Related
My Spring components implement java.util.function.Function. The idea behind this is to force a functional style with small encapsulated functions.
#Component
public class MyFunction implements Function<In, Out> {
public Out apply(In in) { .... }
}
// example usage
#RestController
public class MyApi {
private MyFunction f;
public void foo() {
someList.stream()
.map(f)
. // whatever
}
}
Two problems arise with IntelliJ 2018.1:
"Find Usages" offers a choice to find usages of the base method. If I accidentally hit "Yes", IntelliJ finds a zillion usages and slows down until it almost freezes. Well, I should definitely select "No" here, but it is still a small issue.
Using the function in a Stream (e.g. filter) with "Method Reference" (as IntelliJ suggests) is even more problematic. Using "Find Usages" and selecting "No" will not show the "real" usage(s) im looking for. This makes it hard to navigate in the code.
This leads me to my questions: Is it a good practice to use the built-in Function Interface or should I write my own Function without declaring it as a FunctionalInterface? Do you consider the mentioned problems as an IntelliJ bug? Are there workarounds you know of?
Your approach seems valid to me, yet I try to avoid directly implementing Function as much as possible. The main reason is: naming.
I can understand that if a class has a meaningful name (e.g. InOutMapFunction), you might not feel the need for the method to have a meaningful name too. Still, I prefer names like InOutMapper.mapInToOut to InOutMapFunction.apply.
Besides, if you can think of more than one InOutMapper, make it an interface and let the component implement it.
Some may believe it's not worth to create your own functional interfaces if they "correspond" to the existing ones, but I hardly ever regret it, especially that in real uses cases, this impacts readability a lot, e.g. compare:
SomeParticularTypeContextFinder, and
Function<SomeParticularType, SomeParticularTypeContext>.
Here's how I'd implement your example:
#Component
public class PlainInOutMapper implements InOutMapper {
#Override
public Out mapInToOut(In in) { .... }
}
#FunctionalInterface
interface InOutMapper {
Out mapInToOut(In in);
}
// example usage
#RestController
public class MyApi {
private List<In> someList;
private InOutMapper mapper;
public void foo() {
someList.stream()
.map(mapper::mapInToOut)
. // whatever
}
}
You can limit the scope of the search via the 'Find Usages Settings' (default on Windows: CTRL+ALT+SHFT+F7)
The settings apply to the search via ALT+F7 as well as the Mouse Wheel Click one. Maybe limiting it to your current module does the trick?
After doing a lot of reading and getting my head around inheritance, I came across a number of articles that say inheritance is pretty lackluster and interfaces are much better and I'm trying to get my head around it using some examples,
Here I have a scenario in a test automation framework which is structured as follows:
public abstract class BaseIntegrationTest { }
public abstract class BaseEducationIntegrationTest extends BaseIntegrationTest { }
public class EducationTeacherTest extends BaseEducationIntegrationTest { }
public class EducationStudentTest extends BaseEducationIntegrationTest { }
public class EducationTeacherSuite extends EducationTeacherTest { }
Is this acceptable? Should I be using interfaces in this scenario? I am struggling to understand A) Why (if so) and B) When to do so, tho I guess if I figure A) out it will go a long way towards B).
Thank you for your time.
Here are 2 questions that you can ask yourself when in this kind of situations:
Does all tests have some common behaviour and/or state? If yes, make BaseIntegrationTest an abstract class and add the common states (fields) and behaviours (methods) to it.
Does the specific tests need to inherit from anything else? If yes, make BaseIntegrationTest an interface since multiple inheritance is not allowed.
Interfaces are great from a flexibility standpoint. But in case, where an interface is used by a large number of clients. Adding new methods to the interface while keeping the old mehtods intact will break all clients' code as new methods won't be present in clients. As shown below:
public interface CustomInterface {
public void method1();
}
public class CustomImplementation implements CustomInterface {
#Override
public void method1() {
System.out.println("This is method1");
}
}
If at some point later in time, we add another method to this interface all clients' code will break.
public interface CustomInterface {
public void method1();
public void method2();
}
To avoid this we have to explicitly implement new methods in all clients' code.
