Polymorphic uncurried method calls (adhoc polymorphism) in Java - java

Let me start with an example.
Say I have an abstract Vehicle class.
public abstract class Vehicle {
public Vehicle() {}
public abstract void ride();
}
And classes Car and Bicycle that inherit from this abstract class.
public class Car extends Vehicle {
public Car() {}
#Override
public void ride() {
System.out.println("Riding the car.");
}
}
public class Bicycle extends Vehicle {
public Bicycle() {}
#Override
public void ride() {
System.out.println("Riding the bicycle.");
}
}
When I apply the ride() method to an object of type Vehicle whose actual type can only be determined at runtime, the JVM will apply the correct version of ride().
That is, in a curried method call of the sort v.ride(), polymorphism works the expected way.
But what if I have an external implementation in form of a method that only accepts a subtype of Vehicle as an argument? So, what if I have repair(Bicycle b) and repair(Car c) methods? The uncurried polymorphic method call repair(v) won't work.
Example:
import java.util.ArrayList;
import java.util.List;
public class Main {
private static void playWithVehicle() {
List<Vehicle> garage = new ArrayList<Vehicle>();
garage.add(new Car());
garage.add(new Car());
garage.add(new Bicycle());
garage.forEach((v) -> v.ride()); // Works.
garage.forEach((v) -> {
/* This would be nice to have.
repair(v.castToRuntimeType());
*/
// This is an ugly solution, but the obvious way I can think of.
switch (v.getClass().getName()) {
case "Bicycle":
repair((Bicycle) v);
break;
case "Car":
repair((Car) v);
break;
default:
break;
}
});
}
private static void repair(Bicycle b) {
System.out.println("Repairing the bicycle.");
}
private static void repair(Car c) {
System.out.println("Repairing the car.");
}
public static void main(String[] args) {
playWithVehicle();
}
}
I have to check for the class name and downcast. Is there a better solution to this?
Edit: My actual purpose is that I'm traversing an abstract syntax tree and I happened to notice that I want double dispatch.
Ast is an abstract class from which actual AST nodes like Assign, MethodCall, or ReturnStmt inherit. body is a polymorphic list of Asts.
Code snippet:
List<Ast> body;
body.parallelStream().forEach((ast) -> {
// This one won't work.
visit(ast);
// This one will work.
if (ast instanceof Assign) {
visit((Assign) ast);
} else if (ast instance of MethodCall) {
visit((MethodCall) ast);
} else if (ast instance of ReturnStmt) {
visit((ReturnStmt) ast);
}
// etc. for other AST nodes
});
private void visit(Assign ast) {
}
private void visit(MethodCall ast) {
}
private void visit(ReturnStmt ast) {
}
My only possibilities of achieving double dispatch is either checking the class and downcasting or properly implementing the visitor pattern, right?

Answer: There is no multiple dispatch in Java and it can be simulated by instanceof or by the visitor pattern.
See here:
Java method overloading + double dispatch
See also here: https://en.wikipedia.org/wiki/Multiple_dispatch#Examples_of_emulating_multiple_dispatch
On a sidenote, exactly this is possible in C# with dynamic calls: How to build double dispatch using extensions
And this is also possible in the many languages that are compiled to JVM bytecode, e.g. Groovy was mentioned.

Related

Issue with multiple Interface implementation in Java8 [duplicate]

Two interfaces with same method names and signatures. But implemented by a single class then how the compiler will identify the which method is for which interface?
Ex:
interface A{
int f();
}
interface B{
int f();
}
class Test implements A, B{
public static void main(String... args) throws Exception{
}
#Override
public int f() { // from which interface A or B
return 0;
}
}
If a type implements two interfaces, and each interface define a method that has identical signature, then in effect there is only one method, and they are not distinguishable. If, say, the two methods have conflicting return types, then it will be a compilation error. This is the general rule of inheritance, method overriding, hiding, and declarations, and applies also to possible conflicts not only between 2 inherited interface methods, but also an interface and a super class method, or even just conflicts due to type erasure of generics.
Compatibility example
Here's an example where you have an interface Gift, which has a present() method (as in, presenting gifts), and also an interface Guest, which also has a present() method (as in, the guest is present and not absent).
Presentable johnny is both a Gift and a Guest.
public class InterfaceTest {
interface Gift { void present(); }
interface Guest { void present(); }
interface Presentable extends Gift, Guest { }
public static void main(String[] args) {
Presentable johnny = new Presentable() {
#Override public void present() {
System.out.println("Heeeereee's Johnny!!!");
}
};
johnny.present(); // "Heeeereee's Johnny!!!"
((Gift) johnny).present(); // "Heeeereee's Johnny!!!"
((Guest) johnny).present(); // "Heeeereee's Johnny!!!"
Gift johnnyAsGift = (Gift) johnny;
johnnyAsGift.present(); // "Heeeereee's Johnny!!!"
Guest johnnyAsGuest = (Guest) johnny;
johnnyAsGuest.present(); // "Heeeereee's Johnny!!!"
}
}
The above snippet compiles and runs.
Note that there is only one #Override necessary!!!. This is because Gift.present() and Guest.present() are "#Override-equivalent" (JLS 8.4.2).
Thus, johnny only has one implementation of present(), and it doesn't matter how you treat johnny, whether as a Gift or as a Guest, there is only one method to invoke.
Incompatibility example
Here's an example where the two inherited methods are NOT #Override-equivalent:
public class InterfaceTest {
interface Gift { void present(); }
interface Guest { boolean present(); }
interface Presentable extends Gift, Guest { } // DOES NOT COMPILE!!!
// "types InterfaceTest.Guest and InterfaceTest.Gift are incompatible;
// both define present(), but with unrelated return types"
}
This further reiterates that inheriting members from an interface must obey the general rule of member declarations. Here we have Gift and Guest define present() with incompatible return types: one void the other boolean. For the same reason that you can't an void present() and a boolean present() in one type, this example results in a compilation error.
Summary
You can inherit methods that are #Override-equivalent, subject to the usual requirements of method overriding and hiding. Since they ARE #Override-equivalent, effectively there is only one method to implement, and thus there's nothing to distinguish/select from.
The compiler does not have to identify which method is for which interface, because once they are determined to be #Override-equivalent, they're the same method.
Resolving potential incompatibilities may be a tricky task, but that's another issue altogether.
References
JLS 8.4.2 Method Signature
JLS 8.4.8 Inheritance, Overriding, and Hiding
JLS 8.4.8.3 Requirements in Overriding and Hiding
JLS 8.4.8.4 Inheriting Methods with Override-Equivalent Signatures
"It is possible for a class to inherit multiple methods with override-equivalent signatures."
This was marked as a duplicate to this question https://stackoverflow.com/questions/24401064/understanding-and-solving-the-diamond-problems-in-java
You need Java 8 to get a multiple inheritance problem, but it is still not a diamon problem as such.
interface A {
default void hi() { System.out.println("A"); }
}
interface B {
default void hi() { System.out.println("B"); }
}
class AB implements A, B { // won't compile
}
new AB().hi(); // won't compile.
As JB Nizet comments you can fix this my overriding.
class AB implements A, B {
public void hi() { A.super.hi(); }
}
However, you don't have a problem with
interface D extends A { }
interface E extends A { }
interface F extends A {
default void hi() { System.out.println("F"); }
}
class DE implement D, E { }
new DE().hi(); // prints A
class DEF implement D, E, F { }
new DEF().hi(); // prints F as it is closer in the heirarchy than A.
As far as the compiler is concerned, those two methods are identical. There will be one implementation of both.
This isn't a problem if the two methods are effectively identical, in that they should have the same implementation. If they are contractually different (as per the documentation for each interface), you'll be in trouble.
There is nothing to identify. Interfaces only proscribe a method name and signature. If both interfaces have a method of exactly the same name and signature, the implementing class can implement both interface methods with a single concrete method.
However, if the semantic contracts of the two interface method are contradicting, you've pretty much lost; you cannot implement both interfaces in a single class then.
