How to test NetBeans Platform code which uses Lookups? - java

TL;DR How does one write unit tests for NetBeans Platform code which uses static methods to look up dependencies?
In a NetBeans platform application I come across code like this:
MyService service = Lookup.getDefault().lookup(MyService.class);
service.doStuff(....);
To me the static access seems like an antipattern and hard to test. When I Google around I only find comments about low coupling and high cohesion, teleinterfaces etc.
Many people seem to think this is a Good Idea but I am wondering how I can write a reasonable unit test for code like this, without resorting to mocking static methods or using the Lookup feature in my unit test.
The first idea that comes to my mind is to refactor the lookup as a regular dependency:
public class MyClass {
private Lookup lookup = Lookup.getDefault();
public void myMethod() {
MyService service = lookup.lookup(MyService .class);
service.doStuff(....);
}
public void setLookup(Lookup lookup) {
this.lookup = lookup;
}
And then use the setter to provide a mock Lookup for testing.
This would work, but still causes the tested code to call Lookup.getDefault() before setting the mock. There is no regular dependency injection mechanism provided by Netbeans Platform so if I introduce it like this it feels like swimming against the stream.
I get the feeling I am missing something. Is there a standard approach to write unit tests for Netbeans Platform code?

So far I found several ways of solving this.
1 - Publish a test version of the class in Lookup with a higher position
#org.openide.util.lookup.ServiceProvider(service = MyService.class, position = 1)
public class TestService implements MyService {
public void doStuff(....) {
2 - Use NBJunit's MockService
public class MyTest extends NbTestCase {
public void setUp() throws Exception {
org.netbeans.junit.MockServices.setServices(TestService.class);
}
3- Register your own lookup implementation:
static {
System.setProperty("org.openide.util.Lookup", TestLookup.class.getName());
}
public class TestLookup extends org.openide.util.lookup.AbstractLookup {
public TestLookup() {
this(new org.openide.util.lookup.InstanceContent());
}
private TestLookup(org.openide.util.lookup.InstanceContent ic) {
super(ic);
ic.add(new TestService());
}
Some of these ideas were found here: https://openide.netbeans.org/tutorial/test-patterns.html.

The class TestService must be visible in your test class (In general, we use Lookup to loose dependency, that's why the interfaces and the implementations are in separate modules).
Think about adding the module of TestService in the independency of your test module.

Related

Creating a configurable JUnit library to test same features across several microservices

A set of tests should be run on every microservice. Current solution is to have an abstract class and extend in every service, providing the necessary properties in abstract getters.
public abstract class AbstractTest {
#LocalServerPort
protected int serverPort;
protected abstract String getPath();
#Test
void someTest() {}
#Test
void conditionalTest() {}
}
#SpringBootTest(
webEnvironment = SpringBootTest.WebEnvironment.DEFINED_PORT,
classes = {...})
#ActiveProfiles(...) // etc
public class MyTest extends AbstractTest {
// ... implement getPath()
// tests from parent will be executed
}
The goal:
Ditch inheritance and have the AbstractTest's logic get executed automatically with conditional #Test execution based on beans/properties etc.
The possible solution:
A concrete class with all the tests or some sort of Configuration/TestFactory to create the necessary tests. It should take into account available properties and beans to determine which tests to run.
The problem:
How can those tests (created in runtime) be discovered and registered for execution?
How to inject all the properties that are part of the current context of the #SpringBootTest?
Failed attempts:
TestInstanceFactory extension doesn't seem to be the solution as it requires an instance of the class which it annotates.
Using the Launcher API seems overkill, and also doesn't seem to work, since the library class won't be created with the Spring context configs.
using cglib and a base class Spring Contract-style is not a desirable solution
Ideally I don't want the client of this lib to implement/create anything, so abstract String getPath(); would be a test.lib.path property, and if it's present, a test from the library which uses it will run.
Any thoughts on this would be great, because right now this just seems impossible to me.
What is the reason to have the inheritance for tests?
In case you need to share some common logic within the tests you may try JUnit features (custom rules/extensions), for example
For junit < 5.x.x #Rule functionality https://junit.org/junit4/javadoc/4.12/org/junit/rules/TemporaryFolder.html https://stackoverflow.com/a/34608174/6916890
For junit >= 5.x.x (jupiter) there is an extension API
https://junit.org/junit5/docs/current/user-guide/#writing-tests-built-in-extensions-TempDirectory

How to reuse method and test in JUnit?

