I am very much a beginner in digital image processing and programming in general. I am trying to find the Mean of an image using a raster. To be completely honest, this is a real stab in the dark but I am really lost at what to do here.
My code currently returns nothing and I am not sure if it is even doing anything. My interpretation of what it is doing is, read the image file and then using a raster to extract the details of that image based on height and width cooridinates. I want it basically to output the mean on the console.
So could anybody tell me what I am doing wrong and why my code is not returning the mean of the image? I have been digging up resources to try and learn but anything linked with image processing doesn't really seem to be for a newbie and I am finding it tough. So if anyone has anywhere that would be good to start it would be appreciated.
Eventually, I want to calculate the mean on one image and I then want to run that image against a file directory of other images. The point of this is to see which images are most similar based on the mean. But I feel like I am some way off where I want to be.
Here is my code
import java.awt.Color;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.awt.image.Raster;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
public class calculateMean {
static BufferedImage image;
static int width;
static int height;
public static void main(String[] args) throws Exception{
try{
File input = new File("C:\\Users\\cbirImages\\jonBon2.jpg");
image = ImageIO.read(input);
width = image.getWidth();
height = image.getHeight();
}catch (Exception c){}
}
private double sum;
public double imageToCalculate(){
int count = 0;
for(int i=0; i<height; i++){
for(int j=0; j<width; j++){
count++;
Raster raster = image.getRaster();
double sum = 0.0;
for (int y = 0; y < image.getHeight(); ++y){
for (int x = 0; x < image.getWidth(); ++x){
sum += raster.getSample(x, y, 0);
}
}
return sum / (image.getWidth() * image.getHeight());
}
}
System.out.println("Mean Value of Image is " + sum);
return sum;
}
}
You go through all the pixels twice in your method imageToCalculate. This simple code is enough to compute the average of an image:
for (int y = 0; y < image.getHeight(); ++y)
for (int x = 0; x < image.getWidth(); ++x)
sum += raster.getSample(x, y, 0) ;
return sum / (image.getWidth() * image.getHeight());
But usually, it's better to give the image as a parameter of the method:
public double Average(BufferedImage image)
And for the final purpose of your project, there is no way that the average can give you a good result. Imagine that you have two images: the first with all the pixels at 127, and the second with half of the pixels at 0 and the other at 255.
Related
Hi I am in need of some help. I need to write a convolution method from scratch that takes in the following inputs: int[][] and BufferedImage inputImage. I can assume that the kernel has size 3x3.
My approach is to do the follow:
convolve inner pixels
convolve corner pixels
convolve outer pixels
In the program that I will post below I believe I convolve the inner pixels but I am a bit lost at how to convolve the corner and outer pixels. I am aware that corner pixels are at (0,0), (width-1,0), (0, height-1) and (width-1,height-1). I think I know to how approach the problem but not sure how to execute that in writing though. Please to aware that I am very new to programming :/ Any assistance will be very helpful to me.