Well if they are both the same it doesn't matter. It implements both of them with a single concrete method per interface method.
As in interface,we are just declaring methods,concrete class which implements these both interfaces understands is that there is only one method(as you described both have same name in return type). so there should not be an issue with it.You will be able to define that method in concrete class.
But when two interface have a method with the same name but different return type and you implement two methods in concrete class:
Please look at below code:
public interface InterfaceA {
public void print();
}
public interface InterfaceB {
public int print();
}
public class ClassAB implements InterfaceA, InterfaceB {
public void print()
{
System.out.println("Inside InterfaceA");
}
public int print()
{
System.out.println("Inside InterfaceB");
return 5;
}
}
when compiler gets method "public void print()" it first looks in InterfaceA and it gets it.But still it gives compile time error that return type is not compatible with method of InterfaceB.
So it goes haywire for compiler.
In this way, you will not be able to implement two interface having a method of same name but different return type.
Try implementing the interface as anonymous.
public class MyClass extends MySuperClass implements MyInterface{
MyInterface myInterface = new MyInterface(){
/* Overrided method from interface */
#override
public void method1(){
}
};
/* Overrided method from superclass*/
#override
public void method1(){
}
}
The following two approaches can also be taken to implement both the duplicate methods and avoid ambiguity -
APPROACH 1:
App.java -
public class App {
public static void main(String[] args) {
TestInterface1 testInterface1 = new TestInterface1();
TestInterface2 testInterface2 = new TestInterface2();
testInterface1.draw();
testInterface2.draw();
}
}
TestInterface1.java -
public class TestInterface1 implements Circle {
}
TestInterface2.java -
public class TestInterface2 implements Rectangle {
}
Circle.java -
public interface Circle extends Drawable {
#Override
default void draw() {
System.out.println("Drawing circle");
}
}
Rectangle.java -
public interface Rectangle extends Drawable {
#Override
default void draw() {
System.out.println("Drawing rectangle");
}
}
Drawable.java -
public interface Drawable {
default void draw() {
System.out.println("Drawing");
}
}
Output -
Drawing circle
Drawing rectangle
APPROACH 2:
App.java -
public class App {
public static void main(String[] args) {
Circle circle = new Circle() {
};
Rectangle rectangle = new Rectangle() {
};
circle.draw();
rectangle.draw();
}
}
Circle.java -
public interface Circle extends Drawable {
#Override
default void draw() {
System.out.println("Drawing circle");
}
}
Rectangle.java -
public interface Rectangle extends Drawable {
#Override
default void draw() {
System.out.println("Drawing rectangle");
}
}
Drawable.java -
public interface Drawable {
default void draw() {
System.out.println("Drawing");
}
}
Output -
Drawing circle
Drawing rectangle

How do I access a superclass method in java if it has already been overridden by a subclass? [duplicate]

I read this question and thought that would easily be solved (not that it isn't solvable without) if one could write:
#Override
public String toString() {
return super.super.toString();
}
I'm not sure if it is useful in many cases, but I wonder why it isn't and if something like this exists in other languages.
What do you guys think?
EDIT:
To clarify: yes I know, that's impossible in Java and I don't really miss it. This is nothing I expected to work and was surprised getting a compiler error. I just had the idea and like to discuss it.
It violates encapsulation. You shouldn't be able to bypass the parent class's behaviour. It makes sense to sometimes be able to bypass your own class's behaviour (particularly from within the same method) but not your parent's. For example, suppose we have a base "collection of items", a subclass representing "a collection of red items" and a subclass of that representing "a collection of big red items". It makes sense to have:
public class Items
{
public void add(Item item) { ... }
}
public class RedItems extends Items
{
#Override
public void add(Item item)
{
if (!item.isRed())
{
throw new NotRedItemException();
}
super.add(item);
}
}
public class BigRedItems extends RedItems
{
#Override
public void add(Item item)
{
if (!item.isBig())
{
throw new NotBigItemException();
}
super.add(item);
}
}
That's fine - RedItems can always be confident that the items it contains are all red. Now suppose we were able to call super.super.add():
public class NaughtyItems extends RedItems
{
#Override
public void add(Item item)
{
// I don't care if it's red or not. Take that, RedItems!
super.super.add(item);
}
}
Now we could add whatever we like, and the invariant in RedItems is broken.
Does that make sense?
I think Jon Skeet has the correct answer. I'd just like to add that you can access shadowed variables from superclasses of superclasses by casting this:
interface I { int x = 0; }
class T1 implements I { int x = 1; }
class T2 extends T1 { int x = 2; }
class T3 extends T2 {
int x = 3;
void test() {
System.out.println("x=\t\t" + x);
System.out.println("super.x=\t\t" + super.x);
System.out.println("((T2)this).x=\t" + ((T2)this).x);
System.out.println("((T1)this).x=\t" + ((T1)this).x);
System.out.println("((I)this).x=\t" + ((I)this).x);
}
}
class Test {
public static void main(String[] args) {
new T3().test();
}
}
which produces the output:
x= 3
super.x= 2
((T2)this).x= 2
((T1)this).x= 1
((I)this).x= 0
(example from the JLS)
However, this doesn't work for method calls because method calls are determined based on the runtime type of the object.
I think the following code allow to use super.super...super.method() in most case.
(even if it's uggly to do that)
In short
create temporary instance of ancestor type
copy values of fields from original object to temporary one
invoke target method on temporary object
copy modified values back to original object
Usage :
public class A {
public void doThat() { ... }
}
public class B extends A {
public void doThat() { /* don't call super.doThat() */ }
}
public class C extends B {
public void doThat() {
Magic.exec(A.class, this, "doThat");
}
}
public class Magic {
public static <Type, ChieldType extends Type> void exec(Class<Type> oneSuperType, ChieldType instance,
String methodOfParentToExec) {
try {
Type type = oneSuperType.newInstance();
shareVars(oneSuperType, instance, type);
oneSuperType.getMethod(methodOfParentToExec).invoke(type);
shareVars(oneSuperType, type, instance);
} catch (Exception e) {
throw new RuntimeException(e);
}
}
private static <Type, SourceType extends Type, TargetType extends Type> void shareVars(Class<Type> clazz,
SourceType source, TargetType target) throws IllegalArgumentException, IllegalAccessException {
Class<?> loop = clazz;
do {
for (Field f : loop.getDeclaredFields()) {
if (!f.isAccessible()) {
f.setAccessible(true);
}
f.set(target, f.get(source));
}
loop = loop.getSuperclass();
} while (loop != Object.class);
}
}
I don't have enough reputation to comment so I will add this to the other answers.
Jon Skeet answers excellently, with a beautiful example. Matt B has a point: not all superclasses have supers. Your code would break if you called a super of a super that had no super.
Object oriented programming (which Java is) is all about objects, not functions. If you want task oriented programming, choose C++ or something else. If your object doesn't fit in it's super class, then you need to add it to the "grandparent class", create a new class, or find another super it does fit into.
Personally, I have found this limitation to be one of Java's greatest strengths. Code is somewhat rigid compared to other languages I've used, but I always know what to expect. This helps with the "simple and familiar" goal of Java. In my mind, calling super.super is not simple or familiar. Perhaps the developers felt the same?
There's some good reasons to do this. You might have a subclass which has a method which is implemented incorrectly, but the parent method is implemented correctly. Because it belongs to a third party library, you might be unable/unwilling to change the source. In this case, you want to create a subclass but override one method to call the super.super method.
As shown by some other posters, it is possible to do this through reflection, but it should be possible to do something like
(SuperSuperClass this).theMethod();
I'm dealing with this problem right now - the quick fix is to copy and paste the superclass method into the subsubclass method :)
In addition to the very good points that others have made, I think there's another reason: what if the superclass does not have a superclass?
Since every class naturally extends (at least) Object, super.whatever() will always refer to a method in the superclass. But what if your class only extends Object - what would super.super refer to then? How should that behavior be handled - a compiler error, a NullPointer, etc?
I think the primary reason why this is not allowed is that it violates encapsulation, but this might be a small reason too.
