Time Complexity of a Recursion Function - java

Suppose I'm using the following code to reverse print a linked list:
public void reverse(){
reverse(head);
}
private void reverse(Node h){
if(h.next==null){
System.out.print(h.data+" ");
return;
}
reverse(h.next);
System.out.print(h.data+" ");
}
The linkedlist is printed out in the opposite order, but I don't know efficient it is. How would I determine the time complexity of this function? Is there a more effecient way to do this?

Calculating time complexity of recursive algorithms in general is hard. However, there are plenty of resources available. I would start at this stackoverflow question Time complexity of a recursive algorithm.
As far of the time complexity of this this function, it is O(n) because you call reverse n times (once per node). There are not any more efficient ways to reverse, or even print a list. The problem itself requires you to at least look at every element in the list, which by definition is an O(n) operation.

Suppose your list has n elements. Each call to reverse(Node) reduces the length of the list by a single element. The efficiency is therefore O(n), which is clearly optimal: you can't reverse a list without considering all the elements.

You can use recursion tree or just expand T(n).Both are essentially same methods. What you are doing is expanding the recursion function by noting down what it does each time it is called in its stack.
For ex. Each time your function is called, it does some constant time stuff (print data) and then recurses.
So, expanding it, you'll get :
T(n) = d + T(n-1) {since one recursion is done, so one less to go}
= d + d + T(n-2)
and it will go on until it fizzes out.So your function will go on upto the length of the list.Hence complexity : O(n)
check out this : Time complexity of a recursive algorithm

Related

Want to delete some elements from a list that is existed in another list

I have a list suppose
listA=[679,890,907,780,5230,781]
and want to delete some elements that is existed in another
listB=[907,5230]
in minimum time complexity?
I can do this problem by using two "for loops" means O(n2) time complexity, but I want to reduce this complexity to O(nlog(n)) or O(n)?
Is it possible?
It's possible - if one of the lists is sorted. Assuming that list A is sorted and list B is unsorted, with respective dimensions M and N, the minimum time complexity to remove all of list B's elements from list A will be O((N+M)*log(M)). The way you can achieve this is by binary search - each lookup for an element in list A takes O(log(M)) time, and there are N lookups (one for each element in list B). Since it takes O(M*log(M)) time to sort A, it's more efficient for huge lists to sort and then remove all elements, with total time complexity O((N+M)*log(M)).
On the other hand, if you don't have a sorted list, just use Collection.removeAll, which has a time complexity of O(M*N) in this case. The reason for this time complexity is that removeAll does (by default) something like the following pseudocode:
public boolean removeAll(Collection<?> other)
for each elem in this list
if other contains elem
remove elem from this list
Since contains has a time complexity of O(N) for lists, and you end up doing M iterations, this takes O(M*N) time in total.
Finally, if you want to minimize the time complexity of removeAll (with possibly degraded real world performance) you can do the following:
List<Integer> a = ...
List<Integer> b = ...
HashSet<Integer> lookup = new HashSet<>(b);
a.removeAll(lookup);
For bad values of b, the time to construct lookup could take up to time O(N*log(N)), as shown here (see "pathologically distributed keys"). After that, invoking removeAll will take O(1) for contains over M iterations, taking O(M) time to execute. Therefore, the time complexity of this approach is O(M + N*log(N)).
So, there are three approaches here. One provides you with time complexity O((N+M)*log(M)), another provides you with time complexity O(M*N), and the last provides you with time complexity O(M + N*log(N)). Considering that the first and last approaches are similar in time complexity (as log tends to be very small even for large numbers), I would suggest going with the naive O(M*N) for small inputs, and the simplest O(M + N*log(N)) for medium-sized inputs. At the point where your memory usage starts to suffer from creating a HashSet to store the elements of B (very large inputs), I would finally switch to the more complex O((N+M)*log(M)) approach.
You can find an AbstractCollection.removeAll implementation here.
Edit:
The first approach doesn't work so well for ArrayLists - removing from the middle of list A takes O(M) time, apparently. Instead, sort list B (O(N*log(N))), and iterate through list A, removing items as appropriate. This takes O((M+N)*log(N)) time and is better than the O(M*N*log(M)) that you end up with when using an ArrayList. Unfortunately, the "removing items as appropriate" part of this algorithm requires that you create data to store the non-removed elements in O(M), as you don't have access to the internal data array of list A. In this case, it's strictly better to go with the HashSet approach. This is because (1) the time complexity of O((M+N)*log(N)) is actually worse than the time complexity for the HashSet method, and (2) the new algorithm doesn't save on memory. Therefore, only use the first approach when you have a List with O(1) time for removal (e.g. LinkedList) and a large amount of data. Otherwise, use removeAll. It's simpler, often faster, and supported by library designers (e.g. ArrayList has a custom removeAll implementation that allows it to take linear instead of quadratic time using negligible extra memory).
You can achieve this in following way
Sort second list( you can sort any one of the list. Here I have sorted second list). After that loop through first array and for each element of first array, do binary search in second array.
You can sort list by using Collections.sort() method.
Total complexity:-
For sorting :- O(mLogm) where m is size of second array. I have sorted only second array.
For removing :- O(nLogm)

