During a method, I may need to spawn a download bean to fetch a file. As I receive these calls in parallel, I only want to download the file once. I don't know the right way to express the following pseudocode in JEE/CDI:
if (download_required) {
monitor.enter();
if (!map.ContainsKey(downloadPath))
{
//CDI inject new instance of downloader here.
downloader.File = downloadPath;
downloader.startDownload();
map.put(downloadPath, downloader);
monitor.exit();
downloader.waitForDownload();
} else {
monitor.exit();
map.get(downloadPath).waitForDownload();
}
}
I want to use CDI as I need to set properties on the downloader from JNDI variables. Each downloader is responsible for downloading a file and leaving some state. Note that each downloader will be given a different state and therefore must be a new instance of the bean.
Just before I give up on CDI, inject the variables into the parent class and then use standard java with some static's to instantiate the above, is there a "correct" way to achieve this with CDI?
If you are using Java EE7, you could use javax.enterprise.inject.Instance:
#Inject Instance<Download> downloadProvider;
public void yourMethod() {
Download download = downloadProvider.get();
try {
// do something with your download instance
} finally {
downloadProvider.destroy(download);
}
}
Your download bean must be in #Dependent scope.
Related
I was exploring ways to do simple, plain-old file-based configuration in Java. I looked into Java's built-in Properties and the Apache Common Configuration library. For the latter, the distilled code is as follows:
Configurations configs = new Configurations();
Configuration config = null;
try
{
config = configs.properties(new File("config.properties"));
}
catch (ConfigurationException cex)
{
}
long loadQPS = config.getInt("loadQPS");
The issue I have with this is that I find myself inserting this in every single class, which is suboptimal for at least two reasons: 1) I'm reading the file once for every class, when I should only read it once. 2) code duplication.
One obvious solution would be to create a Singleton configuration class that I then access from every other class. But surely this is a desired feature in almost every use case, so shouldn't it be included with the configuration library itself (am I missing something)? I also thought of using Spring configuration, which can create a Singleton configuration class for me, but isn't there too much overhead just for file-based configuration? (Spring's strength is in DI, as I understand.)
What's a good solution, or best practice (if there is one)?
EDIT: A simple static solution suggested in the answer:
public class ConfigClass {
static Configuration config;
static {
Configurations configs = new Configurations();
Logger sysLogger = LoggerFactory.getLogger("sysLogger");
try
{
config = configs.properties(new File("config.properties"));
}
catch (ConfigurationException cex)
{
sysLogger.error("Config file read error");
}
}
}
Access in the package by ConfigClass.config.
So you have a couple options. One simple one would be to store and access the Configuration object statically.
Another one that I like when I want Dependency Injection without Spring, is to structure program in DI friendly way. You can emulate a DI container by transforming your main() function into a "configuration" of your program that ultimately launches it.
Consider a typical multi-tier web application: A DI friendly main() method might look like:
public class AddressBookApp {
public static void main(String[] args) {
Configuration conf = new Configuration(args[0]);
// Creates our Repository, this might do some internal JDBC initialization
AddressBookRepository repo = new AddressBookRepository(conf);
// Pass the Repository to our Service object so that it can persist data
AddressBookService service = new AddressBookService(repo);
// Pass the Service to the web controller so it can invoke business logic
AddressBookController controller = new AddressBookController(conf, service);
// Now launch it!
new WebApp(new Controller[] { controller }).start();
}
}
This main() serves as a central place to "wire up" your application so it's easy to pass your Configuration object to every component that needs it.
Here is snippet of intrested case:
We have some configuration class it can have multi instances. It suppose that we supply several configurations in one bundle. It's one scope.
#Service
#Component
public class SampleConfigurationImpl implements SampleConfiguration {
// declaration of some properties, init method and etc...
}
Also we have a service which uses these configurations:
#Service
#Component
public class SampleServiceImpl implements SampleService {
#Reference(
referenceInterface = SampleConfiguration.class,
cardinality = ReferenceCardinality.OPTIONAL_MULTIPLE,
policy = ReferencePolicy.DYNAMIC)
private Map<String, SampleConfiguration> sampleConfigurations = new ConcurrentHashMap<>();
private void bindSampleConfigurations(SampleConfiguration sampleConfiguration) {
sampleConfigurations.put(sampleConfiguration.getName(), sampleConfiguration);
}
private void unbindSampleConfigurations(SampleConfiguration sampleConfiguration) {
sampleConfigurations.remove(sampleConfiguration.getName());
}
#Activate
private void init() {
System.out.println(sampleConfigurations.size());
}
}
So, can I get some guarantees that on invocation of init method all configurations are injected (at least of current bundle)? Maybe there is some alternative way to do this. I understand that another bundles can bring new configurations and it's unreal to get guarantees but it's intrested in case of only one bundle.
On practice it can be case when in init method there are only part of configurations. Especially if it's more difficalt case when you have several types of configuration or one service uses another one which has dynamic references and first service relies on fact that everything is injected.
The most unpleasant is that it can bind/unbind configurations both before and after init method.
Maybe there is some way to guarantee that it bind always after init method...