I think if you overwrite a method and want to all the super-class version of it (like, say for equals), then you virtually always want to call the direct superclass version first, which one will call its superclass version in turn if it wants.
I think it only makes rarely sense (if at all. i can't think of a case where it does) to call some arbitrary superclass' version of a method. I don't know if that is possible at all in Java. It can be done in C++:
this->ReallyTheBase::foo();
At a guess, because it's not used that often. The only reason I could see using it is if your direct parent has overridden some functionality and you're trying to restore it back to the original.
Which seems to me to be against OO principles, since the class's direct parent should be more closely related to your class than the grandparent is.
Calling of super.super.method() make sense when you can't change code of base class. This often happens when you are extending an existing library.
Ask yourself first, why are you extending that class? If answer is "because I can't change it" then you can create exact package and class in your application, and rewrite naughty method or create delegate:
package com.company.application;
public class OneYouWantExtend extends OneThatContainsDesiredMethod {
// one way is to rewrite method() to call super.method() only or
// to doStuff() and then call super.method()
public void method() {
if (isDoStuff()) {
// do stuff
}
super.method();
}
protected abstract boolean isDoStuff();
// second way is to define methodDelegate() that will call hidden super.method()
public void methodDelegate() {
super.method();
}
...
}
public class OneThatContainsDesiredMethod {
public void method() {...}
...
}
For instance, you can create org.springframework.test.context.junit4.SpringJUnit4ClassRunner class in your application so this class should be loaded before the real one from jar. Then rewrite methods or constructors.
Attention: This is absolute hack, and it is highly NOT recommended to use but it's WORKING! Using of this approach is dangerous because of possible issues with class loaders. Also this may cause issues each time you will update library that contains overwritten class.
#Jon Skeet Nice explanation.
IMO if some one wants to call super.super method then one must be want to ignore the behavior of immediate parent, but want to access the grand parent behavior.
This can be achieved through instance Of. As below code
public class A {
protected void printClass() {
System.out.println("In A Class");
}
}
public class B extends A {
#Override
protected void printClass() {
if (!(this instanceof C)) {
System.out.println("In B Class");
}
super.printClass();
}
}
public class C extends B {
#Override
protected void printClass() {
System.out.println("In C Class");
super.printClass();
}
}
Here is driver class,
public class Driver {
public static void main(String[] args) {
C c = new C();
c.printClass();
}
}
Output of this will be
In C Class
In A Class
Class B printClass behavior will be ignored in this case.
I am not sure about is this a ideal or good practice to achieve super.super, but still it is working.
Look at this Github project, especially the objectHandle variable. This project shows how to actually and accurately call the grandparent method on a grandchild.
Just in case the link gets broken, here is the code:
import lombok.val;
import org.junit.Assert;
import org.junit.Test;
import java.lang.invoke.*;
/*
Your scientists were so preoccupied with whether or not they could, they didn’t stop to think if they should.
Please don't actually do this... :P
*/
public class ImplLookupTest {
private MethodHandles.Lookup getImplLookup() throws NoSuchFieldException, IllegalAccessException {
val field = MethodHandles.Lookup.class.getDeclaredField("IMPL_LOOKUP");
field.setAccessible(true);
return (MethodHandles.Lookup) field.get(null);
}
#Test
public void test() throws Throwable {
val lookup = getImplLookup();
val baseHandle = lookup.findSpecial(Base.class, "toString",
MethodType.methodType(String.class),
Sub.class);
val objectHandle = lookup.findSpecial(Object.class, "toString",
MethodType.methodType(String.class),
// Must use Base.class here for this reference to call Object's toString
Base.class);
val sub = new Sub();
Assert.assertEquals("Sub", sub.toString());
Assert.assertEquals("Base", baseHandle.invoke(sub));
Assert.assertEquals(toString(sub), objectHandle.invoke(sub));
}
private static String toString(Object o) {
return o.getClass().getName() + "#" + Integer.toHexString(o.hashCode());
}
public class Sub extends Base {
#Override
public String toString() {
return "Sub";
}
}
public class Base {
#Override
public String toString() {
return "Base";
}
}
}
Happy Coding!!!!
I would put the super.super method body in another method, if possible
class SuperSuperClass {
public String toString() {
return DescribeMe();
}
protected String DescribeMe() {
return "I am super super";
}
}
class SuperClass extends SuperSuperClass {
public String toString() {
return "I am super";
}
}
class ChildClass extends SuperClass {
public String toString() {
return DescribeMe();
}
}
Or if you cannot change the super-super class, you can try this:
class SuperSuperClass {
public String toString() {
return "I am super super";
}
}
class SuperClass extends SuperSuperClass {
public String toString() {
return DescribeMe(super.toString());
}
protected String DescribeMe(string fromSuper) {
return "I am super";
}
}
class ChildClass extends SuperClass {
protected String DescribeMe(string fromSuper) {
return fromSuper;
}
}
In both cases, the
new ChildClass().toString();
results to "I am super super"
It would seem to be possible to at least get the class of the superclass's superclass, though not necessarily the instance of it, using reflection; if this might be useful, please consider the Javadoc at http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html#getSuperclass()
public class A {
#Override
public String toString() {
return "A";
}
}
public class B extends A {
#Override
public String toString() {
return "B";
}
}
public class C extends B {
#Override
public String toString() {
return "C";
}
}
public class D extends C {
#Override
public String toString() {
String result = "";
try {
result = this.getClass().getSuperclass().getSuperclass().getSuperclass().newInstance().toString();
} catch (InstantiationException ex) {
Logger.getLogger(D.class.getName()).log(Level.SEVERE, null, ex);
} catch (IllegalAccessException ex) {
Logger.getLogger(D.class.getName()).log(Level.SEVERE, null, ex);
}
return result;
}
}
public class Main {
public static void main(String... args) {
D d = new D();
System.out.println(d);
}
}
run:
A
BUILD SUCCESSFUL (total time: 0 seconds)
I have had situations like these when the architecture is to build common functionality in a common CustomBaseClass which implements on behalf of several derived classes.
However, we need to circumvent common logic for specific method for a specific derived class. In such cases, we must use a super.super.methodX implementation.
We achieve this by introducing a boolean member in the CustomBaseClass, which can be used to selectively defer custom implementation and yield to default framework implementation where desirable.
...
FrameworkBaseClass (....) extends...
{
methodA(...){...}
methodB(...){...}
...
methodX(...)
...
methodN(...){...}
}
/* CustomBaseClass overrides default framework functionality for benefit of several derived classes.*/
CustomBaseClass(...) extends FrameworkBaseClass
{
private boolean skipMethodX=false;
/* implement accessors isSkipMethodX() and setSkipMethodX(boolean)*/
methodA(...){...}
methodB(...){...}
...
methodN(...){...}
methodX(...){
if (isSkipMethodX()) {
setSKipMethodX(false);
super.methodX(...);
return;
}
... //common method logic
}
}
DerivedClass1(...) extends CustomBaseClass
DerivedClass2(...) extends CustomBaseClass
...
DerivedClassN(...) extends CustomBaseClass...
DerivedClassX(...) extends CustomBaseClass...
{
methodX(...){
super.setSKipMethodX(true);
super.methodX(...);
}
}
However, with good architecture principles followed in framework as well as app, we could avoid such situations easily, by using hasA approach, instead of isA approach. But at all times it is not very practical to expect well designed architecture in place, and hence the need to get away from solid design principles and introduce hacks like this.
Just my 2 cents...
IMO, it's a clean way to achieve super.super.sayYourName() behavior in Java.
public class GrandMa {
public void sayYourName(){
System.out.println("Grandma Fedora");
}
}
public class Mama extends GrandMa {
public void sayYourName(boolean lie){
if(lie){
super.sayYourName();
}else {
System.out.println("Mama Stephanida");
}
}
}
public class Daughter extends Mama {
public void sayYourName(boolean lie){
if(lie){
super.sayYourName(lie);
}else {
System.out.println("Little girl Masha");
}
}
}
public class TestDaughter {
public static void main(String[] args){
Daughter d = new Daughter();
System.out.print("Request to lie: d.sayYourName(true) returns ");
d.sayYourName(true);
System.out.print("Request not to lie: d.sayYourName(false) returns ");
d.sayYourName(false);
}
}
Output:
Request to lie: d.sayYourName(true) returns Grandma Fedora
Request not to lie: d.sayYourName(false) returns Little girl Masha
I think this is a problem that breaks the inheritance agreement.