So I think of interfaces and this scenario as following:
Interfaces once written are like carving in stone. They are rarely supposed, and expected to change. And if they do, they come with a huge cost(rewriting the whole code) which programmers should be ready for.
In continuation with the point above, Is it possible to write interfaces that can stand the test of time?
How such a scenario is handled in interfaces where you expect additional functionality in future? That is anticipating change in the contract by which all clients are binded.
EDIT: Default method is indeed a nice addition to Java Interfaces which a lot of people have mentioned in their answers. But my question was more in the context of code design. And how forcing method implementation on the client is an intrinsic character of an interface. But this contract between an interface and a client seems fragile as functionality will eventually evolve.
One solution to this problem was introduced in Java 8 in the form of default methods in interfaces. It allowed to add new methods to existing Java SE interfaces without breaking existing code, since it supplied default implementation to all the new methods.
For example, the Iterable interface, which is widely used (it's a super interface of the Collection interface) was added two new default methods - default void forEach(Consumer<? super T> action) and default Spliterator<T> spliterator().
public interface CustomInterface {
public void method1();
}
public interface CustomInterface2 extends CustomInterface {
public void meathod2();
}
Other than default method you can use inheritance property as show above by which new interface will have all previous method along with new methods and use this interface in your required situation.
Java 8 has introduced default implementation for methods. These implementations reside in the interface. If a new method with a default implementation is created in an interface that is already implemented by many classes, there is no need to modify all the classes, but only the ones that we want to have a different implementation for the newly defined method than the default one.
Now, what about older Java versions? Here we can have another interface that extends the first one. After that, classes that we want to implement the newly-declared method will be changed to implement the new interface. As shown below.
public interface IFirst {
void method1();
}
public class ClassOne implements IFirst() {
public void method1();
}
public class ClassTwo implements IFirst() {
public void method1();
}
Now, we want method2() declared, but it should only be implemented by ClassOne.
public interface ISecond extends iFirst {
void method2();
}
public class ClassOne implements ISecond() {
public void method1();
public void method2();
}
public class ClassTwo implements IFirst() {
public void method1();
}
This approach will be ok in most cases, but it does have downsides as well. For example, we want method3() (and only that one) for ClassTwo. We will need a new interface IThird. If later we will want to add method4() that should be implemented by both ClassOne and ClassTwo, we will need to modify (but not ClassThree that also implemented IFirst) we will need to change both ISecond and IThird.
There rarely is a "magic bullet" when it comes to programming. In the case of interfaces, it is best if they don't change. This isn't always the case in real-life situations. That is why it is advised that interfaces offer just "the contract" (must-have functionality) and when possible use abstract classes.
A future interface change shouldn't break anything that has been working -- if it does, it's a different interface. (It may deprecate things, though, and a full cycle after deprecation it may be acceptable to say that throwing an Unimplemented exception is acceptable.)
To add things to an interface, the cleanest answer is to derive a new interface from it. That will allow using objects implementing the new behaviors with code expecting the old ones, while letting the user declare appropriately and/or typecast to get access to the new features. It's a bit annoying since it may require instanceof tests, but it's the most robust approach, and it's the one you'll see in many industry standards.
Interfaces are contracts between the developer and clients, so you're right - they are carved in stone and should not be changed. Therefore, an interface should expose (= demand) only the basic functionality that's absolutely required from a class.
Take the List interface for example. There are many implementations of lists in Java, many of which evolve over time (better under-the-hood algorithms, improved memory storage), but the basic "concept" of a list - add an item, search for an item, remove an item - should not and will not ever change.
So, to your question: Instead of writing interfaces which classes implement, you can use abstract classes. Interfaces are basically purely-abstract classes, in the sense that they do not provide any built-in functionality. However, one can add new, non-abstract methods to an abstract class that clients will not be required to implement (override).
Take this abstract class (= interface) for example:
abstract class BaseQueue {
abstract public Object pop();
abstract public void push(Object o);
abstract public int length();
public void clearEven() {};
}
public class MyQueue extends BaseQueue {
#Override
public Object pop() { ... }
...