I've tried to avoid duplicate code in JUnit test, but I'm kind of stuck.
This is my first test, for the second one it has exactly the same methods but different service (different input). instead of the TestCaseResourceTest1 I have TestCaseResourceTest2. Now what could be the proper way to test both? I want to have a separate file for test number 2, how should I avoid the duplicate code? (ex. use the beforeFileTest() method)
public class TestCaseResourceTest1 {
#Mock
private TestService testService;
#Mock
private AreaService areaService;
private TestCaseService1 testCaseService1; // is changed in test2
#Before
public void before() throws Exception{
testCaseService1 = mock(TestCaseService1.class); // is changed in test2
MockitoAnnotations.initMocks(this);
beforeFileTest();
}
private void beforeFileTest() throws Exception{
doReturn(true).when(areaService).chechExists(any(String.class), eq(false));
}
#Test
public void verifyFileExists() throws Exception{
verifyOtherArea(testCaseService1); // is changed in test2
doReturn(false).when(areaService).chechExists(any(String.class), eq(false));
}
}
just lines with comment is changed in test2 are differences.
Tnx
Given this excerpt from your question:
… instead of the TestCaseResourceTest1 I have TestCaseResourceTest2 … I want to have a separate file for test number 2
… the standard ways of sharing code between test cases are:
Create a Test Suite and include the shared code in the test suite (typically in #BeforeClass and #AfterClass methods). This allows you to (1) run setup code once (per suite invocation); (2) encapsulate shared setup/teardown code and (3) easily add more tests cases later. For example:
#RunWith(Suite.class)
#Suite.SuiteClasses({
TestCaseResourceTest1.class,
TestCaseResourceTest2.class
)}
public class TestSuiteClass {
#BeforeClass
public void setup() {
beforeFileTest();
}
private void beforeFileTest() throws Exception {
// ...
}
}
Create an abstract class which parents TestCaseResourceTest1 and TestCaseResourceTest2 and let those test cases call the shared code in the parent (typically via super() calls). With this approach you can declare default shared code in the parent while still allowing sub classes to (1) have their own behaviour and (2) selectively override the parent/default behaviour
Create a custom JUnit runner, define the shared behaviour in this runner and then annotate the relevant test cases with #RunWith(YourCustomRunner.class). More details on this approach here
Just to reiterate what some of the other posters have said; this is not a common first step so you may prefer to start simple and only move to suites or abstract classes or custom runners if your usage provides a compelling reason to do so.
I had the such situation and it was a sign about wrong implementation design. We are talking about pure unit tests where we test exactly what is implemented in the production classes. If we need duplicated tests it means we probably have duplication in implementation.
How did I resolve it in my project?
Extracted common logic into parent service class and implemented unit tests for it.
For child services I implemented tests only for particular implemented code there. No more.
Implemented an integration tests on real environment were both services were involved and tested completely.
Assuming you want to have the exact same test run for 2 different classes (and not mocking it as in your example code), you can create an abstract test class, that has abstract method that returns an instance of the class to be tested.
Something in the vein of:
public abstract class TestCaseResourceTest {
protected abstract TestCaseService1 getServiceToTest();
#Before
public void before() throws Exception {
testCaseService1 = getServiceToTest();
MockitoAnnotations.initMocks(this);
beforeFileTest();
}
#Test
public void test() {
// do your test here
}
}
public class ConcreteTest extends TestCaseResourceTest {
protected TestCaseService1 getServiceToTest() {
return new TestCaseService();
}
}
public class ConcreteTest2 extends TestCaseResourceTest {
protected TestCaseService1 getServiceToTest() {
return new DifferentService();
}
}
Have you considered using JUnit 5 with its http://junit.org/junit5/docs/current/user-guide/#writing-tests-parameterized-tests ?
It allows you to re-use your tests with different input. This is an example from the documentation which illustrates what you can do now with JUnit 5:
#ParameterizedTest
#ValueSource(strings = { "Hello", "World" })
void testWithStringParameter(String argument) {
assertNotNull(argument);
}
But you can also create your methods which return the input data:
#ParameterizedTest
#MethodSource("stringProvider")
void testWithSimpleMethodSource(String argument) {
assertNotNull(argument);
}
static Stream<String> stringProvider() {
return Stream.of("foo", "bar");
}
Here I am using just strings, but you can really use any objects.
If you are using Maven, you can add these dependencies to start using JUnit 5:
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-params</artifactId>
<version>5.0.0-RC2</version>
<scope>test</scope>
</dependency>
The only annoying thing about JUnit 5 is that it is not released yet.
When going from one test to two tests, you don't know what will be duplicate code, so I find it useful to put everything into one test method. In this case, start by putting the contents of the #Before and beforeFileTest methods inline in the test.
Then you can see that it is just te service that needs changing, so you can extract everything except that into a helper method that is called from two tests.
Also, after you have two tests that are calling the same helper method and are happy with that test coverage, you could look into writing parameterized tests. For example with JunitParams: https://github.com/Pragmatists/junitparams/wiki/Quickstart