By extending a class you obey / agree its behavior, features
Whilst when calling super.super.method(), you want to break your own obedience agreement.
You just cannot cherry pick from the super class.
However, there may happen situations when you feel the need to call super.super.method() - usually a bad design sign, in your code or in the code you inherit !
If the super and super super classes cannot be refactored (some legacy code), then opt for composition over inheritance.
Encapsulation breaking is when you #Override some methods by breaking the encapsulated code.
The methods designed not to be overridden are marked
final.
In C# you can call a method of any ancestor like this:
public class A
internal virtual void foo()
...
public class B : A
public new void foo()
...
public class C : B
public new void foo() {
(this as A).foo();
}
Also you can do this in Delphi:
type
A=class
procedure foo;
...
B=class(A)
procedure foo; override;
...
C=class(B)
procedure foo; override;
...
A(objC).foo();
But in Java you can do such focus only by some gear. One possible way is:
class A {
int y=10;
void foo(Class X) throws Exception {
if(X!=A.class)
throw new Exception("Incorrect parameter of "+this.getClass().getName()+".foo("+X.getName()+")");
y++;
System.out.printf("A.foo(%s): y=%d\n",X.getName(),y);
}
void foo() throws Exception {
System.out.printf("A.foo()\n");
this.foo(this.getClass());
}
}
class B extends A {
int y=20;
#Override
void foo(Class X) throws Exception {
if(X==B.class) {
y++;
System.out.printf("B.foo(%s): y=%d\n",X.getName(),y);
} else {
System.out.printf("B.foo(%s) calls B.super.foo(%s)\n",X.getName(),X.getName());
super.foo(X);
}
}
}
class C extends B {
int y=30;
#Override
void foo(Class X) throws Exception {
if(X==C.class) {
y++;
System.out.printf("C.foo(%s): y=%d\n",X.getName(),y);
} else {
System.out.printf("C.foo(%s) calls C.super.foo(%s)\n",X.getName(),X.getName());
super.foo(X);
}
}
void DoIt() {
try {
System.out.printf("DoIt: foo():\n");
foo();
Show();
System.out.printf("DoIt: foo(B):\n");
foo(B.class);
Show();
System.out.printf("DoIt: foo(A):\n");
foo(A.class);
Show();
} catch(Exception e) {
//...
}
}
void Show() {
System.out.printf("Show: A.y=%d, B.y=%d, C.y=%d\n\n", ((A)this).y, ((B)this).y, ((C)this).y);
}
}
objC.DoIt() result output:
DoIt: foo():
A.foo()
C.foo(C): y=31
Show: A.y=10, B.y=20, C.y=31
DoIt: foo(B):
C.foo(B) calls C.super.foo(B)
B.foo(B): y=21
Show: A.y=10, B.y=21, C.y=31
DoIt: foo(A):
C.foo(A) calls C.super.foo(A)
B.foo(A) calls B.super.foo(A)
A.foo(A): y=11
Show: A.y=11, B.y=21, C.y=31
It is simply easy to do. For instance:
C subclass of B and B subclass of A. Both of three have method methodName() for example.
public abstract class A {
public void methodName() {
System.out.println("Class A");
}
}
public class B extends A {
public void methodName() {
super.methodName();
System.out.println("Class B");
}
// Will call the super methodName
public void hackSuper() {
super.methodName();
}
}
public class C extends B {
public static void main(String[] args) {
A a = new C();
a.methodName();
}
#Override
public void methodName() {
/*super.methodName();*/
hackSuper();
System.out.println("Class C");
}
}
Run class C Output will be:
Class A
Class C
Instead of output:
Class A
Class B
Class C
If you think you are going to be needing the superclass, you could reference it in a variable for that class. For example:
public class Foo
{
public int getNumber()
{
return 0;
}
}
public class SuperFoo extends Foo
{
public static Foo superClass = new Foo();
public int getNumber()
{
return 1;
}
}
public class UltraFoo extends Foo
{
public static void main(String[] args)
{
System.out.println(new UltraFoo.getNumber());
System.out.println(new SuperFoo().getNumber());
System.out.println(new SuperFoo().superClass.getNumber());
}
public int getNumber()
{
return 2;
}
}
Should print out:
2
1
0
public class SubSubClass extends SubClass {
#Override
public void print() {
super.superPrint();
}
public static void main(String[] args) {
new SubSubClass().print();
}
}
class SuperClass {
public void print() {
System.out.println("Printed in the GrandDad");
}
}
class SubClass extends SuperClass {
public void superPrint() {
super.print();
}
}
Output: Printed in the GrandDad
The keyword super is just a way to invoke the method in the superclass.
In the Java tutorial:https://docs.oracle.com/javase/tutorial/java/IandI/super.html
If your method overrides one of its superclass's methods, you can invoke the overridden method through the use of the keyword super.
Don't believe that it's a reference of the super object!!! No, it's just a keyword to invoke methods in the superclass.
Here is an example:
class Animal {
public void doSth() {
System.out.println(this); // It's a Cat! Not an animal!
System.out.println("Animal do sth.");
}
}
class Cat extends Animal {
public void doSth() {
System.out.println(this);
System.out.println("Cat do sth.");
super.doSth();
}
}
When you call cat.doSth(), the method doSth() in class Animal will print this and it is a cat.

Scjp: Java inheritance concept [duplicate]

I read this question and thought that would easily be solved (not that it isn't solvable without) if one could write:
#Override
public String toString() {
return super.super.toString();
}
I'm not sure if it is useful in many cases, but I wonder why it isn't and if something like this exists in other languages.
What do you guys think?
EDIT:
To clarify: yes I know, that's impossible in Java and I don't really miss it. This is nothing I expected to work and was surprised getting a compiler error. I just had the idea and like to discuss it.
It violates encapsulation. You shouldn't be able to bypass the parent class's behaviour. It makes sense to sometimes be able to bypass your own class's behaviour (particularly from within the same method) but not your parent's. For example, suppose we have a base "collection of items", a subclass representing "a collection of red items" and a subclass of that representing "a collection of big red items". It makes sense to have:
public class Items
{
public void add(Item item) { ... }
}
public class RedItems extends Items
{
#Override
public void add(Item item)
{
if (!item.isRed())
{
throw new NotRedItemException();
}
super.add(item);
}
}
public class BigRedItems extends RedItems
{
#Override
public void add(Item item)
{
if (!item.isBig())
{
throw new NotBigItemException();
}
super.add(item);
}
}
That's fine - RedItems can always be confident that the items it contains are all red. Now suppose we were able to call super.super.add():
public class NaughtyItems extends RedItems
{
#Override
public void add(Item item)
{
// I don't care if it's red or not. Take that, RedItems!
super.super.add(item);
}
}
Now we could add whatever we like, and the invariant in RedItems is broken.
Does that make sense?
I think Jon Skeet has the correct answer. I'd just like to add that you can access shadowed variables from superclasses of superclasses by casting this:
interface I { int x = 0; }
class T1 implements I { int x = 1; }
class T2 extends T1 { int x = 2; }
class T3 extends T2 {
int x = 3;
void test() {
System.out.println("x=\t\t" + x);
System.out.println("super.x=\t\t" + super.x);
System.out.println("((T2)this).x=\t" + ((T2)this).x);
System.out.println("((T1)this).x=\t" + ((T1)this).x);
System.out.println("((I)this).x=\t" + ((I)this).x);
}
}
class Test {
public static void main(String[] args) {
new T3().test();
}
}
which produces the output:
x= 3
super.x= 2
((T2)this).x= 2
((T1)this).x= 1
((I)this).x= 0
(example from the JLS)
However, this doesn't work for method calls because method calls are determined based on the runtime type of the object.
