This question already has answers here:
Generating all permutations of a given string
(57 answers)
Closed 7 years ago.
I want to make a program that would un-jumble some words.
I need to try all possible combinations of the words that can be formed, and then check if it is contained in a String variable, named dict.
My code is:
public class UnJumble
{
public static void main(String args[])
{
String dict = "cat, rat, mat dog, let, den, pen, tag, art,";
String t = "tra";
int l = t.length();
for(int i=0; i<l; i++)
{
char a=t.charAt(i);
t = t.replaceFirst(a+"","");
l--;
for(int j=0; j<l; j++)
{
char b = t.charAt(j);
t = t.replaceFirst(b+"","");
l--;
for(int k=0; k<l; k++)
{
char c = t.charAt(k);
if(dict.contains(""+a+b+c+","))
{
System.out.println("\'"+a+b+c+"\' found.");
break;
}
}
l++;
t = new StringBuilder(t).insert(j,b+"").toString();
}
t = new StringBuilder(t).insert(i,a+"").toString();
l++;
}
}
}
The variable t contains the word to be un-jumbled.
With this code, the output is:
'rat' found.
'art' found.
I think that I would need as many for loops as there as characters in the String t.
But I want to make it able to un-jumble words of an unknown length. So how can I achieve this?
I have tried searching on the Internet, and on SO. I found some answers on SO that are written in other programming languages which I don't understand.
You should look for recursive methods.
For example, given a string str of n characters, you can write a function that basicaly do this :
List<String> compute(String str)
// TODO : Handle case where str has only 1 character
List<String> list = compute(str.substring(0,n-2))
// TODO : Compute all combinations of str[n-1] with list
return list;
I guess this can be improved a lot in some cases.
There is a tricky way to do this without a for loop for each letter in your variable t, but it's code-intensive.
You can set up a loop that counts in base n, where n is the length of t. Assume i is your counter: Each pass through that loop you use the individual digits in i as indices into t, then build a ' word' and test that word against your dictionary. You are using i two different ways: as a counter and as a set of digits that represent indices into your t.
For example, if your t has three letters then you want to count in base 3 like this: 012, 020, 021, 022, 100, 101, 110,111, and so forth. Now the logic needs to verify that your combination of digits is unique so you don't use a letter twice when you build a word.
It's a lot of work but the algorithm is correct. The benefit is that it works for strings of any length.
I know I will be voted down, but oh well.
Related
I'm trying the solve this hacker earth problem https://www.hackerearth.com/practice/basic-programming/input-output/basics-of-input-output/practice-problems/algorithm/anagrams-651/description/
I have tried searching through the internet but couldn't find the ideal solution to solve my problem
This is my code:
String a = new String();
String b = new String();
a = sc.nextLine();
b = sc.nextLine();
int t = sc.nextInt();
int check = 0;
int againCheck =0;
for (int k =0; k<t; k++)
{
for (int i =0; i<a.length(); i++)
{
char ch = a.charAt(i);
for (int j =0; j<b.length(); j++)
{
check =0;
if (ch != b.charAt(j))
{
check=1;
}
}
againCheck += check;
}
}
System.out.println(againCheck*againCheck);
I expect the output to be 4, but it is showing the "NZEC" error
Can anyone help me, please?
The requirements state1 that the input is a number (N) followed by 2 x N lines. Your code is reading two strings followed by a number. It is probably throwing an InputMismatchException when it attempts to parse the 3rd line of input as a number.
Hints:
It pays to read the requirements carefully.
Read this article on CodeChef about how to debug a NZEC: https://discuss.codechef.com/t/tutorial-how-to-debug-an-nzec-error/11221. It explains techniques such as catching exceptions in your code and printing out a Java stacktrace so that you can see what is going wrong.
1 - Admittedly, the requirements are not crystal clear. But in the sample input the first line is a number.
As I've written in other answers as well, it is best to write your code like this when submitting on sites:
def myFunction():
try:
#MY LOGIC HERE
except Exception as E:
print("ERROR Occurred : {}".format(E))
This will clearly show you what error you are facing in each test case. For a site like hacker earth, that has several input problems in various test cases, this is a must.
Coming to your question, NZEC stands for : NON ZERO EXIT CODE
This could mean any and everything from input error to server earthquake.
