I am pretty new to Guice and I am a little bit stuck at the moment.
I am developing the backend for a small game in Java. I want to dynamically inject the game's systems with Guice and I'm using multibinding for that:
private class InstanceModule extends AbstractModule {
#Override
protected void configure() {
bind(GameInstance.class).to(GameInstanceImplementation.class);
bind(EntityManager.class).to(EntityManagerImplementation.class);
bind(EventBus.class).to(EventBusImplementation.class);
bind(MessageBroker.class).toInstance(broker);
Multibinder<GameSystem> systemBinder = Multibinder.newSetBinder(binder(), GameSystem.class);
for (Class<? extends GameSystem> systemClass : systemsConfig) {
systemBinder.addBinding().to(systemClass);
}
}
}
systemsConfig is just a List of Classes of GameSystems I want the game to load.
In my GameInstanceImplementation.class, I inject the used GameSystems like this:
#Inject
public void setSystems(Set<IPMSystem> systems) {
this.systems = systems;
}
And I get the GameInstance like this:
GameInstance instance = injector.getInstance(GameInstance.class);
I am doing it like this, because every GameSystem has different dependencies, some just need the EntityManager, some need the EventBus and so on.
Now it seems that every GameSystem has a different EventBus, EntityManager, etc... so they of course cannot communicate with each other.
I was expecting that every GameSystem gets the same instances of the bound dependencies.
What am I missing here?
Thanks in advance,
Froschfanatika
By default Guice creates a new instance of each dependency every time it's creating an object. If you want to change that behaviour, and get some dependencies shared between objects, then you need to put those dependencies into a different scope.
So, instead of...
bind(EventBus.class).to(EventBusImplementation.class);
you would do something like...
bind(EventBus.class).to(EventBusImplementation.class)
.in(Singleton.class);
then Guice will only every create a single instance of EventBus implementation, and anything which needs an EventBus as a dependency will be given that individual instance.
It's worth noting that Guice's behaviour in this respect is different from Spring's. Spring DI treats all beans as singletons by default. Guice default's is more akin to what Spring calls 'prototype' scope.
https://github.com/google/guice/wiki/Scopes
Related
I want to conduct a chain of processing elements and wire them together via Guice. Let's assume the following path:
interface A implemented by class AImpl needs some input
interface B implemented by class BImpl needs A
interface C implemented by class CImpl needs B
interface D implemented by class DImpl needs C
The dependency of A can only be resolved at runtime and not at configuration time. The usual approach would be to use Assisted Injection in this case to create a factory, that takes the missing instances as parameters, just like this:
public interface AFactory {
public A createA(String input);
}
But what I actually want is something like this:
public interface DFactory {
public D createD(String inputForA);
}
I don't want to manually pass AImpl-specific dependencies through the whole hierarchy.
Is it possible to achieve this with Guice? If not, what's the best way to circumvent this problem elegantly while still retaining benefits of injection?
Cheating way: Stick input in a static variable or singleton ThreadLocal. Set it before your pipeline starts and clear it after it ends. Bind everything else through DI.
Fancy way: In A, refer to a #PipelineInput String inputString but don't bind it in your main injector. Otherwise, bind dependencies as you normally would, including referring to #PipelineInput in other pipeline-related classes. When you do need a D, get it from your implementation of a DFactory, which I'm calling PipelineRunner.
public class PipelineRunner {
#Inject Injector injector; // rarely a good idea, but necessary here
public D createD(final String inputForA) {
Module module = new AbstractModule() {
#Override public void configure() {
bindConstant(inputForA).annotatedWith(PipelineInput.class);
}
};
return injector.createChildInjector(new PipelineModule(), module)
.getInstance(D.class);
}
}
Naturally, binding attempts for A, B, C, and D will fail outside of PipelineRunner for lack of a #PipelineInput String--you'll get a CreationException when you create the injector with those unsatisfied dependencies, as you discovered--but those pipeline-based dependencies should be easy to separate into a Module that you install into the child injector.