I think the following code allow to use super.super...super.method() in most case.
(even if it's uggly to do that)
In short
create temporary instance of ancestor type
copy values of fields from original object to temporary one
invoke target method on temporary object
copy modified values back to original object
Usage :
public class A {
public void doThat() { ... }
}
public class B extends A {
public void doThat() { /* don't call super.doThat() */ }
}
public class C extends B {
public void doThat() {
Magic.exec(A.class, this, "doThat");
}
}
public class Magic {
public static <Type, ChieldType extends Type> void exec(Class<Type> oneSuperType, ChieldType instance,
String methodOfParentToExec) {
try {
Type type = oneSuperType.newInstance();
shareVars(oneSuperType, instance, type);
oneSuperType.getMethod(methodOfParentToExec).invoke(type);
shareVars(oneSuperType, type, instance);
} catch (Exception e) {
throw new RuntimeException(e);
}
}
private static <Type, SourceType extends Type, TargetType extends Type> void shareVars(Class<Type> clazz,
SourceType source, TargetType target) throws IllegalArgumentException, IllegalAccessException {
Class<?> loop = clazz;
do {
for (Field f : loop.getDeclaredFields()) {
if (!f.isAccessible()) {
f.setAccessible(true);
}
f.set(target, f.get(source));
}
loop = loop.getSuperclass();
} while (loop != Object.class);
}
}
I don't have enough reputation to comment so I will add this to the other answers.
Jon Skeet answers excellently, with a beautiful example. Matt B has a point: not all superclasses have supers. Your code would break if you called a super of a super that had no super.
Object oriented programming (which Java is) is all about objects, not functions. If you want task oriented programming, choose C++ or something else. If your object doesn't fit in it's super class, then you need to add it to the "grandparent class", create a new class, or find another super it does fit into.
Personally, I have found this limitation to be one of Java's greatest strengths. Code is somewhat rigid compared to other languages I've used, but I always know what to expect. This helps with the "simple and familiar" goal of Java. In my mind, calling super.super is not simple or familiar. Perhaps the developers felt the same?
There's some good reasons to do this. You might have a subclass which has a method which is implemented incorrectly, but the parent method is implemented correctly. Because it belongs to a third party library, you might be unable/unwilling to change the source. In this case, you want to create a subclass but override one method to call the super.super method.
As shown by some other posters, it is possible to do this through reflection, but it should be possible to do something like
(SuperSuperClass this).theMethod();
I'm dealing with this problem right now - the quick fix is to copy and paste the superclass method into the subsubclass method :)
In addition to the very good points that others have made, I think there's another reason: what if the superclass does not have a superclass?
Since every class naturally extends (at least) Object, super.whatever() will always refer to a method in the superclass. But what if your class only extends Object - what would super.super refer to then? How should that behavior be handled - a compiler error, a NullPointer, etc?
I think the primary reason why this is not allowed is that it violates encapsulation, but this might be a small reason too.
I think if you overwrite a method and want to all the super-class version of it (like, say for equals), then you virtually always want to call the direct superclass version first, which one will call its superclass version in turn if it wants.
I think it only makes rarely sense (if at all. i can't think of a case where it does) to call some arbitrary superclass' version of a method. I don't know if that is possible at all in Java. It can be done in C++:
this->ReallyTheBase::foo();
At a guess, because it's not used that often. The only reason I could see using it is if your direct parent has overridden some functionality and you're trying to restore it back to the original.
Which seems to me to be against OO principles, since the class's direct parent should be more closely related to your class than the grandparent is.
Calling of super.super.method() make sense when you can't change code of base class. This often happens when you are extending an existing library.
Ask yourself first, why are you extending that class? If answer is "because I can't change it" then you can create exact package and class in your application, and rewrite naughty method or create delegate:
package com.company.application;
public class OneYouWantExtend extends OneThatContainsDesiredMethod {
// one way is to rewrite method() to call super.method() only or
// to doStuff() and then call super.method()
public void method() {
if (isDoStuff()) {
// do stuff
}
super.method();
}
protected abstract boolean isDoStuff();
// second way is to define methodDelegate() that will call hidden super.method()
public void methodDelegate() {
super.method();
}
...
}
public class OneThatContainsDesiredMethod {
public void method() {...}
...
}
For instance, you can create org.springframework.test.context.junit4.SpringJUnit4ClassRunner class in your application so this class should be loaded before the real one from jar. Then rewrite methods or constructors.
Attention: This is absolute hack, and it is highly NOT recommended to use but it's WORKING! Using of this approach is dangerous because of possible issues with class loaders. Also this may cause issues each time you will update library that contains overwritten class.
#Jon Skeet Nice explanation.
IMO if some one wants to call super.super method then one must be want to ignore the behavior of immediate parent, but want to access the grand parent behavior.
This can be achieved through instance Of. As below code
public class A {
protected void printClass() {
System.out.println("In A Class");
}
}
public class B extends A {
#Override
protected void printClass() {
if (!(this instanceof C)) {
System.out.println("In B Class");
}
super.printClass();
}
}
public class C extends B {
#Override
protected void printClass() {
System.out.println("In C Class");
super.printClass();
}
}
Here is driver class,
public class Driver {
public static void main(String[] args) {
C c = new C();
c.printClass();
}
}
Output of this will be
In C Class
In A Class
Class B printClass behavior will be ignored in this case.
I am not sure about is this a ideal or good practice to achieve super.super, but still it is working.
Look at this Github project, especially the objectHandle variable. This project shows how to actually and accurately call the grandparent method on a grandchild.
Just in case the link gets broken, here is the code:
import lombok.val;
import org.junit.Assert;
import org.junit.Test;
import java.lang.invoke.*;
/*
Your scientists were so preoccupied with whether or not they could, they didn’t stop to think if they should.
Please don't actually do this... :P
*/
public class ImplLookupTest {
private MethodHandles.Lookup getImplLookup() throws NoSuchFieldException, IllegalAccessException {
val field = MethodHandles.Lookup.class.getDeclaredField("IMPL_LOOKUP");
field.setAccessible(true);
return (MethodHandles.Lookup) field.get(null);
}
#Test
public void test() throws Throwable {
val lookup = getImplLookup();
val baseHandle = lookup.findSpecial(Base.class, "toString",
MethodType.methodType(String.class),
Sub.class);
val objectHandle = lookup.findSpecial(Object.class, "toString",
MethodType.methodType(String.class),
// Must use Base.class here for this reference to call Object's toString
Base.class);
val sub = new Sub();
Assert.assertEquals("Sub", sub.toString());
Assert.assertEquals("Base", baseHandle.invoke(sub));
Assert.assertEquals(toString(sub), objectHandle.invoke(sub));
}
private static String toString(Object o) {
return o.getClass().getName() + "#" + Integer.toHexString(o.hashCode());
}
public class Sub extends Base {
#Override
public String toString() {
return "Sub";
}
}
public class Base {
#Override
public String toString() {
return "Base";
}
}
}
Happy Coding!!!!