import java.awt.*;
import java.awt.image.BufferedImage;
import com.programwithjava.basic.DrawingKit;
import java.util.Scanner;
public class Problem28 {
// maximum value of a sample
private static final int MAX_VALUE = 255;
//minimum value of a sample
private static final int MIN_VALUE = 0;
public BufferedImage convolve(int[][] kernel, BufferedImage inputImage) {
}
public BufferedImage convolveInner(double center, BufferedImage inputImage) {
int width = inputImage.getWidth();
int height = inputImage.getHeight();
BufferedImage inputImage1 = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
//inner pixels
for (int x = 1; x < width - 1; x++) {
for (int y = 1; y < height - 1; y ++) {
//get pixels at x, y
int colorValue = inputImage.getRGB(x, y);
Color pixelColor = new Color(colorValue);
int red = pixelColor.getRed() ;
int green = pixelColor.getGreen() ;
int blue = pixelColor.getBlue();
int innerred = (int) center*red;
int innergreen = (int) center*green;
int innerblue = (int) center*blue;
Color newPixelColor = new Color(innerred, innergreen, innerblue);
int newRgbvalue = newPixelColor.getRGB();
inputImage1.setRGB(x, y, newRgbvalue);
}
}
return inputImage1;
}
public BufferedImage convolveEdge(double edge, BufferedImage inputImage) {
int width = inputImage.getWidth();
int height = inputImage.getHeight();
BufferedImage inputImage2 = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
//inner pixels
for (int x = 0; x < width - 1; x++) {
for (int y = 0; y < height - 1; y ++) {
//get pixels at x, y
int colorValue = inputImage.getRGB(x, y);
Color pixelColor = new Color(colorValue);
int red = pixelColor.getRed() ;
int green = pixelColor.getGreen() ;
int blue = pixelColor.getBlue();
int innerred = (int) edge*red;
int innergreen = (int) edge*green;
int innerblue = (int) edge*blue;
Color newPixelColor = new Color(innerred, innergreen, innerblue);
int newRgbvalue = newPixelColor.getRGB();
inputImage2.setRGB(x, y, newRgbvalue);
}
}
return inputImage2;
}
public BufferedImage convolveCorner(double corner, BufferedImage inputImage) {
int width = inputImage.getWidth();
int height = inputImage.getHeight();
BufferedImage inputImage3 = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
//inner pixels
for (int x = 0; x < width - 1; x++) {
for (int y = 0; y < height - 1; y ++) {
//get pixels at x, y
int colorValue = inputImage.getRGB(x, y);
Color pixelColor = new Color(colorValue);
int red = pixelColor.getRed() ;
int green = pixelColor.getGreen() ;
int blue = pixelColor.getBlue();
int innerred = (int) corner*red;
int innergreen = (int) corner*green;
int innerblue = (int) corner*blue;
Color newPixelColor = new Color(innerred, innergreen, innerblue);
int newRgbvalue = newPixelColor.getRGB();
inputImage3.setRGB(x, y, newRgbvalue);
}
}
return inputImage3;
}
public static void main(String[] args) {
DrawingKit dk = new DrawingKit("Compositor", 1000, 1000);
BufferedImage p1 = dk.loadPicture("image/pattern1.jpg");
Problem28 c = new Problem28();
BufferedImage p5 = c.convolve();
dk.drawPicture(p5, 0, 100);
}
}
I changed the code a bit but the output comes out as black. What did I do wrong:
import java.awt.*;
import java.awt.image.BufferedImage;
import com.programwithjava.basic.DrawingKit;
import java.util.Scanner;
public class Problem28 {
// maximum value of a sample
private static final int MAX_VALUE = 255;
//minimum value of a sample
private static final int MIN_VALUE = 0;
public BufferedImage convolve(int[][] kernel, BufferedImage inputImage) {
int width = inputImage.getWidth();
int height = inputImage.getHeight();
BufferedImage inputImage1 = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
//for every pixel
for (int x = 0; x < width; x ++) {
for (int y = 0; y < height; y ++) {
int colorValue = inputImage.getRGB(x,y);
Color pixelColor = new Color(colorValue);
int red = pixelColor.getRed();
int green = pixelColor.getGreen();
int blue = pixelColor.getBlue();
double gray = 0;
//multiply every value of kernel with corresponding image pixel
for (int i = 0; i < 3; i ++) {
for (int j = 0; j < 3; j ++) {
int imageX = (x - 3/2 + i + width) % width;
int imageY = (x -3/2 + j + height) % height;
int RGB = inputImage.getRGB(imageX, imageY);
int GRAY = (RGB) & 0xff;
gray += (GRAY*kernel[i][j]);
}
}
int out;
out = (int) Math.min(Math.max(gray * 1, 0), 255);
inputImage1.setRGB(x, y, new Color(out,out,out).getRGB());
}
}
return inputImage1;
}
public static void main(String[] args) {
int[][] newArray = {{1/9, 1/9, 1/9}, {1/9, 1/9, 1/9}, {1/9, 1/9, 1/9}};
DrawingKit dk = new DrawingKit("Problem28", 1000, 1000);
BufferedImage p1 = dk.loadPicture("image/pattern1.jpg");
Problem28 c = new Problem28();
BufferedImage p2 = c.convolve(newArray, p1);
dk.drawPicture(p2, 0, 100);
}
}
Welcome ewuzz! I wrote a convolution using CUDA about a week ago, and the majority of my experience is with Java, so I feel qualified to provide advice for this problem.