Calculating time complexity by just seeing the algorithm code

I have currently learned the code of all sorting algorithms used and understood their functioning. However as a part of these, one should also be capable to find the time and space complexity. I have seen people just looking at the loops and deriving the complexity. Can someone guide me towards the best practice for achieving this. The given example code is for "Shell sort". What should be the strategy used to understand and calculate from code itself. Please help! Something like step count method. Need to understand how we can do asymptotic analysis from code itself. Please help.
int i,n=a.length,diff=n/2,interchange,temp;
while(diff>0) {
interchange=0;
for(i=0;i<n-diff;i++) {
if(a[i]>a[i+diff]) {
temp=a[i];
a[i]=a[i+diff];
a[i+diff]=temp;
interchange=1;
}
}
if(interchange==0) {
diff=diff/2;
}
}
Since the absolute lower bound on worst-case of a comparison-sorting algorithm is O(n log n), evidently one can't do any better. The same complexity holds here.
Worst-case time complexity:
1. Inner loop
Let's first start analyzing the inner loop:
for(i=0;i<n-diff;i++) {
if(a[i]>a[i+diff]) {
temp=a[i];
a[i]=a[i+diff];
a[i+diff]=temp;
interchange=1;
}
}
Since we don't know much (anything) about the structure of a on this level, it is definitely possible that the condition holds, and thus a swap occurs. A conservative analysis thus says that it is possible that interchange can be 0 or 1 at the end of the loop. We know however that if we will execute the loop a second time, with the same diff value.
As you comment yourself, the loop will be executed O(n-diff) times. Since all instructions inside the loop take constant time. The time complexity of the loop itself is O(n-diff) as well.
Now the question is how many times can interchange be 1 before it turns to 0. The maximum bound is that an item that was placed at the absolute right is the minimal element, and thus will keep "swapping" until it reaches the start of the list. So the inner loop itself is repeated at most: O(n/diff) times. As a result the computational effort of the loop is worst-case:
O(n^2/diff-n)=O(n^2/diff-n)
2. Outer loop with different diff
The outer loop relies on the value of diff. Starts with a value of n/2, given interchange equals 1 at the end of the loop, something we cannot prove will not be the case, a new iteration will be performed with diff being set to diff/2. This is repeated until diff < 1. This means diff will take all powers of 2 up till n/2:
1 2 4 8 ... n/2
Now we can make an analysis by summing:
log2 n
------
\
/ O(n^2/2^i-n) = O(n^2)
------
i = 0
where i represents *log2(diff) of a given iteration. If we work this out, we get O(n2) worst case time complexity.
Note (On the lower bound of worst-case comparison sort): One can proof no comparison sort algorithm exists with a worst-case time complexity of O(n log n).
This is because for a list with n items, there are n! possible orderings. For each ordering, there is a different way one needs to reorganize the list.
Since using a comparison can split the set of possible orderings into two equals parts at the best, it will require at least log2(n!) comparisons to find out which ordering we are talking about. The complexity of log2(n) can be calculated using the Stirling approximation:
n
/\
|
| log(x) dx = n log n - n = O(n log n)
\/
1
Best-case time complexity: in the best case, the list is evidently ordered. In that case the inner loop will never perform the if-then part. As a consequence, the interchange will not be set to 1 and therefore after executing the for loop one time. The outer loop will still be repeated O(log n) times, thus the time complexity is O(n log n).
Look at the loops and try to figure out how many times they execute. Start from the innermost ones.
In the given example (not the easiest one to begin with), the for loop (innermost) is excuted for i in range [0,n-diff], i.e. it is executed exactly n-diff times.
What is done inside that loop doesn't really matter as long as it takes "constant time", i.e. there is a finite number of atomic operations.
Now the outer loop is executed as long as diff>0. This behavior is complex because an iteration can decrease diff or not (it is decreased when no inverted pair was found).
Now you can say that diff will be decreased log(n) times (because it is halved until 0), and between every decrease the inner loop is run "a certain number of times".
An exercised eye will also recognize interleaved passes of bubblesort and conclude that this number of times will not exceed the number of elements involved, i.e. n-diff, but that's about all that can be said "at a glance".
Complete analysis of the algorithm is an horrible mess, as the array gets progressively better and better sorted, which will influence the number of inner loops.