}
Just like in interfaces, every class that extends BaseQueue is contractually bound to implement the abstract methods. The clearEven() method, however, is not an abstract method (and already comes with an empty implementation), so the client is not forced to implement it, or even use it.
That means that you can leverage the power of abstract classes in Java in order to create non-contractually-binding methods. You can add other methods to the base class in the future as much as you like, provided that they are not abstract methods.
I think your question is more about design and techniques, so java8 answers are a bit misleading. This problem was known long before java8, so there are some other solutions for it.
First, there are no absolutely chargeless ways to solve a problem. The size of inconviniences that come from interface evolving depends on how the library is used and how deliberate your design is.
1) No techniques will help, if you designed an interface and forgot to include a mandatory method in it. Plan your design better and try to anticipate how clients will use your interfaces.
Example: Imagine Machine interface that has turnOn() method but misses turnOff() method. Introducing a new method with default empty implementation in java8 will prevent compilation errors but will not really help, because calling a method will have no effect. Providing working implementation is sometimes impossible because interface has no fields and state.
2) Different implementations usually have things in common. Don't be afraid to keep common logic in parent class. Inherit your library classes from this parent class. This will enforce library clients to inherit their own implementations from your parent class as well. Now you can make small changes to the interface without breaking everything.
Example: You decided to include isTurnedOn() method to your interface. With a basic class, you can write a default method implementation that would make sence. Classes that were not inherited from parent class still need to provide their own method implementations, but since method is not mandatory, it will be easy for them.
3) Upgrading the functionality is usually achieved by extending the interfaces. There's no reason to force library clients to implement a bunch of new methods because they may not need them.
Example: You decided to add stayIdle() method to your interface. It makes sence for classes in your library, but not for custom client classes. Since this functionality is new, it's better to create a new interface that will extend Machine and use it when it's needed.
I am reading "The Java Tutorial" (for the 2nd time). I just got through the section on Interfaces (again), but still do not understand how Java Interfaces simulate multiple inheritance. Is there a clearer explanation than what is in the book?
Suppose you have 2 kinds of things in your domain : Trucks and Kitchens
Trucks have a driveTo() method and Kitchens a cook() method.
Now suppose Pauli decides to sell pizzas from the back of a delivery truck. He wants a thing where he can driveTo() and cook() with.
In C++ he would use multiple inheritance to do this.
In Java that was considered to be too dangerous so you can inherit from a main class, but you can "inherit" behaviors from interfaces, which are for all intents and purposes abstract classes with no fields or method implementations.
So in Java we tend to implement multiple inheritance using delegations :
Pauli subclasses a truck and adds a kitchen to the truck in a member variable called kitchen. He implements the Kitchen interface by calling kitchen.cook().
class PizzaTruck extends Truck implements Kitchen {
Kitchen kitchen;
public void cook(Food foodItem) {
kitchen.cook(foodItem);
}
}
He is a happy man because he can now do things like ;
pizzaTruck.driveTo(beach);
pizzaTruck.cook(pizzaWithExtraAnchovies);
Ok, this silly story was to make the point that it is no simulation of multiple inheritance, it is real multiple inheritance with the proviso that you can only inherit the contract, only inherit from empty abstract base classes which are called interfaces.
(update: with the coming of default methods interfaces now can also provide some behavior to be inherited)
You're probably confused because you view multiple inheritance locally, in terms of one class inheriting implementation details from multiple parents. This is not possible in Java (and often leads to abuse in languages where it's possible).
Interfaces allow multiple inheritance of types, e.g. a class Waterfowl extends Bird implements Swimmer can be used by other classes as if it were a Bird and as if it were a Swimmer. This is the the deeper meaning of multiple inheritance: allowing one object to act like it belongs to several unrelated different classes at once.
Here is a way to achieve multiple inheritance through interfaces in java.