getting TestNG to treat class variables like JUnit with Guice

I am trying to setup TestNG so that it gives me new instances of my class variable for each test (basically like JUnit). I need this as I intend to parallelize my tests at the method level. I have been experimenting with both standalone Guice and the built in Guice functionality that TestNG provides to try to accomplish this but I have had no luck. I know that I can use ThreadLocal, but calling .get() for every variable in the test is pretty unappealing. I am weary of using GuiceBerry as it does not really have a lot of updates/activity and it's last release is not even acquirable via Maven. I am pretty set on TestNG as for all the inconvenience this is causing me it still does a lot of great things. I am open to things other tools though to accomplish my goal. Basically I want things setup so the below tests would work consistently. Any help would be greatly appreciated.
// just has a variable thats a class called child with a simple string variable
// with a value of "original
Parent p;
#Test
public void sometest1(){
p.child.value = "Altered";
Assert.assertTrue(p.child.value.equals("Altered"));
}
#Test
public void sometest2(){
Assert.assertTrue(p.child.value.equals("original"));
}
TestNG doesn't create a new instance for each test. If you want such a behavior than I recommend creating separate test classes. e.g.:
public class SomeTest1 {
Parent p;
#Test
public void something(){
p.child.value = "Altered";
Assert.assertTrue(p.child.value.equals("Altered"));
}
}
public class SomeTest2 {
Parent p;
#Test
public void something(){
Assert.assertTrue(p.child.value.equals("original"));
}
}
Note that TestNG can run JUnit 3 and JUnit 4 tests (you might maintain a mixed suite depending on the style you want to use in a given test class).

Testing Jersey app, Injecting classes using Jersey Injection built-in framework (HK2)

I need to create tests for some class. This class in main project (src/main/java/..) is injected easily into another classes, since I have custom ResourceConfig class which declares which packages have to be scanned to seek for service classes.
Now I created test directories (in src/test/java/..) and created a class, something like:
public class TheMentionedClassIntegrationTest {
#Inject
private TheMentionedClass theMentionedClass ;
#Test
public void testProcessMethod() {
assertNotNull(theMentionedClass);
}
}
But the problem is that whatever I do the class is always null. In another tests in the project I was using JerseyTest class. So I tried to do the same here, extend TheMentionedClassIntegrationTest with JerseyTest, override configure method, create my private ResourceConfig class which registers Binder (default for whole project) and register TheMentionedClassIntegrationTest as well.
It didnt work. I did many different attempts but none of them were successfull. I think working with HK2 is extremly difficult, there is no good documentation or so..
Do you guys have an idea how to inject TheMentionedClass into the test class? Maybe my approach is wrong?
Thanks!
The easiest thing to do is to just create the ServiceLocator and use it to inject the test class, as see here. For example
public class TheMentionedClassIntegrationTest {
#Inject
private TheMentionedClass theMentionedClass;
#Before
public void setUp() {
ServiceLocator locator = ServiceLocatorUtilities.bind(new YourBinder());
locator.inject(this);
}
#Test
public void testProcessMethod() {
assertNotNull(theMentionedClass);
}
}
You could alternatively use (make) a JUnit runner, as seen here.
For some other ideas, you might want to check out the tests for the hk2-testing, and all of its containing projects for some use case examples.