If this feels too hacky, remember that PrivateModules are also "implemented using parent injectors", and that the whole point of dependency injection is to make a dependency like inputForA available to the whole object graph in a decoupled way.
I see three options. They depend on how often you change the input for A .
1) Bind input as a constant in your module. This works only, if you know that value before you create the Injector and never want to change the value. See bindConstant
2) Use a private submodule which binds either A or the value for input inside that module. Basically you can have two or three instance graphs with different value. See newPrivateBinder.
3) Use a Scope ala RequestScope, SessionScope, ... This way you can change the input often but you must enter/leave the scope at some point to be defined. See Custom Scopes for an example.
I'm using Spring for this project, but I've had the same problem with Guice as well.
Basically, I have functionality that requires both stateless helpers and state data to operate on.
public class AwesomeDoer {
#Inject
private Helper helper; //stateless
...
public void doAwesome(int state) {
helper.help(state)
}
}
This looks pretty good, until doAwesome has 5 parameters and is being called 1000 times, but 3 of the arguments are the same value every time while a fourth argument might change only a handful of times. Changing the appropriate parameters to fields is the obvious solution. However, this requires you to sacrifice either the CDI management of this class, or else you have to have an initializer or setters to fill in the state after Spring does its thing.
I've usually gotten around this by creating a factory managed by Spring, ie
public class AwesomeFactory {
#Inject
private Helper helper;
public AwesomeDoer getAwesomeDoer(int state) {
return new AwesomeDoer(helper, state);
}
}
But again, this means that my AwesomeDoer is no longer being managed by Spring, and it requires me to write yet another layer of non-business logic. It's also easy to imagine this approach leading to the creation of an AwesomeFactoryFactory, etc, which always makes me die a little on the inside.
So does anybody have a cleaner way of doing this?
You can mark your bean using #Configurable from Spring and create it using new AwesomeDoer and passing the parameters in your constructor. #Configurable makes you create the bean on demand and the bean will be managed by Spring to fire the injections like #Autowired.
More info: Create a bean using new keyword and managed by Spring, check the section at the bottom.
I'm new to OSGi and I'm interested in retrofitting some of my jars as OSGi bundles.
However I do not want to introduce additional dependencies to any osgi-specific libraries.
As such annotations are out of the question as are programmatic calls to bundle contexts and what not.
I have found a near match to my requirements in declarative services which allows me to expose my lower level bundles without impacting dependencies however at the higher level (where i actually need to consume the services) i'm still a bit stuck.
I understand that the component xml can be used to declare implementations of services (which i already use for my lower level jars) but also to inject service instances into a specific POJO.
Now my question: how do I get access to the osgi-managed POJO which has the services injected into it? Is it at all possible without introducing new dependencies or do I have to do it programmatically?
If the latter is the case can someone point me in the direction of some code to do it, in other words the component-equivalent of bundleContext.getServiceReference()?
UPDATE
To clarify, if you take the fifth part of this tutorial: http://www.vogella.com/articles/OSGiServices/article.html
He declares a component.xml file which uses reference binding to inject a service into the object QuoteConsumer.
Great, now how do I get an instance of QuoteConsumer that has the necessary services injected into it, I can't very well do "new QuoteConsumer()" right?
UPDATE2
Currently I am registering the instance created by osgi as a static variable which can be requested, I'm thinking this is not the best method especially because I can't set the constructor to private. (the latter would at least result in a true singleton)
Basically the Factory class has:
private void activate() {
instance = this;
}
UPDATE3
A full example of a factory:
public class Factory {
private static Factory instance;
public static Factory getInstance() {
if (instance == null)
instance = new Factory();
return instance;
}
private MyInterface implementation;
public void setMyInterface(MyInterface implementation) {
this.implementation = implementation;
}
public void unsetMyInterface(MyInterface implementation) {
implementation = null;
}
public MyInterface getMyInterface() {
if (implementation == null) {
ServiceLoader<MyInterface> serviceLoader = ServiceLoader.load(MyInterface.class);
Iterator<MyInterface> iterator = serviceLoader.iterator();
if (iterator.hasNext())
implementation = iterator.next();
else
implementation = new MyInterfaceStub();
}
return implementation;
}
#SuppressWarnings("unused")
private void activate() {
instance = this;
}
#SuppressWarnings("unused")
private void deactivate() {
instance = null;
}
}
Any client code can then do:
Factory.getInstance().getMyInterface();
and receive the OSGi loaded service, the SPI loaded one or a stub.