Rather than writing all of the code for you, the best way to solve this large program is to discuss individual elements. You mentioned you are very new to programming. As the programs you write become more complex, it's essential to write small working snippets before combining them into a large successful program (or iteratively add snippets). With this being said, it's already apparent you're trying to debug a ~100 line program, and this approach will cost you time in most cases.
The first point to discuss is the general approach you mentioned. If you think about the program, what is the simplest and most repeated step? Obviously this is the kernel/mask step, so we can start from here. When you convolute each pixel, you are performing a similar option, regardless of the position (corner, edge, inside). While there are special steps necessary for these edge cases, they share similar underlying steps. If you try to write code for each of these cases separately, you will have to update the code in multiple (three) places with each adjustment and it will make the whole program more difficult to grasp.
To support my point above, here's what happened when I pasted your code into IntelliJ. This illustrates the (yellow) red flag of using the same code in multiple places:
The concrete way to fix this problem is to combine the three convolve methods into a single one and use if statements for edge-cases as necessary.
Our pseudocode with this change:
convolve(kernel, inputImage)
for each pixel in the image
convolve the single pixel and check edge cases
endfor
end
That seems pretty basic right? If we are able to successfully check edge cases, then this extremely simple logic will work. The reason I left it so general above to show how convolve the single pixel and check edge cases is logically grouped. This means it's a good candidate for extracting a method, which could look like:
private void convolvePixel(int x, int y, int[][] kernel, BufferedImage input, BufferedImage output)
Now to implement our method above, we will need to break it into a few steps, which we may then break into more steps if necessary. We'll need to look at the input image, if possible for each pixel accumulate the values using the kernel, and then set this in the output image. For brevity I will only write pseudocode from here.
convolvePixel(x, y, kernel, input, output)
accumulation = 0
for each row of kernel applicable pixels
for each column of kernel applicable pixels
if this neighboring pixel location is within the image boundaries then
input color = get the color at this neighboring pixel
adjusted value = input color * relative kernel mask value
accumulation += adjusted value
else
//handle this somehow, mentioned below
endif
endfor
endfor
set output pixel as accumulation, assuming this convolution method does not require normalization
end
The pseudocode above is already relatively long. When implementing you could write methods for the if and the else cases, but it you should be fine with this structure.
There are a few ways to handle the edge case of the else above. Your assignment probably specifies a requirement, but the fancy way is to tile around, and pretend like there's another instance of the same image next to this input image. Wikipedia explains three possibilities:
Extend - The nearest border pixels are conceptually extended as far as necessary to provide values for the convolution. Corner pixels are extended in 90° wedges. Other edge pixels are extended in lines.
Wrap - (The method I mentioned) The image is conceptually wrapped (or tiled) and values are taken from the opposite edge or corner.
Crop - Any pixel in the output image which would require values from beyond the edge is skipped. This method can result in the output image being slightly smaller, with the edges having been cropped.
A huge part of becoming a successful programmer is researching on your own. If you read about these methods, work through them on paper, run your convolvePixel method on single pixels, and compare the output to your results by hand, you will find success.
Summary:
Start by cleaning-up your code before anything.
Group the same code into one place.
Hammer out a small chunk (convolving a single pixel). Print out the result and the input values and verify they are correct.
Draw out edge/corner cases.
Read about ways to solve edge cases and decide what fits your needs.
Try implementing the else case through the same form of testing.