How do I test Guice injections?

I gave to Google Guice the responsibility of wiring my objects. But, how can I test if the bindings are working well?
For example, suppose we have a class A which has a dependence B. How can I test that B is injected correctly?
class A {
private B b;
public A() {}
#Inject
public void setB(B b) {
this.b = b
}
}
Notice that A hasn't got a getB() method and I want to assert that A.b isn't null.
For any complex Guice project, you should add tests to make sure that the modules can be used to create your classes. In your example, if B were a type that Guice couldn't figure out how to create, then Guice won't be able to create A. If A wasn't needed to start the server but was needed when your server was handling a request, that would cause problems.
In my projects, I write tests for non-trivial modules. For each module, I use requireBinding() to declare what bindings the module requires but doesn't define. In my tests, I create a Guice injector using the module under test and another module that provides the required bindings. Here's an example using JUnit4 and JMock:
/** Module that provides LoginService */
public class LoginServiceModule extends AbstractModule {
#Override
protected void configure() {
requireBinding(UserDao.class);
}
#Provides
LoginService provideLoginService(UserDao dao) {
...
}
}
#RunWith(JMock.class)
public class LoginServiceModuleTest {
private final Mockery context = new Mockery();
#Test
public void testModule() {
Injector injector = Guice.createInjector(
new LoginServiceModule(), new ModuleDeps());
// next line will throw an exception if dependencies missing
injector.getProvider(LoginService.class);
}
private class ModuleDeps extends AbstractModule {
private final UserDao fakeUserDao;
public ModuleDeps() {
fakeUserDao = context.mock(UserDao.class);
}
#Override
protected void configure() {}
#Provides
Server provideUserDao() {
return fakeUserDao;
}
}
}
Notice how the test only asks for a provider. That's sufficient to determine that Guice could resolve the bindings. If LoginService was created by a provider method, this test wouldn't test the code in the provider method.
This test also doesn't test that you binded the right thing to UserDao, or that UserDao was scoped correctly. Some would argue that those types of things are rarely worth checking; if there's a problem, it happens once. You should "test until fear turns to boredom."
I find Module tests useful because I often add new injection points, and it's easy to forget to add a binding.
The requireBinding() calls can help Guice catch missing bindings before it returns your injector! In the above example, the test would still work if the requireBinding() calls were not there, but I like having them because they serve as documentation.
For more complicated modules (like my root module) I might use Modules.override() to override bindings that I don't want at test time (for instance, if I want to verify that my root object to be created, I probably don't want it to create an object that will connect to the database). For simple projects, you might only test the top-level module.
Note that Guice will not inject nulls unless the field as annotated with #Nullable so you very rarely need to verify that the injected objects are non-null in your tests. In fact, when I annotate constructors with #Inject I do not bother to check if the parameters are null (in fact, my tests often inject null into the constructor to keep the tests simple).
Another way to test your configuration is by having a test suite that tests your app end-to-end. Although end-to-end tests nominally test use cases they indirectly check that your app is configured correctly, (that all the dependencies are wired, etc etc). Unit tests on the other hand should focus exclusively on the domain, and not on the context in which your code is deployed.
I also agree with NamshubWriter's answer. I'm am not against tests that check configuration as long as they are grouped in a separate test suite to your unit tests.
IMHO, you should not be testing that. The Google Guice guys have the unit tests to assert that the injections work as expected - after all, that's what Guice is designed to do. You should only be writing tests for your own code (A and B).
I don't think you should test private members being set. Better to test against the public interface of your class. If member "b" wouldn't be injected, you'll probably get a NullPointerException executing your tests, which should be plenty of warning.

Categories