What to achieve?
class A extends B, C // this is not possible in java directly but can be achieved indirectly.
class B{
public void getValueB(){}
}
class C{
public void getValueC(){}
}
interface cInterface{
public getValueC();
}
class cChild extends C implemets cInterface{
public getValueC(){
// implementation goes here, call the super class's getValueC();
}
}
// Below code is **like** class A extends B, C
class A extends B implements cInterface{
cInterface child = new cChild();
child.getValueC();
}
given the two interfaces below...
interface I1 {
abstract void test(int i);
}
interface I2 {
abstract void test(String s);
}
We can implement both of these using the code below...
public class MultInterfaces implements I1, I2 {
public void test(int i) {
System.out.println("In MultInterfaces.I1.test");
}
public void test(String s) {
System.out.println("In MultInterfaces.I2.test");
}
public static void main(String[] a) {
MultInterfaces t = new MultInterfaces();
t.test(42);
t.test("Hello");
}
}
We CANNOT extend two objects, but we can implement two interfaces.
Interfaces don't simulate multiple inheritance. Java creators considered multiple inheritance wrong, so there is no such thing in Java.
If you want to combine the functionality of two classes into one - use object composition. I.e.
public class Main {
private Component1 component1 = new Component1();
private Component2 component2 = new Component2();
}
And if you want to expose certain methods, define them and let them delegate the call to the corresponding controller.
Here interfaces may come handy - if Component1 implements interface Interface1 and Component2 implements Interface2, you can define
class Main implements Interface1, Interface2
So that you can use objects interchangeably where the context allows it.
It's pretty simple. You can implement more than one interface in a type. So for example, you could have an implementation of List that is also an instance of Deque (and Java does...LinkedList).
You just can't inherit implementations from multiple parents (i.e. extend multiple classes). Declarations (method signatures) are no problem.
You know what, coming from the perspective of a JavaScript dev trying to understand what the heck is going on with this stuff, I'd like to point out a couple things and somebody please tell me what I'm missing here if I'm way off the mark.
Interfaces are really simple. Stupidly, insanely simple. They're as stupidly, insanely simple as people initially think, which is why there are so many duplicate questions on this exact subject because the one reason to use them has been made unclear by people trying to make more of them than they are and there is widespread misuse in every Java server-side code-base I've ever been exposed to.
So, why would you want to use them? Most of the time you wouldn't. You certainly wouldn't want to use them ALL the time as many seem to think. But before I get to when you would, let's talk about what they're NOT.
Interfaces are NOT:
in any way a workaround for any sort of inheritance mechanism that Java lacks. They have nothing to do with inheritance, they never did, and in no way simulate anything inheritance-like.
necessarily something that helps you with stuff you wrote, so much as it helps the other guy write something meant to be interfaced by your stuff.
They really are as simple as you think they are on first glance. People misuse stupidly all the time so it's hard to understand what the point is. It's just validation/testing. Once you've written something conforms to an interface and works, removing that "implements" code won't break anything.
But if you're using interfaces correctly, you wouldn't want to remove it because having it there gives the next developer a tool for writing an access layer for another set of databases or web services that they want the rest of your app to continue using because they know their class will fail until they get the 100% complete-as-expected-interface in place. All interfaces do is validate your class and establish that you have in fact implemented an interface as you promised you would. Nothing more.
They're also portable. By exposing your interface definitions you can give people wanting to use your unexposed code a set of methods to conform to in order for their objects to use it correctly. They don't have to implement the interfaces. They could just jot them down on a piece of notepad paper and double-check that. But with the interface you have more of a guarantee nothing is going to try to work until it has a proper version of the interface in question.
So, any interface not likely to ever be implemented more than once? Completely useless. Multiple-inheritance? Stop reaching for that rainbow. Java avoids them for a reason in the first place and composited/aggregate objects are more flexible in a lot of ways anyway. That's not to say interfaces can't help you model in ways that multiple-inheritance allows but it's really not inheritance in any way shape or form and shouldn't be seen as such. It's just guaranteeing that your code won't work until you've implemented all of the methods you established that you would.
It's not a simulation of multiple inheritance. In java you can't inherit from two classes, but if you implements two interfaces "it seems like you inherited from two different classes" because you can use your class as any of your two intefaces.