Regardless of hacker-whatsoever.com I am going to give two useful things:
An easier algorithm, so you can code it yourself, becuase your algorithm will not work as you expect;
A Java 8+ solution with totally a different algorithm, more complex but more efficient.
SIMPLE ALGORITM
In you solution you have a tipical double for that you use to check for if every char in a is also in b. That part is good but the rest is discardable. Try to implement this:
For each character of a find the first occurence of that character in b
If there is a match, remove that character from a and b.
The number of remaining characters in both strings is the number of deletes you have to perform to them to transform them to strings that have the same characters, aka anagrams. So, return the sum of the lenght of a and b.
NOTE: It is important that you keep track of what you already encountered: with your approach you would have counted the same character several times!
As you can see it's just pseudo code, of a naive algorithm. It's just to give you a hint to help you with your studying. In fact this algorithm has a max complexity of O(n^2) (because of the nested loop), which is generally bad. Now, a better solution.
BETTER SOLUTION
My algorithm is just O(n). It works this way:
I build a map. (If you don't know what is it, to put it simple it's a data structure to store couples "key-value".) In this case the keys are characters, and the values are integer counters binded to the respective character.
Everytime a character is found in a its counter increases by 1;
Everytime a character is found in b its counter decreases by 1;
Now every counter represents the diffences between number of times its character is present in a and b. So, the sum of the absolute values of the counters is the solution!
To implement it actually add an entry to map whenever I find a character for the first time, instead of pre-costructing a map with the whole alphabet. I also abused with lambda expressions, so to give you a very different sight.
Here's the code:
import java.util.HashMap;
public class HackerEarthProblemSolver {
private static final String a = //your input string
b = //your input string
static int sum = 0; //the result, must be static because lambda
public static void main (String[] args){
HashMap<Character,Integer> map = new HashMap<>(); //creating the map
for (char c: a.toCharArray()){ //for each character in a
map.computeIfPresent(c, (k,i) -> i+1); //+1 to its counter
map.computeIfAbsent(c , k -> 1); //initialize its counter to 1 (0+1)
}
for (char c: b.toCharArray()){ //for each character in b
map.computeIfPresent(c, (k,i) -> i-1); //-1 to its counter
map.computeIfAbsent(c , k -> -1); //initialize its counter to -1 (0-1)
}
map.forEach((k,i) -> sum += Math.abs(i) ); //summing the absolute values of the counters
System.out.println(sum)
}
}
Basically both solutions just counts how many letters the two strings have in common, but with different approach.
Hope I helped!
I'm new to java and I wrote this method to input a string word and output the word spelled backwards. The intent is to create a method and not use an already existing method such as the simple reverse. Please help point me in the direction of how to do this to reverse a word. I'm also trying to determine/count if there are palindromes. Please help! I've read other questions and I can't find anything specific enough to my case. I know that my code doesn't run, though I'm unsure how to fix it to get the correct output.
An example would be the word "backwards" to go to "sdrawkcab".
public static int reverseWord(String word) {
int palindromes = 0;
for (int i = word.length(); i >= 0; i--) {
System.out.print(i);
word.equalsIgnoreCase();
if (word.charAt(i)) == index(word.charAt(0 && 1))) {
palindromes++
System.out.println(palindromes)
}
return i;
}
}
There are multiple problems with your code.
1.The prototype of equalsIgnoreCase is
public boolean equalsIgnoreCase(String str);
So this method expect a String to be passed,but your not not passing anything here.To fix this,pass another string with whom you want to match your word like this..
word.equalsIgnoreCase("myAnotherString");
2.word.charAt(i);
Suppose word="qwerty",so indexing of each character will be like this
/* q w e r t y
0 1 2 3 4 5 */
So when you use i = word.length();i will 6 since word is of length 6.So
word.charAt(i) will search for character at index 6,but since there is not index 6,it will return an exception ArrayIndexOutOfBound.To fix this,start i from word.length()-1.
3.if (word.charAt(i));
This extra " ) ".Remove it.
Is Index() your own method?.If Yes,then check that also.
the below code prints the reverse of the input string and checks if it is a palindrome
public static void main(String[] args) {
String input = "dad";
char temp[] = input.toCharArray();//converting it to a array so that each character can be compared to the original string
char output[] = new char[temp.length];//taking another array of the same size as the input string
for (int i = temp.length - 1, j = 0; i >= 0; i--, j++) {//i variable for iterating through the input string and j variable for inserting data into output string.
