I have most of the code written im just having some difficulty finishing up. I am supposed to create some code that will have a square randomly walk around on the drawing board until it walks off the screen. I can get it to work a little bit but i have a feeling it's not correct. Any help will be appreciate.
Here is an example of what it is supposed to look like
Here is my code so far the problem im most concerned about is the walkingRandom method it has stars by it
public class RandomWalk {
// DrawingPanel will have dimensions DIM by DIM
public static final int DIM = 400;
// Start the random walk in the center of the screen
public static final int CENTER = DIM / 2;
// how big should the cursor appear?
public static final int CURSOR_DIM = 10;
// how long should the cursor saty in one place?
public static final int SLEEP_TIME = 5; // milliseconds
public static void main( String[] args ) {
DrawingPanel panel = new DrawingPanel( DIM, DIM );
Random rand = new Random();
walkRandomly( panel, rand );
}
/**
* Draw a random walk on the panel.
* Stop as soon as you walk off the panel.
* Each random step should go only in one
* of these directions: left, right, up, down.
* #param panel a DrawingPanel to draw the
* random walk on
* #param rand a Java Random object to be
* used to generate random steps
*/
public static void walkRandomly( DrawingPanel panel, Random rand ) {
Graphics g = panel.getGraphics();
// start in center of panel
int x = CENTER;
int y = CENTER;
// Randomly step left, right, up, or down
// until cursor goes off screen.
while ( onScreen( x, y ) ) {
// Draw the cursor in BLACK
g.fillRect(x, y, CURSOR_DIM, CURSOR_DIM);
// Wait a bit.
panel.sleep( SLEEP_TIME );
// Show a shadow version of the cursor
g.setColor(Color.GRAY);
g.fillRect(x, y, CURSOR_DIM, CURSOR_DIM);
// Choose a new location for the cursor
//*********************************
if (rand.nextInt() < DIM - 300){
x--;
} else if (rand.nextInt() < DIM / 2){
x++;
} else if (rand.nextInt() < DIM - 100){
y--;
} else if (rand.nextInt() < DIM) {
y++;
}
//*********************************
// draw the cursor at its new location
g.setColor(Color.BLACK);
g.fillRect(x, y, CURSOR_DIM, CURSOR_DIM);
}
}
/**
* determine whether (x, y) is a point on the panel.
* #param x the x-coord of the cursor
* #param y the y-coord of the cursor
* #return true if (x,y) is on the screen,
* false if (x,y) is off the screen
*/
public static boolean onScreen( int x, int y ) {
// x/y high = 400, x/y low = 0
//*********************************
return (x <= DIM && x >= 0 || y <= DIM && y >= 0);
}
}
There's a few issues with your code. You did not quite clarify in your question, but I assume that:
All directions should have the same probability of occurring
The cursor can only move "full steps" i.e. it has to move by CURSOR_DIM at a time, not less (that's what seems to be happening in your example)
The problem is mainly in the method walkRandomly, I suggest that you select the next direction as follows:
// Choose a new location for the cursor
int direction = rand.nextInt(4); //0=left, 1=right, 2=up, 3=down
if (direction == 0){
x -= CURSOR_DIM; //The step should be equal to the cursor width, not 1
} else if (direction == 1){
x += CURSOR_DIM;
} else if (direction == 2){
//you usually subtract to go up, the origin being the upper-left corner
y -= CURSOR_DIM;
} else if (direction == 3) {
y += CURSOR_DIM;
}
There's two other issues:
You are drawing the cursor in black at the beginning and at the end of the loop, this is redundant. You could remove one of them and have the same result.