For example
interface MyFirstInteface{
void method1();
}
interface MySecondInteface{
void method2();
}
class MyClass implements MyFirstInteface, MySecondInteface{
public void method1(){
//Method 1
}
public void method2(){
//Method 2
}
public static void main(String... args){
MyFirstInterface mfi = new MyClass();
MySecondInterface msi = new MyClass();
}
}
This will work and you can use mfi and msi, it seems like a multi inheritance, but it's not because you don't inherit anything, you just rewrite public methods provided by the interfaces.
You need to be precise:
Java allows multiple inheritance of interface, but only single inheritance of implementation.
You do multiple inheritance of interface in Java like this:
public interface Foo
{
String getX();
}
public interface Bar
{
String getY();
}
public class MultipleInterfaces implements Foo, Bar
{
private Foo foo;
private Bar bar;
public MultipleInterfaces(Foo foo, Bar bar)
{
this.foo = foo;
this.bar = bar;
}
public String getX() { return this.foo.getX(); }
public String getY() { return this.bar.getY(); }
}
Just by the way, the reason why Java does not implement full multiple inheritance is because it creates ambiguities. Suppose you could say "A extends B, C", and then both B and C have a function "void f(int)". Which implementation does A inherit? With Java's approach, you can implement any number of interfaces, but interfaces only declare a signature. So if two interfaces include functions with the same signature, fine, your class must implement a function with that signature. If interfaces you inherit have functions with different signatures, then the functions have nothing to do with each other, so there is no question of a conflict.
I'm not saying this is the only way. C++ implements true multiple inheritance by establishing precedence rules of which implementation wins. But the authors of Java decided to eliminate the ambiguity. Whether because of a philosophical belief that this made for cleaner code, or because they didn't want to do all the extra work, I don't know.
It's not fair to say that interfaces 'simulate' multiple inheritance.
Sure, your type can implement multiple interfaces and act as many different types polymorphically. However, you obviously won't inherit behaviour or implementations under this arrangement.
Generally look at composition where you think you may need multiple inheritance.
OR A potential solution to achieving something multiple inheritance like is the Mixin interface - http://csis.pace.edu/~bergin/patterns/multipleinheritance.html. Use with care!
They don't.
I think that the confusion comes from people believing that implementing an interface constitutes some form of inheritance. It doesn't; the implementation can simply be blank, no behavior is forced by the act or guaranteed through any contract. A typical example is the Clonable-interface, which while alluding to lots of great functionality, which defines so little that's it's essentially useless and potentially dangerous.
What do you inherit by implementing an interface? Bubkes! So in my opinion, stop using the words interface and inheritance in the same sentence. As Michael Borgwardt said, an interface is not a definition but an aspect.
You can actually "inherit" from multiple concrete classes if they implement interfaces themselves. innerclasses help you achieve that:
interface IBird {
public void layEgg();
}
interface IMammal {
public void giveMilk();
}
class Bird implements IBird{
public void layEgg() {
System.out.println("Laying eggs...");
}
}
class Mammal implements IMammal {
public void giveMilk() {
System.out.println("Giving milk...");
}
}
class Platypus implements IMammal, IBird {
private class LayingEggAnimal extends Bird {}
private class GivingMilkAnimal extends Mammal {}
private LayingEggAnimal layingEggAnimal = new LayingEggAnimal();
private GivingMilkAnimal givingMilkAnimal = new GivingMilkAnimal();
#Override
public void layEgg() {
layingEggAnimal.layEgg();
}
#Override
public void giveMilk() {
givingMilkAnimal.giveMilk();
}
}
I'd like to point out something that bit me in the behind, coming from C++ where you can easily inherit many implementations too.
Having a "wide" interface with many methods means that you'll have to implement a lot of methods in your concrete classes and you can't share these easily across implementations.
For instance:
interface Herbivore {
void munch(Vegetable v);
};
interface Carnivore {
void devour(Prey p);
}
interface AllEater : public Herbivore, Carnivore { };
class Fox implements AllEater {
...
};
class Bear implements AllEater {
...
};
In this example, Fox and Bear cannot share a common base implementation for both it's interface methods munch and devour.