System.out.print(temp[i]);//printing each variable of the input string in reverse order.
output[j] = temp[i];//inserting data into output string
}
System.out.println(String.valueOf(output));
if (String.valueOf(output).equalsIgnoreCase(input)) {//comparing the output string with the input string for palindrome check
System.out.println("palindrome");
}
}
Because your question about what is wrong with your code was already answered here is another way you could do it by using some concepts which are somewhat less low level than directly working with character arrays
public static boolean printWordAndCheckIfPalindrome(final String word) {
// Create a StringBuilder which helps when building a string
final StringBuilder reversedWordBuilder = new StringBuilder("");
// Get a stream of the character values of the word
word.chars()
// Add each character to the beginning of the reversed word,
// example for "backwards": "b", "ab", "cab", "kcab", ...
.forEach(characterOfString -> reversedWordBuilder.insert(0, (char) characterOfString));
// Generate a String out of the contents of the StringBuilder
final String reversedWord = reversedWordBuilder.toString();
// print the reversed word
System.out.println(reversedWord);
// if the reversed word equals the given word it is a palindrome
return word.equals(reversedWord);
}
I want to write a function that takes string as a parameter and returns a number corresponding to that string.
Integer hashfunction(String a)
{
//logic
}
Actually the question im solving is as follows :
Given an array of strings, return all groups of strings that are anagrams. Represent a group by a list of integers representing the index in the original list.
Input : cat dog god tca
Output : [[1, 4], [2, 3]]
Here is my implementation :-
public class Solution {
Integer hashfunction(String a)
{
int i=0;int ans=0;
for(i=0;i<a.length();i++)
{
ans+=(int)(a.charAt(i));//Adding all ASCII values
}
return new Integer(ans);
}
**Obviously this approach is incorrect**
public ArrayList<ArrayList<Integer>> anagrams(final List<String> a) {
int i=0;
HashMap<String,Integer> hashtable=new HashMap<String,Integer>();
ArrayList<Integer> mylist=new ArrayList<Integer>();
ArrayList<ArrayList<Integer>> answer=new ArrayList<ArrayList<Integer>>();
if(a.size()==1)
{
mylist.add(new Integer(1));
answer.add(mylist);
return answer;
}
int j=1;
for(i=0;i<a.size()-1;i++)
{
hashtable.put(a.get(i),hashfunction(a.get(i)));
for(j=i+1;j<a.size();j++)
{
if(hashtable.containsValue(hashfunction(a.get(j))))
{
mylist.add(new Integer(i+1));
mylist.add(new Integer(j+1));
answer.add(mylist);
mylist.clear();
}
}
}
return answer;
}
}
Oh boy... there's quite a bit of stuff that's open for interpretation here. Case-sensitivity, locales, characters allowed/blacklisted... There are going to be a lot of ways to answer the general question. So, first, let me lay down a few assumptions:
Case doesn't matter. ("Rat" is an anagram of "Tar", even with the capital lettering.)
Locale is American English when it comes to the alphabet. (26 letters from A-Z. Compare this to Spanish, which has 28 IIRC, among which 'll' is considered a single letter and a potential consideration for Spanish anagrams!)
Whitespace is ignored in our definition of an anagram. ("arthas menethil" is an anagram of "trash in a helmet" even though the number of whitespaces is different.)
An empty string (null, 0-length, all white-space) has a "hash" (I prefer the term "digest", but a name is a name) of 1.
If you don't like any of those assumptions, you can modify them as you wish. Of course, that will result in the following algorithm being slightly different, but they're a good set of guidelines that will make the general algorithm relatively easy to understand and refactor if you wish.
Two strings are anagrams if they are exhaustively composed of the same set of characters and the same number of each included character. There's a lot of tools available in Java that makes this task fairly simple. We have String methods, Lists, Comparators, boxed primitives, and existing hashCode methods for... well, all of those. And we're going to use them to make our "hash" method.
private static int hashString(String s) {
if (s == null) return 0; // An empty/null string will return 0.
List<Character> charList = new ArrayList<>();
String lowercase = s.toLowerCase(); // This gets us around case sensitivity
for (int i = 0; i < lowercase.length(); i++) {
Character c = Character.valueOf(lowercase.charAt(i));
if (Character.isWhitespace(c)) continue; // spaces don't count
charList.add(c); // Note the character for future processing...