I would put the super.super method body in another method, if possible
class SuperSuperClass {
public String toString() {
return DescribeMe();
}
protected String DescribeMe() {
return "I am super super";
}
}
class SuperClass extends SuperSuperClass {
public String toString() {
return "I am super";
}
}
class ChildClass extends SuperClass {
public String toString() {
return DescribeMe();
}
}
Or if you cannot change the super-super class, you can try this:
class SuperSuperClass {
public String toString() {
return "I am super super";
}
}
class SuperClass extends SuperSuperClass {
public String toString() {
return DescribeMe(super.toString());
}
protected String DescribeMe(string fromSuper) {
return "I am super";
}
}
class ChildClass extends SuperClass {
protected String DescribeMe(string fromSuper) {
return fromSuper;
}
}
In both cases, the
new ChildClass().toString();
results to "I am super super"
It would seem to be possible to at least get the class of the superclass's superclass, though not necessarily the instance of it, using reflection; if this might be useful, please consider the Javadoc at http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html#getSuperclass()
public class A {
#Override
public String toString() {
return "A";
}
}
public class B extends A {
#Override
public String toString() {
return "B";
}
}
public class C extends B {
#Override
public String toString() {
return "C";
}
}
public class D extends C {
#Override
public String toString() {
String result = "";
try {
result = this.getClass().getSuperclass().getSuperclass().getSuperclass().newInstance().toString();
} catch (InstantiationException ex) {
Logger.getLogger(D.class.getName()).log(Level.SEVERE, null, ex);
} catch (IllegalAccessException ex) {
Logger.getLogger(D.class.getName()).log(Level.SEVERE, null, ex);
}
return result;
}
}
public class Main {
public static void main(String... args) {
D d = new D();
System.out.println(d);
}
}
run:
A
BUILD SUCCESSFUL (total time: 0 seconds)
I have had situations like these when the architecture is to build common functionality in a common CustomBaseClass which implements on behalf of several derived classes.
However, we need to circumvent common logic for specific method for a specific derived class. In such cases, we must use a super.super.methodX implementation.
We achieve this by introducing a boolean member in the CustomBaseClass, which can be used to selectively defer custom implementation and yield to default framework implementation where desirable.
...
FrameworkBaseClass (....) extends...
{
methodA(...){...}
methodB(...){...}
...
methodX(...)
...
methodN(...){...}
}
/* CustomBaseClass overrides default framework functionality for benefit of several derived classes.*/
CustomBaseClass(...) extends FrameworkBaseClass
{
private boolean skipMethodX=false;
/* implement accessors isSkipMethodX() and setSkipMethodX(boolean)*/
methodA(...){...}
methodB(...){...}
...
methodN(...){...}
methodX(...){
if (isSkipMethodX()) {
setSKipMethodX(false);
super.methodX(...);
return;
}
... //common method logic
}
}
DerivedClass1(...) extends CustomBaseClass
DerivedClass2(...) extends CustomBaseClass
...
DerivedClassN(...) extends CustomBaseClass...
DerivedClassX(...) extends CustomBaseClass...
{
methodX(...){
super.setSKipMethodX(true);
super.methodX(...);
}
}
However, with good architecture principles followed in framework as well as app, we could avoid such situations easily, by using hasA approach, instead of isA approach. But at all times it is not very practical to expect well designed architecture in place, and hence the need to get away from solid design principles and introduce hacks like this.
Just my 2 cents...
IMO, it's a clean way to achieve super.super.sayYourName() behavior in Java.
public class GrandMa {
public void sayYourName(){
System.out.println("Grandma Fedora");
}
}
public class Mama extends GrandMa {
public void sayYourName(boolean lie){
if(lie){
super.sayYourName();
}else {
System.out.println("Mama Stephanida");
}
}
}
public class Daughter extends Mama {
public void sayYourName(boolean lie){
if(lie){
super.sayYourName(lie);
}else {
System.out.println("Little girl Masha");
}
}
}
public class TestDaughter {
public static void main(String[] args){
Daughter d = new Daughter();
System.out.print("Request to lie: d.sayYourName(true) returns ");
d.sayYourName(true);
System.out.print("Request not to lie: d.sayYourName(false) returns ");
d.sayYourName(false);
}
}
Output:
Request to lie: d.sayYourName(true) returns Grandma Fedora
Request not to lie: d.sayYourName(false) returns Little girl Masha
I think this is a problem that breaks the inheritance agreement.
By extending a class you obey / agree its behavior, features
Whilst when calling super.super.method(), you want to break your own obedience agreement.
You just cannot cherry pick from the super class.
However, there may happen situations when you feel the need to call super.super.method() - usually a bad design sign, in your code or in the code you inherit !
If the super and super super classes cannot be refactored (some legacy code), then opt for composition over inheritance.
Encapsulation breaking is when you #Override some methods by breaking the encapsulated code.
The methods designed not to be overridden are marked
final.
In C# you can call a method of any ancestor like this:
public class A
internal virtual void foo()
...
public class B : A
public new void foo()
...
public class C : B
public new void foo() {
(this as A).foo();
}
Also you can do this in Delphi:
type
A=class
procedure foo;
...
B=class(A)
procedure foo; override;
...
C=class(B)
procedure foo; override;
...
A(objC).foo();
But in Java you can do such focus only by some gear. One possible way is:
class A {
int y=10;
void foo(Class X) throws Exception {
if(X!=A.class)
throw new Exception("Incorrect parameter of "+this.getClass().getName()+".foo("+X.getName()+")");
y++;
System.out.printf("A.foo(%s): y=%d\n",X.getName(),y);
}
void foo() throws Exception {
System.out.printf("A.foo()\n");
this.foo(this.getClass());
}
}
class B extends A {
int y=20;
#Override
void foo(Class X) throws Exception {
if(X==B.class) {
y++;
System.out.printf("B.foo(%s): y=%d\n",X.getName(),y);
} else {
System.out.printf("B.foo(%s) calls B.super.foo(%s)\n",X.getName(),X.getName());
super.foo(X);
}
}
}
class C extends B {
int y=30;
#Override
void foo(Class X) throws Exception {
if(X==C.class) {
y++;
System.out.printf("C.foo(%s): y=%d\n",X.getName(),y);
} else {
System.out.printf("C.foo(%s) calls C.super.foo(%s)\n",X.getName(),X.getName());
super.foo(X);
}
}
void DoIt() {
try {
System.out.printf("DoIt: foo():\n");
foo();
Show();
System.out.printf("DoIt: foo(B):\n");
foo(B.class);
Show();
System.out.printf("DoIt: foo(A):\n");
foo(A.class);
Show();
} catch(Exception e) {
//...
}
}
void Show() {
System.out.printf("Show: A.y=%d, B.y=%d, C.y=%d\n\n", ((A)this).y, ((B)this).y, ((C)this).y);
}
}
objC.DoIt() result output:
DoIt: foo():
A.foo()
C.foo(C): y=31
Show: A.y=10, B.y=20, C.y=31
DoIt: foo(B):
C.foo(B) calls C.super.foo(B)
B.foo(B): y=21
Show: A.y=10, B.y=21, C.y=31
DoIt: foo(A):
C.foo(A) calls C.super.foo(A)
B.foo(A) calls B.super.foo(A)
A.foo(A): y=11
Show: A.y=11, B.y=21, C.y=31
It is simply easy to do. For instance:
C subclass of B and B subclass of A. Both of three have method methodName() for example.
public abstract class A {
public void methodName() {
System.out.println("Class A");
}
}
public class B extends A {
public void methodName() {
super.methodName();
System.out.println("Class B");
}
// Will call the super methodName
public void hackSuper() {
super.methodName();
}
}
public class C extends B {
public static void main(String[] args) {
A a = new C();
a.methodName();
}
#Override
public void methodName() {
/*super.methodName();*/
hackSuper();
System.out.println("Class C");
}
}
Run class C Output will be:
Class A
Class C
Instead of output:
Class A
Class B
Class C
If you think you are going to be needing the superclass, you could reference it in a variable for that class. For example:
public class Foo
{
public int getNumber()
{
return 0;
}
}
public class SuperFoo extends Foo
{
public static Foo superClass = new Foo();
public int getNumber()
{
return 1;
}
}
public class UltraFoo extends Foo
{
public static void main(String[] args)
{
System.out.println(new UltraFoo.getNumber());
System.out.println(new SuperFoo().getNumber());
System.out.println(new SuperFoo().superClass.getNumber());
}
public int getNumber()
{
return 2;
}
}
Should print out:
2
1
0
public class SubSubClass extends SubClass {
#Override
public void print() {
super.superPrint();
}
public static void main(String[] args) {
new SubSubClass().print();
}
}
class SuperClass {
public void print() {
System.out.println("Printed in the GrandDad");
}
}
class SubClass extends SuperClass {
public void superPrint() {
super.print();
}
}
Output: Printed in the GrandDad
The keyword super is just a way to invoke the method in the superclass.