If the base implementations look like this, we'd maybe want to use them for Fox and Bear:
class ForestHerbivore implements Herbivore
void munch(Vegetable v) { ... }
};
class ForestCarnivore implements Carnivore
void devour(Prey p) { ... }
};
But we can't inherit both of these. The base implementations need to be member variables in the class and methods defined can forward to that. I.e:
class Fox implements AllEater {
private ForestHerbivore m_herbivore;
private ForestCarnivore m_carnivore;
void munch(Vegetable v) { m_herbivore.munch(v); }
void devour(Prey p) { m_carnivore.devour(p); }
}
This gets unwieldy if interfaces grow (i.e. more than 5-10 methods...)
A better approach is to define an interface as an aggregation of interfaces:
interface AllEater {
Herbivore asHerbivore();
Carnivore asCarnivore();
}
This means that Fox and Bear only has to implement these two methods, and the interfaces and base classes can grow independetly of the aggregate AllEater interface that concerns the implementing classes.
Less coupling this way, if it works for your app.
I don't think they do.
Inheritance is specifically an implementation-oriented relationship between implementations. Interfaces do not provide any implementation information at all, but instead define a type. To have inheritance, you need to specifically inherit some behaviors or attributes from a parent class.
I believe there is a question here somewhere specifically about the role of interfaces and multiple inheritance, but I can't find it now...
There's really no simulation of multiple inheritance in Java.
People will sometimes say that you can simulate multiple inheritance using Interfaces because you can implement more than one interface per class, and then use composition (rather than inheritance) in your class to achieve the behaviors of the multiple classes that you were trying to inherit from to begin with.
If it makes sense in your object model, you can of course inherit from one class and implement 1 or more interfaces as well.
There are cases where multiple-inheritance turns to be very handy and difficult to replace with interfaces without writing more code. For example, there are Android apps that use classes derived from Activity and others from FragmentActivity in the same app. If you have a particular feature you want to share in a common class, in Java you will have to duplicate code instead of let child classes of Activity and FragmentsActivity derive from the same SharedFeature class. And the poor implementation of generics in Java doesn't help either because writing the following is illegal:
public class SharedFeature<T> extends <T extends Activity>
...
...
There is no support for multiple inheritance in java.
This story of supporting multiple inheritance using interface is what we developers cooked up. Interface gives flexibility than concrete classes and we have option to implement multiple interface using single class. This is by agreement we are adhering to two blueprints to create a class.
This is trying to get closer to multiple inheritance. What we do is implement multiple interface, here we are not extending (inheriting) anything. The implementing class is the one that is going to add the properties and behavior. It is not getting the implementation free from the parent classes. I would simply say, there is no support for multiple inheritance in java.
No, Java does not support multiple inheritance.
Neither using class nor using interface. Refer to this link for more info
https://devsuyed.wordpress.com/2016/07/21/does-java-support-multiple-inheritance
I also have to say that Java doesn't support multiple inheritance.
You have to differentiate the meaning between extends and implements keywords in Java. If we use extends, we are actually inheriting the class after that keyword. But, in order to make everything simple, we can't use extends more than once. But you can implement as many Interfaces as you wish.
If you implement an interface, there's a zero chance that you will miss the implementation of all the methods in each interface (Exception: default implementations of interface methods introduced in Java 8) So, you are now fully aware of what is happening with the things that you have embedded to your fresh class.
Why Java doesn't allow multiple inheritance is actually, multiple inheritance makes the code somewhat complex. Sometimes, two methods of parent classes might conflict due to having the same signatures. But if you are forced to implement all the methods manually, you will get the full understanding about what's going on, as I mentioned above. It makes your code more understandable to you.
If you need more info on Java interfaces, check out this article, http://www.geek-programmer.com/introduction-to-java-interfaces/
Between two Java class multiple Inheritance directly is not possible. In this case java recommend Use to interface and declare method inside interface and implement method with Child class.
interface ParentOne{
public String parentOneFunction();
}
interface ParentTwo{
public String parentTwoFunction();
}
class Child implements ParentOne,ParentTwo{
#Override
public String parentOneFunction() {
return "Parent One Finction";
}
#Override
public String parentTwoFunction() {
return "Parent Two Function";
}
public String childFunction(){
return "Child Function";
}
}
public class MultipleInheritanceClass {
public static void main(String[] args) {
Child ch = new Child();
System.out.println(ch.parentOneFunction());
System.out.println(ch.parentTwoFunction());
System.out.println(ch.childFunction());
}
}
I have 5 or 6 classes that I want to have follow the same basic structure internally. Really most of those that the classes should follow are just for the use of the function itself, so I really want these methods to be private.