}
// Now we have a list of Characters... Sort it!
Collections.sort(charList);
return charList.hashCode(); // See contract of java.util.List#haschCode
}
And voila; you have a method that can digest a string and produce an integer representing it, regardless of the order of the characters within. You can use this as the basis for determining whether two strings are anagrams of each other... but I wouldn't. You asked for a digest function that produces an Integer, but keep in mind that in java, an Integer is merely a 32-bit value. This method can only produce about 4.2-billion unique values, and there are a whole lot more than 4.2-billion strings you can throw at it. This method can produce collisions and give you nonsensical results. If that's a problem, you might want to consider using BigInteger instead.
private static BigInteger hashString(String s) {
BigInteger THIRTY_ONE = BigInteger.valueOf(31); // You should promote this to a class constant!
if (s == null) return BigInteger.ONE; // An empty/null string will return 1.
BigInteger r = BigInteger.ONE; // The value of r will be returned by this method
List<Character> charList = new ArrayList<>();
String lowercase = s.toLowerCase(); // This gets us around case sensitivity
for (int i = 0; i < lowercase.length(); i++) {
Character c = Character.valueOf(lowercase.charAt(i));
if (Character.isWhitespace(c)) continue; // spaces don't count
charList.add(c); // Note the character for future processing...
}
// Now we have a list of Characters... Sort it!
Collections.sort(charList);
// Calculate our bighash, similar to how java's List interface does.
for (Character c : charList) {
int charHash = c.hashCode();
r=r.multiply(THIRTY_ONE).add(BigInteger.valueOf(charHash));
}
return r;
}
You need a number that is the same for all strings made up of the same characters.
The String.hashCode method returns a number that is the same for all strings made up of the same characters in the same order.
If you can sort all words consistently (for example: alphabetically) then String.hashCode will return the same number for all anagrams.
return String.valueOf(Arrays.sort(inputString.toCharArray())).hashCode();
Note: this will work for all words that are anagrams (no false negatives) but it may not work for all words that are not anagrams (possibly false positives). This is highly unlikely for short words, but once you get to words that are hundreds of characters long, you will start encountering more than one set of anagrams with the same hash code.
Also note: this gives you the answer to the (title of the) question, but it isn't enough for the question you're solving. You need to figure out how to relate this number to an index in your original list.
This question already has answers here:
Memory efficient power set algorithm
(5 answers)
Closed 8 years ago.
I'm trying to find every possible anagram of a string in Java - By this I mean that if I have a 4 character long word I want all the possible 3 character long words derived from it, all the 2 character long and all the 1 character long. The most straightforward way I tought of is to use two nested for loops and iterare over the string. This is my code as of now:
private ArrayList<String> subsets(String word){
ArrayList<String> s = new ArrayList<String>();
int length = word.length();
for (int c=0; c<length; c++){
for (int i=0; i<length-c; i++){
String sub = word.substring(c, c+i+1);
System.out.println(sub);
//if (!s.contains(sub) && sub!=null)
s.add(sub);
}
}
//java.util.Collections.sort(s, new MyComparator());
//System.out.println(s.toString());
return s;
}
My problem is that it works for 3 letter words, fun yelds this result (Don't mind the ordering, the word is processed so that I have a string with the letters in alphabetical order):
f
fn
fnu
n
nu
u
But when I try 4 letter words, it leaves something out, as in catq gives me:
a
ac
acq
acqt
c
cq
cqt
q
qt
t
i.e., I don't see the 3 character long word act - which is the one I'm looking for when testing this method. I can't understand what the problem is, and it's most likely a logical error I'm making when creating the substrings. If anyone can help me out, please don't give me the code for it but rather the reasoning behind your solution. This is a piece of coursework and I need to come up with the code on my own.
EDIT: to clear something out, for me acq, qca, caq, aqc, cqa, qac, etc. are the same thing - To make it even clearer, what happens is that the string gets sorted in alphabetical order, so all those permutations should come up as one unique result, acq. So, I don't need all the permutations of a string, but rather, given a 4 character long string, all the 3 character long ones that I can derive from it - that means taking out one character at a time and returning that string as a result, doing that for every character in the original string.
I hope I have made my problem a bit clearer
It's working fine, you just misspelled "caqt" as "acqt" in your tests/input.