I'm interested in any information. It will be great to get answer on two questions (guarantees before or after). Probably someone has experience how to resolve such problem and can share with me.
Thanks.
No, not that I know of. What I usually do in that case (depending on your use case, it depends on if your activation code is ok with running multiple times) is to create a 'reallyActivate' method I call both from the regular activate and from the bindSampleConfigurations (+ setting an isActivated flag in activate). Then I can perform some logic every time a new SampleConfiguration gets bound, even if it's after the activation. Does that help for your case?
So I have a class like so:
public class HBaseUtil {
private final String fileName = "hbase.properties";
private Configuration config;
private HBaseUtil() {
try {
config = new PropertiesConfiguration(fileName);
} catch (ConfigurationException e) {
// some exception handling logging
}
}
// now some getters pulling data out of the config object
public static String getProperty(String fieldKeyName) {...}
public static String getColumnFamily(String fieldName) {...}
// ... some more getters
// NO setters (thus making this a read-only class)
}
Thus, basically I have for myself a Singleton class, that the very first time that it is put to use, sets up a configuration object, and then simply keeps listening for get calls. There are a number of problems with this class:
Unit testing the static methods within class HBaseUtil becomes difficult because of a tight-knit coupling between the Singleton and the configurations file.
What I really want is me being able to supply the filename/filename+path to the class so that it can go in there, read the configuration properties from that file and offer them to incoming read requests. One important note here though: I need this flexibility in specifying the properties file ONLY ONCE per JVM launch. So I certainly don't need to maintain state.
Here is what I was able to come up with:
Instead of a Singleton, I have a normal class with all static methods and no explicit constructor defined.
public class HBaseUtil {
// directly start with getters
public static String getProperty(Configuration config, String fieldKeyName) {...}
public static String getColumnFamily(Configuration config, String fieldKeyName) {...}
// ...and so on
}
And then, instead of using the class in my other code like such:
HBaseUtil.getProperty(String fieldKeyName)
I'd use it like so:
Configuration externalConfig = new PropertiesConfiguration("my-custom-hbase.properties");
HbaseUtil.getProperty(externalConfig, fieldKeyName)
My questions:
Am I even thinking in the right direction? My requirement is to have the flexibility in the class only ONCE per JVM. All that needs to be configurable in my project for this, is the location/contents of the HBase .properties file. I was thinking having a Singleton is overkill for this requirement.
What other better approaches are there for my requirement (stated in above point)?
Thanks!
Note: I've read this StackOverflow discussion, but now it's gotten me even more confused.
You should avoid all static methods and instead design a class which does not mandate its lifecycle: it can be a typical immutable POJO with a public constructor.
Then, when you need it as a singleton, use it as a singleton. For testing, use it in some other way.
Usually, dependency injection is the preferred avenue to solve these problems: instead of hard-coding a pulling mechanism for your configuration object, you have the object delivered to any class which needs it. Then you can decide late what bean you will deliver.
Since you are probably not using Spring (otherwise dependency injection would be your default), consider using Guice, which is a very lightweight and non-intrusive approach to dependency injection.
I'm new to OSGi and I'm interested in retrofitting some of my jars as OSGi bundles.
However I do not want to introduce additional dependencies to any osgi-specific libraries.
As such annotations are out of the question as are programmatic calls to bundle contexts and what not.
I have found a near match to my requirements in declarative services which allows me to expose my lower level bundles without impacting dependencies however at the higher level (where i actually need to consume the services) i'm still a bit stuck.
I understand that the component xml can be used to declare implementations of services (which i already use for my lower level jars) but also to inject service instances into a specific POJO.
Now my question: how do I get access to the osgi-managed POJO which has the services injected into it? Is it at all possible without introducing new dependencies or do I have to do it programmatically?
If the latter is the case can someone point me in the direction of some code to do it, in other words the component-equivalent of bundleContext.getServiceReference()?
UPDATE
To clarify, if you take the fifth part of this tutorial: http://www.vogella.com/articles/OSGiServices/article.html
He declares a component.xml file which uses reference binding to inject a service into the object QuoteConsumer.
Great, now how do I get an instance of QuoteConsumer that has the necessary services injected into it, I can't very well do "new QuoteConsumer()" right?
UPDATE2
Currently I am registering the instance created by osgi as a static variable which can be requested, I'm thinking this is not the best method especially because I can't set the constructor to private. (the latter would at least result in a true singleton)
Basically the Factory class has:
private void activate() {
instance = this;
}
UPDATE3
A full example of a factory:
public class Factory {
private static Factory instance;
public static Factory getInstance() {
if (instance == null)
instance = new Factory();
return instance;
}
private MyInterface implementation;
public void setMyInterface(MyInterface implementation) {
this.implementation = implementation;
}
public void unsetMyInterface(MyInterface implementation) {
implementation = null;
}
public MyInterface getMyInterface() {
if (implementation == null) {
ServiceLoader<MyInterface> serviceLoader = ServiceLoader.load(MyInterface.class);
Iterator<MyInterface> iterator = serviceLoader.iterator();
if (iterator.hasNext())
implementation = iterator.next();
else
implementation = new MyInterfaceStub();
}
return implementation;
}
#SuppressWarnings("unused")
private void activate() {
instance = this;
}
#SuppressWarnings("unused")
private void deactivate() {
instance = null;
}
}
Any client code can then do:
Factory.getInstance().getMyInterface();
and receive the OSGi loaded service, the SPI loaded one or a stub.