Is there any way to achieve this? I know interfaces would work great but they won't take private members and won't allow you to redefine the scope in the implemented method. Is there any workaround for this?
Thanks
I think the closest you can get is using an abstract class with abstract protected methods:
abstract class A {
protected abstract void foo();
}
class B extends A {
protected void foo() {}
}
To define common logic, you can call the protected method from a private method in the super class:
abstract class A {
private void bar() {
// do common stuff
foo();
}
protected abstract void foo();
}
This way, you can allow subclasses to fill the private common template method with specific behavior.
Create an abstract base class that outlines the structure and common flow. Specify abstract methods for the steps in the flow that must be implemented by the inheriting classes.
Hmm, private functions can't be called by any other classes, even by subclasses. So what's the point in having private functions with the same name in different classes?
There is no way to enforce it at compile time, but you can write a unit test or a simple program to test for the existence of the methods using reflection.
I assume you are doing this to make the classes consistent for aesthetics/design reasons. If you are doing it for some other reason you should really use the abstract protected way others are suggesting.
Here is some code to get you started on such a tool/unit tests (you should improve the error messages at the very least, and I would really suggest unit tests rather then what I have here):
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
public class Main
{
public static void main(String[] args)
{
check(B.class, Modifier.PRIVATE, void.class, "doit", new Class<?>[] { int.class });
check(C.class, Modifier.PRIVATE, void.class, "doit", new Class<?>[] { int.class });
}
private static void check(final Class<?> clazz,
final int modifiers,
final Class<?> returnType,
final String name,
final Class<?>[] params)
{
try
{
final Method method;
method = clazz.getDeclaredMethod(name, params);
if(method.getModifiers() != modifiers)
{
System.out.println("modifiers do not match");
}
if(method.getReturnType() != returnType)
{
System.out.println("return type does not match");
}
}
catch(final NoSuchMethodException ex)
{
System.out.println("could not find method");
}
}
}
interface A
{
void foo();
}
class B
implements A
{
public void foo()
{
doit(0);
}
private void doit(final int x)
{
}
}
class C
implements A
{
public void foo()
{
doit(0);
}
private int doit(final int x)
{
return (5);
}
}
Create an outline 'common' class, with all your private methods on them.
Then create your 5 or 6 classes , each which have a field on there of type 'common'.
You won't be able to call the private methods of course (but you say these are really internal to the class) - you'll have to advertise some public methods to alter state as well of course.
public class common {
private method1() { ; }
private method2() { ; }
public other() { ; }
...
}
public class myclass1 {
common commonMethods;
}
public class myclass2 {
common commonMethods;
}
or even (assume 'common' is defined as above):
public class template {
common commonMethods;
}
public class myclass1 extends template {
...
}
So you get a (package-protected) 'commonMethods' field for 'free' on each of 5 or 6 subclasses.
After subsequent discussion on this thread, it appears the author doesn't actually want to share logic : just method signatures essentially , so this answer doesn't fit with that requirement.
While the interface methods themselves must always be public, you could make the interface package private and keep all of your Car (for example) implementations in the same package.
package com.some.car.pkg;
interface Car
{
public void gas();
public void brake();
}
Even though the methods are public, it doesn't matter since outside of the package com.some.car.pkg, Car is not visible. This way, all of your implementers would not be forced to extend an abstract class. The fact that you want common methods means truly private isn't the real solution, and IMHO, you want an interface, since it sounds like in your case an abstract class isn't quite right as there is no shared logic.
My 2 cents.
The "throw MethodNotImplementedException();" might be a useful construct.