(The issue is probably that you're sorting your input. If you want substrings, you have to leave the input unsorted.)
After your edits: see Generating all permutations of a given string Then just sort the individual letters, and put them in a set.
Ok, as you've already devised your own solution, I'll give you my take on it. Firstly, consider how big your result list is going to be. You're essentially taking each letter in turn, and either including it or not. 2 possibilities for each letter, gives you 2^n total results, where n is the number of letters. This of course includes the case where you don't use any letter, and end up with an empty string.
Next, if you enumerate every possibility with a 0 for 'include this letter' and a 1 for don't include it, taking your 'fnu' example you end up with:
000 - ''
001 - 'u'
010 - 'n'
011 - 'nu'
100 - 'f'
101 - 'fu' (no offense intended)
110 - 'fn'
111 - 'fnu'.
Clearly, these are just binary numbers, and you can derive a function that given any number from 0-7 and the three letter input, will calculate the corresponding subset.
It's fairly easy to do in java.. don't have a java compiler to hand, but this should be approximately correct:
public string getSubSet(string input, int index) {
// Should check that index >=0 and < 2^input.length here.
// Should also check that input.length <= 31.
string returnValue = "";
for (int i = 0; i < input.length; i++) {
if (i & (1 << i) != 0) // 1 << i is the equivalent of 2^i
returnValue += input[i];
}
return returnValue;
}
Then, if you need to you can just do a loop that calls this function, like this:
for (i = 1; i < (1 << input.length); i++)
getSubSet(input, i); // this doesn't do anything, but you can add it to a list, or output it as desired.
Note I started from 1 instead of 0- this is because the result at index 0 will be the empty string. Incidentally, this actually does the least significant bit first, so your output list would be 'f', 'n', 'fn', 'u', 'fu', 'nu', 'fnu', but the order didn't seem important.
This is the method I came up with, seems like it's working
private void subsets(String word, ArrayList<String> subset){
if(word.length() == 1){
subset.add(word);
return;
}
else {
String firstChar = word.substring(0,1);
word = word.substring(1);
subsets(word, subset);
int size = subset.size();
for (int i = 0; i < size; i++){
String temp = firstChar + subset.get(i);
subset.add(temp);
}
subset.add(firstChar);
return;
}
}
What I do is check if the word is bigger than one character, otherwise I'll add the character alone to the ArrayList and start the recursive process. If it is bigger, I save the first character and make a recursive call with the rest of the String. What happens is that the whole string gets sliced in characters saved in the recursive stack, until I hit the point where my word has become of length 1, only one character remaining.
When that happens, as I said at the start, the character gets added to the List, now the recursion starts and it looks at the size of the array, in the first iteration is 1, and then with a for loop adds the character saved in the stack for the previous call concatenated with every element in the ArrayList. Then it adds the character on its own and unwinds the recursion again.
I.E., with the word funthis happens:
f saved
List empty
recursive call(un)
-
u saved
List empty
recursive call(n)
-
n.length == 1
List = [n]
return
-
list.size=1
temp = u + list[0]
List = [n, un]
add the character saved in the stack on its own
List = [n, un, u]
return
-
list.size=3
temp = f + list[0]
List = [n, un, u, fn]
temp = f + list[1]
List = [n, un, u, fn, fun]
temp = f + list[2]
List = [n, un, u, fn, fun, fu]
add the character saved in the stack on its own
List = [n, un, u, fn, fun, fu, f]
return
I have been as clear as possible, I hope this clarifies what was my initial problem and how to solve it.
This is working code:
public static void main(String[] args) {
String input = "abcde";
Set<String> returnList = permutations(input);
System.out.println(returnList);
}
private static Set<String> permutations(String input) {
if (input.length() == 1) {
Set<String> a = new TreeSet<>();
a.add(input);
return a;
}
Set<String> returnSet = new TreeSet<>();
for (int i = 0; i < input.length(); i++) {
String prefix = input.substring(i, i + 1);
Set<String> permutations = permutations(input.substring(i + 1));
returnSet.add(prefix);
returnSet.addAll(permutations);
Iterator<String> it = permutations.iterator();
while (it.hasNext()) {
returnSet.add(prefix + it.next());
}
}
return returnSet;
}
So, I'm in need of help on my homework assignment. Here's the question:
Write a static method, getBigWords, that gets a String parameter and returns an array whose elements are the words in the parameter that contain more than 5 letters. (A word is defined as a contiguous sequence of letters.) So, given a String like "There are 87,000,000 people in Canada", getBigWords would return an array of two elements, "people" and "Canada".