Is time complexity of an algorithm calculated only based on number of times loop excecutes?

I have a big doubt in calculating time complexity. Is it calculated based on number of times loop executes? My question stems from the situation below.
I have a class A, which has a String attribute.
class A{
String name;
}
Now, I have a list of class A instances. This list has different names in it. I need to check whether the name "Pavan" exist in any of the objects in the list.
Scenario 1:
Here the for loop executes listA.size times, which can be said as O(n)
public boolean checkName(List<String> listA, String inputName){
for(String a : listA){
if(a.name.equals(inputName)){
return true;
}
}
return false;
}
Scenario 2:
Here the for loop executes listA.size/2 + 1 times.
public boolean checkName(List<String> listA, String inputName){
int length = listA.size/2
length = length%2==0 ? length : length + 1
for(int i=0; i < length ; i++){
if(listA[i].name.equals(inputName) || listA[listA.size - i - 1].name.equals(inputName)){
return true;
}
}
return false;
}
I minimized the number of times for loop executes, but I increased the complexity of the logic.
Can we say this is O(n/2)? If so, can you please explain me?
First note that in Big-O notation there is nothing such as O(n/2) as 1/2 is a constant factor which is ignored in this notation. The complexity would remain as O(n). So by modifying your code you haven't changed anything regarding complexity.
In general estimating the number of times a loop is executed with respect to input size and the operation that actually is associated with a cost in time is the way to get to the complexity class of the algorithm.
The operation that is producing cost in your method is String.equals, which by looking at it's implementation, is producing cost by comparing characters.
In your example the input size is not strictly equal to the size of the list. It also depends on how large the strings contained in that list are and how large the inputName is.
So let's say the largest string in the list is m1 characters and the inputName is m2 characters in length. So for your original checkName method the complexity would be O(n*min(m1,m2)) because of String.equals comparing at most all characters of a string.
For most applications the term min(m1,m2) doesn't matter as either one of the compared strings is stored in a fixed size database column for example and therefore this expression is a constant, which is, as said above, ignored.
No. In big O expression, all constant values are ignored.
We only care about n, such as O(n^2), O(logn).
Time and space complexity is calculated based on the number or operations executed, respectively the number the units of memory used.
Regarding time complexity: all the operations are taken into account and numbered. Because it's hard to compare say O(2*n^2+5*n+3) with O(3*n^2-3*n+1), equivalence classes are used. That means that for very large values of n, the two previous example will have a roughly similar value (more exactly said: they have a similar rate of grouth). Therefor, you reduce the expression to it's most basic form, saying that the two example are in the same equivalence class as O(n^2). Similarly, O(n) and O(n/2) are in the same class and therefor both are in O(n).
Due to what I said before, you can ignore most constant operations (such as .size(), .lenth() on collections, assignments, etc) as they don't really count in the end. Therefor, you're left with loop operations and sometimes complex computations (that somewhere lower on the stack use loops themselves).
To better get an understanding on the 3 classes of complexity, try reading articles on the subject, such as: http://discrete.gr/complexity/
Time complexity is a measure for theoretical time it will take for an operation to be executed.
While normally any improvement in the time required is significant in time complexity we are interested in the order of magnitude. The former means
If an operation for N objects requires N time intervals then it has complexity O(N).
If an operation for N objects requires N/2 it's complexity is still O(N) though.
The above paradox is explained if you get to calculate the operation for large N then there is no big difference in the /2 part as for the N part. If complexity is O(N^2) then O(N) is negligible for large N so that's why we are interested in order of magnitude.
In other words any constant is thrown away when calculating complexity.
As for the question if
Is it calculated based on number of times loop executes ?
well it depends on what a loop contains. But if only basic operation are executed inside a loop then yes. To give an example if you have a loop inside which an eigenanaluysis is executed in each run, which has complexity O(N^3) you cannot say that your complexity is simply O(N).
Complexity of an algorithm is measured based on the response made on the input size in terms of processing time or space requirement. I think you are missing the fact that the notations used to express the complexity are asymptotic notations.
As per your question, you have reduced the loop execution count, but not the linear relation with the input size.