If abstract protected really isn't protected enough, I wonder what the concern is. In any case, an alternative similar to monojohnny's would be to use the strategy pattern. This ensures that:
derived classes must define the behavior
derived classes can't access the behavior after defining it
instances can't access one another's behavior
E.g., with apologies for borrowing the car metaphor despite no automotive chops:
public interface GearBoxStrategy {
public void changeGear(int newGear);
}
abstract public class Car {
private GearBoxStrategy gearBox;
public Car(GearBoxStrategy g) {
this.gearBox = g;
}
public void accelerate(double targetSpeed) {
int gear = getTargetGear(targetSpeed):
gearBox.shift(gear);
}
}
public class AutomaticTransmissionCar {
public AutomaticTransmissionCar() {
super(new AutomaticTransmissionGearBoxStrategy());
}
}
public class ManualTransmissionCar {
public ManualTransmissionCar() {
super(new ManualTransmissionGearBoxStrategy());
}
}
Create an abstract base class with a method marked final that describes the common flow that includes your private methods. Marking it as final means that it can't be extended by subclasses and thus the business logic is enforced as long as your calling code utilizes it. Extension points can be created by marking methods as protected. For example say you have a class that represents a retail store.
private final void doTransaction() {
float amountDue;
// a protected or abstract method that extenders can override
Collection items = this.unloadShoppingCart();
for (Object item : items) {
// another protected or abstract method
amountDue += this.getPrice(item);
}
// your private method
amountDue += this.getSalesTax(amountDue);
}
Is it possible to make all the classes inherit from the same base class?
If so, one thing you could consider would be at runtime in the base class's constructor use reflection to validate that the subclass is following the rules you describe, and throw an exception if it fails your validation rules.
The naive implementation of this test of course would have significant performance issues, so you'd have to be pretty clever about the way you implement the test.
For a start, the test should only be run once for all instances of a particular subtype T. So, you would have to cache the validation information somewhere. One way to do this would be to use some kind of static (global) hash table in the base class keyed on the type of each subtype.
You would also have to perform some kind of thread safe synchronization around this cache. What you really need to avoid on this is a performance hit for reads. What I've done in a similar case before was use a combination of the double check locking pattern and the use of an immutable hashtable so that you only take a performance hit for locking when attempting to write to the hashtable (i.e. when you create the first instance of a particular subtype T).
I'm actually not experienced in Java, what I describe, I implemented in .NET, which is why I can't provide you with a code example, but all the concepts should be easily transferable to Java - everything I mention is (AFAIK) available on both platforms.
Take a look at XDepend, it uses reflection to create a database based on your compiled code.
http://www.xdepend.com
It's aimed at software architects who wish to be able to quickly check potentially large libraries of compiled code for potential problem areas. It has inbuilt reports and visualization for such things as relationships between classes, cyclomatic complexity, coupling etc. etc.
In addition, it includes an inbuilt sql like query language "CQL" (for "code query language"). Using CQL you can define your own reports. You probably should be able to use it to define a report for violations of the rules you describe. Also, you can embed CQL queries directly into your code using annotations.
I haven't looked into it, but have used it's .NET equivalent 'NDepend', and it's a very cool tool.
Of course, you could also write your own custom tool which uses reflection to check your specific rules. XDepend may still be worth looking at though - it should be a lot more flexible.
Here's an idea: write a simple text parser to check for the existence of the methods. Include it as a task in Ant. As long as you are insisting on some form of coding standard, some simple text-matching should do it, ie, simply look for the formatted signature in the required source files.
In a comment you wrote "Yes that is the whole point. I know they can be called different things but I don't want them to be."
Now, some people might just say "that's impossible" but like most things in programming, it's not actually impossible, it's just a lot of work.
If you really want to do this, you can create a custom Java Annotation for your class and then write an Annotation processor and call apt as part of your build process.
Like I said a lot of work, but it might be worthwhile if you want to learn how Annotations work.
Writing annotations is actually pretty simple. They work kind of like regular classes. For example, if you just want to mark a class for some reason you can create an empty or marker annotation like this
public #interface Car { }
Then in your Annotation Processor you can check to make sure Car has the right private methods.
I've written my own annotations, but I checked them at Runtime using the reflection API, rather then at build time. They are actually pretty easy.