In the Java tutorial:https://docs.oracle.com/javase/tutorial/java/IandI/super.html
If your method overrides one of its superclass's methods, you can invoke the overridden method through the use of the keyword super.
Don't believe that it's a reference of the super object!!! No, it's just a keyword to invoke methods in the superclass.
Here is an example:
class Animal {
public void doSth() {
System.out.println(this); // It's a Cat! Not an animal!
System.out.println("Animal do sth.");
}
}
class Cat extends Animal {
public void doSth() {
System.out.println(this);
System.out.println("Cat do sth.");
super.doSth();
}
}
When you call cat.doSth(), the method doSth() in class Animal will print this and it is a cat.

Visitor pattern implementation in case of source code un-availability

One of the reasons to consider the Visitor_pattern:
A practical result of this separation is the ability to add new operations to existing object structures without modifying those structures.
Assume that you don't have the source code of third party libraries and you have added one operation on related objects.
Since you don't have object, your elements (Third party classes) can't be modified to add Visitor.
In this case, double dispatch is not possible.
So which option is generally preferred?
Option 1: Extend one more inheritance hierarchy on top of third party class and implement pattern as show in picture with double dispatch?
For a given hierarchy of Class B which extends Class A, I will add
ElementA extends A
ElementB extends B
Now ConcreteElements are derived from ElementA instead of class A.
Cons: The number of classes will grow.
Option 2: Use Visitor class a central helper class and get the work done with single dispatch.
Cons: We are not really following Visitor patter as per UML diagram.
Correct if I am wrong.
You could combine a Wrapper and Visitor to solve your problems.
Using the wrapper to add a visit method allows you to increase the usability of these objects. Of course you get the full advantages (less dependency on the legacy classes) and disadvantages (additional objects) of a wrapper.
Here's a worked-up example in JAVA (because it is pretty strict, does not do double-dispatch by itself, and I'm quite familiar with it):
1) Your legacy Objects
Assuming you have your legacy objects Legacy1 and Legacy2which you cannot change, which have specific business methods:
public final class Legacy1 {
public void someBusinessMethod1(){
...
}
}
and
public final class Legacy2 {
public void anotherBusinessMethod(){
...
}
}
2) Prepare the Wrapper
You just wrap them in a VisitableWrapper which has a visit method that takes your visitor, like:
public interface VisitableWrapper {
public void accept(Visitor visitor);
}
With the following implementations:
public class Legacy1Wrapper implements VisitableWrapper {
private final Legacy1 legacyObj;
public Legacy1Wrapper(Legacy1 original){
this.legacyObj = original;
}
public void accept(Visitor visitor){
visitor.visit(legacyObj);
}
}
and
public class Legacy2Wrapper implements VisitableWrapper {
private final Legacy2 legacyObj;
public Legacy2Wrapper(Legacy2 original){
this.legacyObj = original;
}
public void accept(Visitor visitor){
visitor.visit(legacyObj);
}
}
3) Visitor, at the ready!
Then your own Visitors can be set to visit the wrapper like so:
public interface Visitor {
public void visit(Legacy1 leg);
public void visit(Legacy2 leg);
}
With an implementation like so:
public class SomeLegacyVisitor{
public void visit(Legacy1 leg){
System.out.println("This is a Legacy1! let's do something with it!");
leg.someBusinessMethod1();
}
public void visit(Legacy2 leg){
System.out.println("Hum, this is a Legacy 2 object. Well, let's do something else.");
leg.anotherBusinessMethod();
}
}
4) Unleash the power
Finally in your code, this framework would work like this:
public class TestClass{
// Start off with some legacy objects
Legacy1 leg1 = ...
Legacy2 leg2 = ...
// Wrap all your legacy objects into a List:
List<VisitableWrapper> visitableLegacys = new ArrayList<>();
visitableLegacys.add(new Legacy1Wrapper(legacy1));
visitableLegacys.add(new Legacy2Wrapper(legacy2));
// Use any of your visitor implementations!
Visitor visitor = new SomeLegacyVisitor();
for(VisitableWrapper wrappedLegacy: visitableLegacys){
wrappedLegacy.accept(visitor);
}
}
The expected output:
This is a Legacy1! let's do something with it!
Hum, this is a Legacy 2 object. Well, let's do something else.
Drawbacks:
Quite a lot of boilerplate. Use Lombok if you develop in Java.
Quite a lot of wrapper objects instances. May or may not be a problem for you.
You need to know the specific type of the objects beforehand. This implies you know their subtype, they aren't bundles in a List. If that's the case, you have no other option but to use reflection.
There should be a possibility to add new functionality to the classes of some hierarchy, without changing the base class interface. Kinds of possible behavior should be constant, while operations for different classes should execute differently.
The Visitor Pattern allows to concentrate all that operations in one class. There might be a lot of Concrete Element classes (from the diagram), but for each of them there will be implemented visit() method in Concrete Visitor class that will define his own algorithm.
Definition and implementation of method for each subclass of Element class:
public interface Visitor {
void visit(Element element);
}
public class ConcreteVisitor implements Visitor {
public void visit(Element element) {
// implementation
}
}
The Visitor Pattern is easily extended for new operations by implementing this interface by new class with his method implementation.
The following structure encapsulates the Element class:
public lass ObjectStructure {
private Element element;
// some methods
}
This ObjectStructure class could aggregate one or several instances of Element. Presentation that Visitor acts on:
public interface Element {
void accept(Visitor visitor);
}
And implementation of accept() method in the concrete entity:
public class ConcreteElement implements Element {
public void accept(Visitor visitor) {
visitor.visit();
}
}
Using of Visitor Pattern allows to save Element hierarchy from huge logical functionality or complicated configuration.
It is desirable to add the functionality to all the classes of hierarchy while defining a new Visitor subclasses. But there could be a problem: visit() should be overriden for every hierarchy type. To avoid this it's better to define AbstractVisitor class and all leave his all visit() method bodies empty.
Conclusion: using this pattern is good when class hierarchy of type Element keeps constant. If new classes add, it usually goes to considerable changes in classes of Visitor type.
My answer is very similar to Michael von Wenckstern's, with the improvements that we have a named accept method (more like the standard pattern) and that we handle unknown concrete classes -- there's no guarantee that at some point a concrete implementation we haven't seen before won't appear on the classpath.
My visitor also allows a return value.
I've also used a more verbose name for the visit methods -- including the type in the method name, but this isn't necessary, you can call them all visit.
// these classes cannot be modified and do not have source available
class Legacy {
}
class Legacy1 extends Legacy {
}
class Legacy2 extends Legacy {
}
// this is the implementation of your visitor
abstract class LegacyVisitor<T> {
abstract T visitLegacy1(Legacy1 l);
abstract T visitLegacy2(Legacy2 l);
T accept(Legacy l) {
if (l instanceof Legacy1) {
return visitLegacy1((Legacy1)l);
} else if (l instanceof Legacy2) {
return visitLegacy2((Legacy2)l);
} else {
throw new RuntimeException("Unknown concrete Legacy subclass:" + l.getClass());
}
}
}
public class Test {
public static void main(String[] args) {
String s = new LegacyVisitor<String>() {
#Override
String visitLegacy1(Legacy1 l) {
return "It's a 1";
}
#Override
String visitLegacy2(Legacy2 l) {
return "It's a 2";
}
}.accept(new Legacy1());
System.out.println(s);
}
}
First I had to made a few assumptions about the legacy code, since you didn't provide much details about it. Let's say I need to add a new method to Legacy without reimplementing everything. This is how I'll do it:
public interface LegacyInterface {
void A();
}
public final class LegacyClass implements LegacyInterface {
#Override
public void A() {
System.out.println("Hello from A");
}
}
First extends the "contract"
public interface MyInterface extends LegacyInterface {
void B();
}
And implement it in a "decorated" way
public final class MyClass implements MyInterface {
private final LegacyInterface origin;
public MyClass(LegacyInterface origin) {
this.origin = origin;
}
#Override
public void A() {
origin.A();
}
#Override
public void B() {
System.out.println("Hello from B");
}
}
The key point is MyInterface extends LegacyInterface: this is the guarantee the implementations will benefit from both the services from the legacy code and your personnal addings.