Call your convolveImage method with the loop, using the convolvePixel method you know works. Done!
You can look up pseudocode and even specific code to solve the exact problem, so I focused on providing general insight and strategies I have developed through my degree and personal experience. Good luck and please let me know if you want to discuss anything else in the comments below.
Java code for multiple blurs via convolution.
First off I am new to this and also coding. I apologize in advance for anything that is misleading.
I am currently writing a Java program that uses an image as input. What I have currently is scanning each pixel by the width and height of the image saving the HSB in an array and then outputting the percentage of each color in the image. I now want to omit the background from that calculation. To start off lets just say the background is white. There are also pixels in the image that are not in the background that is white though.
thank you,
Oh, it's not as simple as you hope.
You cannot simply detect what's a background and what is part of image pixel by pixel.
You might try looking at this post to see how to remove one color layer of the image.
But detecting if the white pixel is a part of background or already the image?!
There are multiple possible ways:
assuming that background is just around and when (looking from any
side to the center) color changes, that is the end of the
"background". You can check every row and column from side to center
and keep record of where the "background" color ends.
or similar approach - if at least at one (of four) direction looking from the pixel to the side there is no color changes (it goes white all the way to the side), than it is part of background.
Or just take a look at another
post. From this you can try working your way up.
Anyway - you have to create a logic of detecting which (i.e.) white pixels are part of the picture and which are part of background.
I hope this at least gives you a bit more knowledge.
I am not sure what you mean. There is no code, so I can only give you an example. From what I have understood, you want to skip doing a calculation when the color is the same as the background. That is very simple. You can do something like this:
for(int x = 0; x < width; x++) {
for(int y = 0; y < height; y++) {
Color pixelColor = get pixel color at x and y;
Color backgroundColor = the background color;
if(pixelColor != backgroundColor) {
//Calculation will be done here
}
}
}
If this does not help you or you have any other questions, ask me.
Here is an example of full working code.
You can add a cursor to pick color and jslider for fuzz or threshold. Use backColor and threshold for your needs.
import java.awt.Color;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
public class Convert {
private static final Color backColor = new Color(255,255,255);
private static final int THRESHOLD = 35;
private static final int TRANSPARENT = 0; // 0x00000000;
static File base = new File("f://mortar1.png");
static File base2 = new File("f://outtrans.png");
public static void main(String[] args) throws IOException {
System.out.println("Convert.main()");
for (File file : base.listFiles())
{
BufferedImage initImage = ImageIO.read(base);
int width = initImage.getWidth(null),
height = initImage.getHeight(null);
BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
Graphics g = image.getGraphics();
g.drawImage(initImage, 0, 0, null);
System.out.println("before: " + image.getRGB(0, 0));
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int pixel = image.getRGB(x, y);
Color color = new Color(pixel);
int dr = Math.abs(color.getRed() - backColor.getRed()),
dg = Math.abs(color.getGreen() - backColor.getGreen()),
db = Math.abs(color.getBlue() - backColor.getBlue());
if (dr < THRESHOLD && dg < THRESHOLD && db < THRESHOLD) {
image.setRGB(x, y, TRANSPARENT);
}
}
}
System.out.println(" after: " + image.getRGB(0, 0));
File file = new File("f://outtrans1.png");
ImageIO.write(image, "png", file);
}
}
}
Or simple set a png file with empty fill..
This idea seems good for me. But if you don't agree, please, tell me causes)
I am wanting to get rgb value of each pixel in an image. For this I used getRGB() which returns an integer that I converted with Color(arg,true). If I print out the getRGB() results and paste one of the numbers into the Color class it works. But if make an integer as shown equal rgb and put it in Color so I can cycle through each pixel it returns 255 for all values.
import java.awt.Color;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferInt;
import java.io.File;
import java.io.IOException;
import javax.imageio.*;
public class kmeans {
public static void main(String[] args) throws IOException {
File file = new File("andy.jpg");
BufferedImage image = ImageIO.read(file);
int width = image.getWidth();
int height = image.getHeight();
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
int rgb = image.getRGB(i, j);
// System.out.println(rgb);
Color c = new Color(rgb, true);
// System.out.println(c.getRed()+" "+c.getGreen()+" "+c.getBlue()+" ");
System.out.println(c);
}
}
}
}
Have you tried setting new Color(rgb, true) to new Color(rgb, false)? When you get the int value for rgb, you don't get the alpha value (aka the transparency of the current pixel). When using that value in the constructor, without having an alpha value, it could mess with the results.
