem with non-repeatable reads if you manage your transactions at a lower layer while keeping the Hibernate session open in the view layer.
We managed most of our transactions in the service layer, but kept the hibernate session open in the view layer. This meant that lazy reads in the view were resulting in separate read transactions.
We managed our transactions in our service layer to minimize transaction duration. For instance, some of our service calls resulted in both a database transaction and a web service call to an external service. We did not want our transaction to be open while waiting for a web service call to respond.
As our system never went into production, I am not sure if there were any real problems with it, but I suspect that there was the potential for the view to attempt to lazily load an object that has been deleted by someone else.
There are some benefits of DTO approach though. You have to think beforehand what information you need. In some cases this will prevent you from generating n+1 select statements. It helps also to see where to use eager fetching and/or optimized views.
I'll also throw my weight behind the Open-Session-in-View pattern, having been in the exact same boat before.
I work with Stripes without spring, and have created a manual filter before that tends to work well. Coding transaction logic on the backend turns messy really quick as you've mentioned. Eagerly fetching everything becomes TERRIBLE as you map more and more objects to each other.
One thing I want to add that you may not have come across is Stripersist and Stripernate - Stripersist being the more JPA flavor - auto-hydration filters that take a lot of the work off your shoulders.
With Stripersist you can say things like /appContextRoot/actions/view/3 and it will auto-hydrate the JPA Entity on the ActionBean with id of 3 before the event is executed.
Stripersist is in the stripes-stuff package on sourceforge. I now use this for all new projects, as it's clean and easily supports multiple datasources if necessary.
Does the Order and Order Lines compose a high volume of data? Do they take part in online processes where real-time response is required? If so, you might consider not using eager fetching - it does make a huge diference in performance. If the amount of data is small, there is no problem in eager fetching.
About using DTOs, it might be a viable implementation.
If your business layer is used internally by your own application (i.e a small web app and its business logic) it'd probably be best to use your own entities in your view with open session in view pattern since it's simpler.
If your entities are used by many applications (i.e a backend application providing a service in your corporation) it'd be interesting to use DTOs since you would not expose your model to your clients. Exposing it could mean you would have a harder time refactoring your model since it could mean breaking contracts with your clients. A DTO would make that easier since you have another layer of
abstraction. This can be a bit strange since EJB3 would theorically eliminate the need of DTOs.