You can still manually set the service instance if necessary.
UPDATE4
To clarify further: this pattern is not meant for applications that are designed from the ground up to be run in an OSGi container but rather for low level libraries that have to run everywhere and even when on an OSGi container must not assume that all consumers are actually using OSGi.
You sound confused ... :-) A service is a replacement for static factories so your factory should not have to exist.
The whole idea of DS is that for each component:
wait until its dependencies are met
create an instance
bind the instance to its dependencies
call activate on the instance
register the instance as a service
So whenever you get a service managed by DS it already is injected (bound) with its dependencies. So as long as you stay with service dependencies you never need static factories ... The whole idea of service is that you do NOT have static factories and can only work with (injected) instances. One of the best parts of OSGi is that you rarely work with factories.
One remark about the requirement not to use annotations. The OSGi annotations are class time only, they do not create a runtime dependency. I strongly suggest to use them since they make services as lightweight as a class and are typesafe in contrast to XML.
One trick to use the annotations and not clutter your code is to create extend your implementation classes that you want to be an OSGi component and add the annotations on this class.
To access a service, you declare a reference to it from another component:
#Reference
public void setFoo(Foo foo) {
this.foo = foo;
}
You might find the Bndtools tutorial will help to clarify the concepts.
I'd say you are on the right track. You can use a static field if it is convenient.
The important thing is that you make the rest of your code deal with the QuoteConsumer appearing and disappearing. So, put in your activator the code to do what you need to do when the QuoteConsumer is available (register it in some field, call some initialization code, I don't know) and put in your deactivate the code you need to indicate that the QuoteConsumer is no longer available.
I'm reviewing Guice. Let's say I've got the following setup:
public interface IsEmailer {...}
public interface IsSpellChecker {...}
public class Emailer implements IsEmailer {
#Inject
public class Emailer(final IsSpellChecker spellChecker)....
}
public class FrenchSpellChecker implements IsSpellChecker {....}
public class EnglishSpellChecker implements IsSpellChecker {....}
#BindingAnnotation public #interface English {}
#BindingAnnotation public #interface French {}
Then in my module I've bound the interfaces to their respective implementations, and annotated the spell checkers with the respective binding-annotation.
Now, let's say based on a runtime variable I need to construct an emailer that either uses the English or the French spell checker.
I thought of using a named providers in my module:
#Provides
#English
IsEmailer provideEnglishEmailer() {
return new Emailer(new EnglishSpellChecker());
}
#Provides
#French
IsEmailer provideFrenchEmailer() {
return new Emailer(new FrenchSpellChecker());
}
This works like this:
IsEmailer emailer = myModule.getInstance(Key.get(IsEmailer.class,
French.class));
Is this the cleanest way to do something like this? After all, I'm forced to construct the object by hand (in the providers).
Thanks
First some notes:
Generally you want to avoid using getInstance as much as possible, except for your "root" element (e.g. YourApplication). Within anything that Guice provides, your best bet is to ask for an injection of Provider<IsEmailer>, or perhaps #English Provider<IsEmailer> and #French Provider<IsEmailer>. Guice will not actually create the elements until you call get on the Provider, so the overhead of creating the Provider is very very light.
You don't have to bind to a provider to get a provider. Guice will resolve any binding of X, Provider<X>, or #Provides X to any injection of X or Provider<X> automatically and transparently.
Provider implementations can take injected parameters, as can #Provides methods.
If you want to bind a lot of things to #English or #French, you may also investigate private modules, since this sounds like the "robot legs" problem to me.