I think your code is fine and the problem, assuming there is one, is elsewhere. Here is a sample of the output your code produced for some random JPEG:
java.awt.Color[r=126,g=116,b=104]
java.awt.Color[r=122,g=112,b=100]
java.awt.Color[r=116,g=106,b=94]
java.awt.Color[r=117,g=107,b=95]
java.awt.Color[r=123,g=113,b=101]
java.awt.Color[r=122,g=112,b=100]
I was wondering if I could find some help on this problem. I was asked to use an image ("corn.jpg"), and flip it entirely upside down. I know I need to write a program which will switch pixels from the top left corner with the bottom left, and so on, but I wasn't able to get my program to work properly before time ran out. Could anyone provide a few tips or suggestions to solve this problem? I'd like to be able to write my code out myself, so suggestions only please. Please note that my knowledge of APImage and Pixel is very limited. I am programming in Java.
Here is what I managed to get done.
import images.APImage;
import images.Pixel;
public class Test2
{
public static void main(String [] args)
{
APImage image = new APImage("corn.jpg");
int width = image.getImageWidth();
int height = image.getImageHeight();
int middle = height / 2;
//need to switch pixels in bottom half with the pixels in the top half
//top half of image
for(int y = 0; y < middle; y++)
{
for (int x = 0; x < width; x++)
{
//bottom half of image
for (int h = height; h > middle; h++)
{
for(int w = 0; w < width; w++)
{
Pixel bottomHalf = image.getPixel(h, w);
Pixel topHalf = image.getPixel(x, y);
//set bottom half pixels to corresponding top ones?
bottomHalf.setRed(topHalf.getRed());
bottomHalf.setGreen(topHalf.getGreen());
bottomHalf.setBlue(topHalf.getBlue());
//set top half pixels to corresponding bottom ones?
topHalf.setRed(bottomHalf.getRed());
topHalf.setGreen(bottomHalf.getGreen());
topHalf.setBlue(bottomHalf.getBlue());
}
}
}
}
image.draw();
}
}
Thank you for your help!
See Transforming Shapes, Text, and Images.
import java.awt.*;
import java.awt.geom.AffineTransform;
import java.awt.image.BufferedImage;
import javax.swing.*;
public class FlipVertical {
public static BufferedImage getFlippedImage(BufferedImage bi) {
BufferedImage flipped = new BufferedImage(
bi.getWidth(),
bi.getHeight(),
bi.getType());
AffineTransform tran = AffineTransform.getTranslateInstance(0, bi.getHeight());
AffineTransform flip = AffineTransform.getScaleInstance(1d, -1d);
tran.concatenate(flip);
Graphics2D g = flipped.createGraphics();
g.setTransform(tran);
g.drawImage(bi, 0, 0, null);
g.dispose();
return flipped;
}
FlipVertical(BufferedImage bi) {
JPanel gui = new JPanel(new GridLayout(1,2,2,2));
gui.add(new JLabel(new ImageIcon(bi)));
gui.add(new JLabel(new ImageIcon(getFlippedImage(bi))));
JOptionPane.showMessageDialog(null, gui);
}
public static void main(String[] args) throws AWTException {
final Robot robot = new Robot();
Runnable r = new Runnable() {
#Override
public void run() {
final BufferedImage bi = robot.createScreenCapture(
new Rectangle(0, 660, 200, 100));
new FlipVertical(bi);
}
};
SwingUtilities.invokeLater(r);
}
}
Whenever you're swapping variables, if your language doesn't allow for simultaneous assignment (and Java doesn't), you need to use a temporary variable.