What I have so far:
public static getBigWords(String sentence)
{
String[] a = new String;
String[] split = sentence.split("\\s");
for(int i = 0; i < split.length; i++)
{
if(split[i].length => 5)
{
a.add(split[i]);
}
}
return a;
}
I don't want an answer, just a means to guide me in the right direction. I'm a novice at programming, so it's difficult for me to figure out what exactly I'm doing wrong.
EDIT:
I've now modified my method to:
public static String[] getBigWords(String sentence)
{
ArrayList<String> result = new ArrayList<String>();
String[] split = sentence.split("\\s+");
for(int i = 0; i < split.length; i++)
{
if(split[i].length() > 5)
{
if(split[i].matches("[a-zA-Z]+"))
{
result.add(split[i]);
}
}
}
return result.toArray(new String[0]);
}
It prints out the results I want, but the online software I use to turn in the assignment, still says I'm doing something wrong. More specifically, it states:
Edith de Stance states:
⇒ You might want to use: +=
⇒ You might want to use: ==
⇒ You might want to use: +
not really sure what that means....
The main problem is that you can't have an array that makes itself bigger as you add elements.
You have 2 options:
ArrayList (basically a variable-length array).
Make an array guaranteed to be bigger.
Also, some notes:
The definition of an array needs to look like:
int size = ...; // V- note the square brackets here
String[] a = new String[size];
Arrays don't have an add method, you need to keep track of the index yourself.
You're currently only splitting on spaces, so 87,000,000 will also match. You could validate the string manually to ensure it consists of only letters.
It's >=, not =>.
I believe the function needs to return an array:
public static String[] getBigWords(String sentence)
It actually needs to return something:
return result.toArray(new String[0]);
rather than
return null;
The "You might want to use" suggestions points to that you might have to process the array character by character.
First, try and print out all the elements in your split array. Remember, you do only want you look at words. So, examine if this is the case by printing out each element of the split array inside your for loop. (I'm suspecting you will get a false positive at the moment)
Also, you need to revisit your books on arrays in Java. You can not dynamically add elements to an array. So, you will need a different data structure to be able to use an add() method. An ArrayList of Strings would help you here.
split your string on bases of white space, it will return an array. You can check the length of each word by iterating on that array.
you can split string though this way myString.split("\\s+");
Try this...
public static String[] getBigWords(String sentence)
{
java.util.ArrayList<String> result = new java.util.ArrayList<String>();
String[] split = sentence.split("\\s+");
for(int i = 0; i < split.length; i++)
{
if(split[i].length() > 5)
{
if(split[i].matches("[a-zA-Z]+"))
{
result.add(split[i]);
}
if (split[i].matches("[a-zA-Z]+,"))
{
String temp = "";
for(int j = 0; j < split[i].length(); j++)
{
if((split[i].charAt(j))!=((char)','))
{
temp += split[i].charAt(j);
//System.out.print(split[i].charAt(j) + "|");
}
}
result.add(temp);
}
}
}
return result.toArray(new String[0]);
}
Whet you have done is correct but you can't you add method in array. You should set like a[position]= spilt[i]; if you want to ignore number then check by Float.isNumber() method.
Your logic is valid, but you have some syntax issues. If you are not using an IDE like Eclipse that shows you syntax errors, try commenting out lines to pinpoint which ones are syntactically incorrect. I want to also tell you that once an array is created its length cannot change. Hopefully that sets you off in the right directions.
Apart from syntax errors at String array declaration should be like new String[n]
and add method will not be there in Array hence you should use like
a[i] = split[i];
You need to add another condition along with length condition to check that the given word have all letters this can be done in 2 ways
first way is to use Character.isLetter() method and second way is create regular expression
to check string have only letter. google it for regular expression and use matcher to match like the below
Pattern pattern=Pattern.compile();
Matcher matcher=pattern.matcher();
Final point is use another counter (let say j=0) to store output values and increment this counter as and when you store string in the array.
a[j++] = split[i];
I would use a string tokenizer (string tokenizer class in java)
Iterate through each entry and if the string length is more than 4 (or whatever you need) add to the array you are returning.
You said no code, so... (This is like 5 lines of code)