Why don't we consider stack frame sizes while calculation Space Complexity of recursive procedures?

Consider, the case of Merge Sort on an int Array containing n elements, we need an additional array of size n in order to perform merges.We discard the additional array in the end though.So the space complexity of Merge Sort comes out to be O(n).
But if you look at the recursive mergeSort procedure, on every recursive call mergeSort(something) one stack frame is added to the stack.And it does take some space, right?
public static void mergeSort(int[] a,int low,int high)
{
if(low<high)
{
int mid=(low+high)/2;
mergeSort(a,low,mid);
mergeSort(a,mid+1,high);
merge(a,mid,low,high);
}
}
My Questions is :
Why don't we take the size of stack frames into consideration while
calculating Merge Sort complexity ?
Is it because the stack contains only a few integer variables and
one reference, which don't take much memory?
What if my recursive function creates a new local array(lets say int a[]=new int [n];).Then will it be considered in calculating Space complexity?
The space consumed by the stack should absolutely be taken into consideration, but some may disagree here (I believe some algorithms even make complexity claims ignoring this - there's an unanswered related question about radix sort floating around here somewhere).
Since we split the array in half at each recursive call, the size of the stack will be O(log n).
So, if we take it into consideration, the total space will be O(n + log n), which is just O(n) (because, in big-O notation, we can discard asymptotically smaller terms), so it doesn't change the complexity.
And for creating a local array, a similar argument applies. If you create a local array at each step, you end up with O(n + n/2 + n/4 + n/8 + ...) = O(2n) = O(n) (because, in big-O notation, we can discard constant factors), so that doesn't change the complexity either.
Because you are not calculating the space-complexity when you are doing that. That is called determining: you are doing tests and try to conclude what the space complexity is by looking at the results. This is not a mathematical approach.
And yes, you are right with statement 2.

Time Complexity of my program

I want to know the exact time complexity of my algorithm in this method. I think it is nlogn as it uses arrays.sort;
public static int largestElement(int[] num) throws NullPointerException // O(1)
{
int a=num.length; // O(1)
Arrays.sort(num); // O(1)? yes
if(num.length<1) // O(1)
return (Integer) null;
else
return num[a-1]; // O(1)
}
You seem to grossly contradict yourself in your post. You are correct in that the method is O(nlogn), but the following is incorrect:
Arrays.sort(num); // O(1)? yes
If you were right, the method would be O(1)! After all, a bunch of O(1) processes in sequence is still O(1). In reality, Arrays.sort() is O(nlogn), which determines the overall complexity of your method.
Finding the largest element in an array or collection can always be O(n), though, since we can simply iterate through each element and keep track of the maximum.
"You are only as fast as your slowest runner" --Fact
So the significant run time operations here are your sorting and your stepping through the array. Since Arrays.sort(num) is a method which most efficiently sorts your arrays, we can guarantee that this will be O(nlg(n)) (where lg(n) is log base 2 of n). This is the case because O notation denotes the worst case runtime. Furthermore, the stepping of the array takes O(n).
So, we have O(nlgn) + O(n) + O(1) + ...
Which really reduces to O(2nlg(n)). But co-efficient are negligible in asymptotic notation.
So your runtime approaches O(nlg(n)) as stated above.
Indeed, it is O(nlogn). Arrays.sort() uses merge sort. Using this method may not be the best way to find a max though. You can just loop through your array, comparing the elements instead.

Categories