You can still manually set the service instance if necessary.
UPDATE4
To clarify further: this pattern is not meant for applications that are designed from the ground up to be run in an OSGi container but rather for low level libraries that have to run everywhere and even when on an OSGi container must not assume that all consumers are actually using OSGi.
You sound confused ... :-) A service is a replacement for static factories so your factory should not have to exist.
The whole idea of DS is that for each component:
wait until its dependencies are met
create an instance
bind the instance to its dependencies
call activate on the instance
register the instance as a service
So whenever you get a service managed by DS it already is injected (bound) with its dependencies. So as long as you stay with service dependencies you never need static factories ... The whole idea of service is that you do NOT have static factories and can only work with (injected) instances. One of the best parts of OSGi is that you rarely work with factories.
One remark about the requirement not to use annotations. The OSGi annotations are class time only, they do not create a runtime dependency. I strongly suggest to use them since they make services as lightweight as a class and are typesafe in contrast to XML.
One trick to use the annotations and not clutter your code is to create extend your implementation classes that you want to be an OSGi component and add the annotations on this class.
To access a service, you declare a reference to it from another component:
#Reference
public void setFoo(Foo foo) {
this.foo = foo;
}
You might find the Bndtools tutorial will help to clarify the concepts.
I'd say you are on the right track. You can use a static field if it is convenient.
The important thing is that you make the rest of your code deal with the QuoteConsumer appearing and disappearing. So, put in your activator the code to do what you need to do when the QuoteConsumer is available (register it in some field, call some initialization code, I don't know) and put in your deactivate the code you need to indicate that the QuoteConsumer is no longer available.
I'm trying to write a framework where arbitrary bean classes are injected with classes from my API, and they can interact with both those classes as well have triggered callbacks based on defined annotations. Here's an example bean:
#Experiment
static class TestExperiment {
private final HITWorker worker;
private final ExperimentLog log;
private final ExperimentController controller;
#Inject
public TestExperiment(
HITWorker worker,
ExperimentLog expLog,
ExperimentController controller
) {
this.worker = worker;
this.expLog = expLog;
this.controller = controller;
}
#SomeCallback
void callMeBack() {
... do something
log.print("I did something");
}
}
I'm trying to use Guice to inject these beans and handle the interdependencies between the injected classes. However, I have two problems:
One of the classes I pass in (HITWorker) is already instantiated. I couldn't see how to move this to a Provider without significantly complicating my code. It is also persistent, but not to the Guice-defined session or request scope, so I am managing it myself for now. (Maybe if the other issues are overcome I can try to put this in a provider.)
More importantly, I need a reference to the other injected classes so I can do appropriate things to them. When Guice injects them, I can't access them because the bean class is arbitrary.
Here's some really bad code for what I basically need to do, which I am sure is violating all the proper dependency injection concepts. Note that hitw is the only instance that I need to pass in, but I'm creating the other dependent objects as well because I need references to them. With this code, I'm basically only using Guice for its reflection code, not its dependency resolution.
private void initExperiment(final HITWorkerImpl hitw, final String expId) {
final ExperimentLogImpl log = new ExperimentLogImpl();
final ExperimentControllerImpl cont = new ExperimentControllerImpl(log, expManager);
// Create an experiment instance with specific binding to this HITWorker
Injector child = injector.createChildInjector(new AbstractModule() {
#Override
protected void configure() {
bind(HITWorker.class).toInstance(hitw);
bind(ExperimentLog.class).toInstance(log);
bind(ExperimentController.class).toInstance(cont);
}
});
Object experimentBean = child.getInstance(expClass);
expManager.processExperiment(expId, experimentBean);
// Initialize controller, which also initializes the log
cont.initialize(expId);
expManager.triggerStart(expId);
tracker.newExperimentStarted(expId, hitw, cont.getStartTime());
}
Am I screwed and just have to write my own injection code, or is there a way to do this properly? Also, should I just forget about constructor injection for these bean classes, since I don't know what they contain exactly anyway? Is there any way to get the dependencies if I am asking Guice to inject the bean instead of doing it myself?
For context, I've been reading the Guice docs and looking at examples for several days about this, to no avail. I don't think I'm a complete programming idiot, but I can't figure out how to do this properly!
Your "experiment" seems to be something like a "request" in the sense that it has a defined lifecycle and some associated stuff the experiment can pull in at will.
Therefore I think you should wrap all that into a custom scope as described in the docs about Custom Scopes. This matches your case in several points:
You can "seed" the scope with some objects (your HITWorker)
The lifecycle: do "enter scope" before you setup the experiment and "exit scope" after you finished your work.
Access to "shared" stuff like ExperimentLog and ExperimentController: Bind them to the scope. Then both the framework and the experiment instance can simple #Inject them and get the same instance.