Consider this:
a = 1;
b = 2;
a = b; // a is now 2, just like b
b = a; // b now uselessly becomes 2 again
Rather than that, do this:
t = a; // t is now 1
a = b; // a is now 2
b = t; // b is now 1
EDIT: And also what #vandale says in comments :P
If you are able to use the Graphics class, the following may be of use:
http://www.javaworld.com/javatips/jw-javatip32.html
And the Graphics class documentation:
http://docs.oracle.com/javase/7/docs/api/java/awt/Graphics.html
Instead of using
Pixel bottomHalf = image.getPixel(h, w);
Pixel topHalf = image.getPixel(x, y);
//set bottom half pixels to corresponding top ones?
bottomHalf.setRed(topHalf.getRed());
bottomHalf.setGreen(topHalf.getGreen());
bottomHalf.setBlue(topHalf.getBlue());
//set top half pixels to corresponding bottom ones?
topHalf.setRed(bottomHalf.getRed());
topHalf.setGreen(bottomHalf.getGreen());
topHalf.setBlue(bottomHalf.getBlue());
You should have stored the bottomHalf's RGB into a temporary Pixel and used that to set topHalf after replacing bottomHalf's values (if you follow). You could have also really used something like this.... assuming your pixel operates on integer rgb values (which would have improved your main method).
private static final Pixel updateRGB(Pixel in, int red, int green, int blue) {
in.setRed(red); in.setGreen(green); in.setBlue(blue);
}
You want to flip the image upside down, not swap the top and bottom half.
The loop could look like this.
int topRow = 0;
int bottomRow = height-1;
while(topRow < bottomRow) {
for(int x = 0; x < width; x++) {
Pixel t = image.getPixel(x, topRow);
image.setPixel(x, topRow, image.getPixel(x, bottomRow));
image.setPixel(x, bottomRow, t);
}
topRow++;
bottomRow--;
}
I'm attempting to take a picture as input, then manipulate said picture (I specifically want to make it greyscale) and then output the new image. This is a snippet of the code that I'm editing in order to do so but I'm getting stuck. Any ideas of what I can change/do next. Greatly appreciated!
public boolean recieveFrame (Image frame) {
int width = frame.width();
int height = frame.height();
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Color c1 = frame.get(i, j);
double greyScale = (double) ((Color.red *.3) + (Color.green *.59) + (Color.blue * .11));
Color newGrey = Color.greyScale(greyScale);
frame.set(i, j, newGrey);
}
}
boolean shouldStop = displayImage(frame);
return shouldStop;
}
I'm going to try to stick as close as possible to what you already have. So, I'll assume that you are looking for how to do pixel-level processing on an Image, rather than just looking for a technique that happens to work for converting to greyscale.
The first step is that you need the image to be a BufferedImage. This is what you get by default from ImageIO, but if you have some other type of image, you can create a BufferedImage and paint the other image into it first:
BufferedImage buffer = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);
Graphics2D g = buffer.createGraphics();
g.drawImage(image, 0, 0);
g.dispose()
Then, you can operate on the pixels like this:
public void makeGrey(BufferedImage image) {
for(int x = 0; x < image.getWidth(); ++x) {
for(int y = 0; y < image.getHeight(); ++y) {
Color c1 = new Color(image.getRGB(x, y));
int grey = (int)(c1.getRed() * 0.3
+ c1.getGreen() * 0.59
+ c1.getBlue() * .11
+ .5);
Color newGrey = new Color(grey, grey, grey);
image.setRGB(x, y, newGrey.getRGB());
}
}
}
Note that this code is horribly slow. A much faster option is to extract all the pixels from the BufferedImage into an int[], operate on that, and then set it back into the image. This uses the other versions of the setRGB()/getRGB() methods that you'll find in the javadoc.