The easiest way is simply to go with the first bullet and inject a Provider of each, especially if you're only doing this once.
You can also bind it in a Module, if your runtime variable is accessible via Guice. Put this in your module along with the #Provides annotations above. (As noted, you may want to rewrite them to accept an EnglishSpellChecker and FrenchSpellChecker as parameters respectively, to enable the spell checkers to inject their own dependencies.)
#Provides IsEmailer provideEmailer(Settings settings,
#English Provider<IsEmailer> englishEmailer,
#French Provider<IsEmailer> frenchEmailer) {
if (settings.isEnglish()) {
return englishEmailer.get();
} else {
return frenchEmailer.get();
}
}
You could use a MapBinder. That would allow you to inject a Map<Language, IsSpellChecker>, and then retrieve the appropriate spell checker at runtime.
I'm trying to write a framework where arbitrary bean classes are injected with classes from my API, and they can interact with both those classes as well have triggered callbacks based on defined annotations. Here's an example bean:
#Experiment
static class TestExperiment {
private final HITWorker worker;
private final ExperimentLog log;
private final ExperimentController controller;
#Inject
public TestExperiment(
HITWorker worker,
ExperimentLog expLog,
ExperimentController controller
) {
this.worker = worker;
this.expLog = expLog;
this.controller = controller;
}
#SomeCallback
void callMeBack() {
... do something
log.print("I did something");
}
}
I'm trying to use Guice to inject these beans and handle the interdependencies between the injected classes. However, I have two problems:
One of the classes I pass in (HITWorker) is already instantiated. I couldn't see how to move this to a Provider without significantly complicating my code. It is also persistent, but not to the Guice-defined session or request scope, so I am managing it myself for now. (Maybe if the other issues are overcome I can try to put this in a provider.)
More importantly, I need a reference to the other injected classes so I can do appropriate things to them. When Guice injects them, I can't access them because the bean class is arbitrary.
Here's some really bad code for what I basically need to do, which I am sure is violating all the proper dependency injection concepts. Note that hitw is the only instance that I need to pass in, but I'm creating the other dependent objects as well because I need references to them. With this code, I'm basically only using Guice for its reflection code, not its dependency resolution.
private void initExperiment(final HITWorkerImpl hitw, final String expId) {
final ExperimentLogImpl log = new ExperimentLogImpl();
final ExperimentControllerImpl cont = new ExperimentControllerImpl(log, expManager);
// Create an experiment instance with specific binding to this HITWorker
Injector child = injector.createChildInjector(new AbstractModule() {
#Override
protected void configure() {
bind(HITWorker.class).toInstance(hitw);
bind(ExperimentLog.class).toInstance(log);
bind(ExperimentController.class).toInstance(cont);
}
});
Object experimentBean = child.getInstance(expClass);
expManager.processExperiment(expId, experimentBean);
// Initialize controller, which also initializes the log
cont.initialize(expId);
expManager.triggerStart(expId);
tracker.newExperimentStarted(expId, hitw, cont.getStartTime());
}
Am I screwed and just have to write my own injection code, or is there a way to do this properly? Also, should I just forget about constructor injection for these bean classes, since I don't know what they contain exactly anyway? Is there any way to get the dependencies if I am asking Guice to inject the bean instead of doing it myself?
For context, I've been reading the Guice docs and looking at examples for several days about this, to no avail. I don't think I'm a complete programming idiot, but I can't figure out how to do this properly!
Your "experiment" seems to be something like a "request" in the sense that it has a defined lifecycle and some associated stuff the experiment can pull in at will.
Therefore I think you should wrap all that into a custom scope as described in the docs about Custom Scopes. This matches your case in several points:
You can "seed" the scope with some objects (your HITWorker)
The lifecycle: do "enter scope" before you setup the experiment and "exit scope" after you finished your work.
Access to "shared" stuff like ExperimentLog and ExperimentController: Bind them to the scope. Then both the framework and the experiment instance can simple #Inject them and get the same instance.