Usage
MyInterface b = new MyClass(new LegacyClass());
I think the best approach is the Option 1: Extend one more inheritance hierarchy on top of third party class and implement the visitor pattern with double dispatch.
The problem is the number of additional classes you need, but this can be resolved with a dynamic wrapper decorator.
The Wrapper Decorator is a way to add interface implementation, methods and properties to already existing obejcts: How to implement a wrapper decorator in Java?
In this way you need your Visitor interface and put there the visit(L legacy) methods:
public interface Visitor<L> {
public void visit(L legacy);
}
In the AcceptInterceptor you can put the code for the accept method
public class AcceptInterceptor {
#RuntimeType
public static Object intercept(#This WrappedAcceptor proxy, #Argument(0) Visitor visitor) throws Exception {
visitor.visit(proxy);
}
}
The WrappedAcceptor interface defines the method to accept a visitor and to set and retrieve the wrapped object
interface WrappedAcceptor<V> {
Object getWrapped();
void setWrapped(Object wrapped);
void accept(V visitor);
}
And finally the utility code to create the Wrapper around any obect:
Class<? extends Object> proxyType = new ByteBuddy()
.subclass(legacyObject.getClass(), ConstructorStrategy.Default.IMITATE_SUPER_TYPE_PUBLIC)
.method(anyOf(WrappedAcceptor.class.getMethods())).intercept(MethodDelegation.to(AcceptInterceptor.class))
.defineField("wrapped", Object.class, Visibility.PRIVATE)
.implement(WrappedAcceptor.class).intercept(FieldAccessor.ofBeanProperty())
.make()
.load(getClass().getClassLoader(), ClassLoadingStrategy.Default.WRAPPER)
.getLoaded();
WrappedAcceptor wrapper = (WrappedAcceptor) proxyType.newInstance();
wrapper.setWrapped(legacyObject);
If your library does not has accept methods you need to do it with instanceof. (Normally you do twice single-dispatching in Java to emulate double dispatching; but here we use instanceof to emulate double dispatching).
Here is the example:
interface Library {
public void get1();
public void get2();
}
public class Library1 implements Library {
public void get1() { ... }
public void get2() { ... }
}
public class Library2 implements Library {
public void get1() { ... }
public void get2() { ... }
}
interface Visitor {
default void visit(Library1 l1) {}
default void visit(Library2 l2) {}
default void visit(Library l) {
// add here instanceof for double dispatching
if (l instanceof Library1) {
visit((Library1) l);
}
else if (l instanceof Library2) {
visit((Library2) l);
}
}
}
// add extra print methods to the library
public class PrinterVisitor implements Visitor {
void visit(Library1 l1) {
System.out.println("I am library1");
}
void visit(Library2 l2) {
System.out.println("I am library2");
}
}
and now in any method you can write:
Library l = new Library1();
PrinterVisitor pv = new PrinterVisitor();
pv.visit(l);
and it will print to you "I am library1";

What kind of relationship does an interface have with it implementing class?

A subclass has a relationship that is described as IS-A with it base class, but a base class does not share this kind of relationship with it subclass. I was wandering what kind of relationship an interface have with it implementing class since an object of that class can be passed to interface object and the interface object can only access methods defined it concrete Interface.
public class main {
public static void main(String[]args){
Nigeria ng = new Nigeria(){};
//Interface object can accept Nigerias object which is not posible in Inheritance
Continent continent = ng;
//prints Country is in Africa
continent.Africa();
//continent.language(); will not compile language is not in the interface
//Print Democratic thought this should print Undefined since it is inialied with default.
continent.Goverment();
}
}
interface Continent{
public void Africa();
default void Goverment(){
System.out.println("Undefined");
}
}
class Nigeria implements Continent{
#Override
public void Africa(){
System.out.println("Country is in Africa");
}
public void language(){
System.out.println("Official Language is English");
}
public void Goverment(){
System.out.println("Democratic");
}
}
If you are looking for English-language analogues, an Interface is not an "Is a..." nor "Has a..." relationship, but more an "Is...".
An Interface is not about the class that uses it.
It's about the consumer that asks for it.
If you wanted to see it as anything, you could see it as an adjective.
"He is Responsible".
Well, what does he do?
He finishes tasks; he takes ownership of his mistakes; he makes them right.
Is he a pilot, is he a surgeon, is he a doctor?
Is he a child, a father, a greatGrandfather?
Do you care?
I need a responsible person, to help me do this job.
Does ResponsiblePerson inherit from PoliceOfficer? Does Lawyer inherit from ResponsiblePerson, because I'm sure there can be irresponsible lawyers.
class Lawyer extends Person { }
class ResponsibleLawyer extends Lawyer implements ResponsibleEntity { }
class NeedyPerson extends Person {
public void acceptHelp (ResponsibleEntity somebody) {
try {
somebody.attemptTask( someTask );
} catch (TaskCompletionError err) {
somebody.takeOwnership(err);
somebody.fixMistake(err);
}
}
}
Can corporations be Responsible too?
Perhaps we don't see it too often, but it's theoretically possible:
class LawFirm extends CorporateEntity { }
class BetterLawFirm extends LawFirm implements ResponsibleEntity { }
Can somebody be a responsible corporate body? Well, so long as that corporate body does all of the same things that the responsible person would otherwise do, sure.
In another example, you might have a Switchable interface.
Looking at that name, you could surmise that the thing you're being given has a switch which can be poked.
So what methods might it have?
on( )
off( )
toggle( )
isOn( )
sounds like a useful set to have.
What benefit is there to having an interface like this?
Well, now I know that I can deal with a switch, and its lineage doesn't matter.
If all I want is a class which takes a switch and does something with it, why do I need to create dozens of classes, just to accept my dozens of things with switches?
Or override methods into the dirt to do the same.
class SwitchThrower {
public void throwSwitch (CoffeeMaker coffeeMaker) { coffeeMaker.on(); }
public void throwSwitch (LightSwitch lightSwitch) { lightSwitch.on(); }
public void throwSwitch (GhostTrap ghostTrap) { ghostTrap.on(); }
public void throwSwitch (TheHeat theHeat) { theHeat.on(); }
public void throwSwitch (CarIgnition ignition) { ignition.on(); }
}
...
why not just:
class SwitchThrower {
public void throwSwitch (Switchable switch) { switch.on(); }
}
class LightSwitch implements Switchable {
private boolean currentlyOn;
public LightSwitch (boolean initiallyOn) {
currentlyOn = initiallyOn;
}
public LightSwitch () {
currentlyOn = false;
}
public boolean on () {
currentlyOn = true;
return currentlyOn;
}
public boolean off () {
currentlyOn = false;
return currentlyOn;
}
public boolean toggle (boolean forceOn) {
boolean state;
if (forceOn == true) {
state = on();
} else {
state = off();
}
return state;
}
public boolean toggle () {
boolean state;
if (isOn() == true) {
state = off();
} else {
state = on();
}
return state;
}
public boolean isOn () {
return currentlyOn;
}
}
...et cetera
As you can see, aside from describing a basic feature-set of the implementer, interfaces are not about the class at all, but rather the consumer.
An even more awesome implementation of this, in different languages, is _Traits_.
Traits are typically like Interfaces, but they have default behaviour associated with them.
Looking at my Switchable and my LightSwitch, you could imagine that practically all classes with this switch would have the same methods, with the same method behaviour...
...so why would I rewrite all of those methods over again, if I'm already going through the trouble of defining the signature in the interface?
Why couldn't I just add default behaviour in there, and have it apply to the implementer, unless a method is overridden?
Well, that's what Traits / Mix-Ins allow.
The relationship is only the "contract" that the class is getting to implement the methods the interface is offering.
That is how java can separate WHAT objects can do (Interface) and HOW the inherited class will do it.

Categories