In the onScreen method, x and y values equaling DIM should return false, since usually the bounds of an image/array are 0 to DIM exclusive. Also you should replace the || by an AND, because the cursor should be within the x AND y range, not OR.
return (x < DIM && x >= 0 && y < DIM && y >= 0);
Hope it helps
Related
A program I'm modifying is supposed to use a drawing panel to randomly move a square, starting from the center, either left or right and use an array to tally the position it moves to while the square stays on screen (the panel is 400 x 400 and the square is 10 x 10, so there are only 40 possible positions it can move to) After the square goes off screen, I have to print a histogram that shows how many times the square moved to that index (i.e if the square moved from the x coordinate of 200 to 190, index 19 would get a tally) Here is my code:
import java.awt.*;
import java.util.*;
public class RandomWalkCountSteps {
// DrawingPanel will have dimensions HEIGHT by WIDTH
public static final int HEIGHT = 100;
public static final int WIDTH = 400;
public static final int CENTER_X = WIDTH / 2;
public static final int CENTER_Y = HEIGHT / 2;
public static final int CURSOR_DIM = 10;
public static final int SLEEP_TIME = 25; // milliseconds
public static void main( String[] args ) {
DrawingPanel panel = new DrawingPanel( WIDTH, HEIGHT );
Random rand = new Random();
walkRandomly( panel, rand );
}
public static void walkRandomly( DrawingPanel panel, Random rand ) {
Graphics g = panel.getGraphics();
int[] positionCounts = new int[ WIDTH / CURSOR_DIM ];
// start in center of panel
int x = CENTER_X;
int y = CENTER_Y;
// Draw the cursor in BLACK
g.fillRect(x, y, CURSOR_DIM, CURSOR_DIM);
// randomly step left, right, up, or down
while ( onScreen( x, y ) ) {
panel.sleep( SLEEP_TIME );
// Show a shadow version of the cursor
g.setColor(Color.GRAY);
g.fillRect(x, y, CURSOR_DIM, CURSOR_DIM);
if ( rand.nextBoolean() ) { // go left
x -= CURSOR_DIM;
}
else { // go right
x += CURSOR_DIM;
}
positionCounts[ x / CURSOR_DIM ]++;
histogram(positionCounts, x, y);
// draw the cursor at its new location
g.setColor(Color.BLACK);
g.fillRect(x, y, CURSOR_DIM, CURSOR_DIM);
}
}
public static boolean onScreen( int x, int y ) {
return 0 <= x && x < WIDTH
&& 0 <= y && y < HEIGHT;
}
public static void histogram(int[] positionCounts, int x, int y) {
if (onScreen(x, y) == false) {
for (int i = 0; i < WIDTH / CURSOR_DIM; i++) {
System.out.print(i + ": ");
for (int j = 1; j <= positionCounts[i]; j++) {
System.out.print("*");
}
System.out.println();
}
}
}
}
My problem was that I couldn't find a good place to initialize the array so that it wouldn't re-initialize every time I passed the x coordinate to the histogram method. Now that I thought I had it in the right place, I get this error message on both calls to histogram in the method walkRandomly "error: method histogram in class RandomWalkCountSteps cannot be applied to given types;" I'm fairly new to java and programming in general, so there's probably something I'm missing regarding arrays as parameters. Thanks in advance.
histogram takes two parameters, positionCounts of type int[] and x of type int. In walkRandomly, you call histogram twice: once with an argument positionCounts of type int[] and once with an argument x of type int. That’s why the compiler complains that the method ”cannot be applied to given types”: the method histogram(int[], int) can’t be applied to (called with) the given types, i.e., histogram(int[]) and histogram(int).
I’m not sure what you’re trying to do with this code, but I’d guess that you want remove the first call and change the second call (inside of the while loop) to histogram(positionCounts, x).
(You’ve edited your code, so my answer doesn’t make much sense.)
I have a project to have a red dot inside the first box of a maze i randomly generated and the dot is supposed to follow its way through the boxes and find the end of the maze. Now if it hits a dead end, its supposed to go back to where its path started and not go back down that path, that leads to a dead end. i made it so each box represents the #1, this way when the red dot travels over the box, it increments by 1, so it can realize where its been. its always supposed to go to the lowest number possible so it can never go back to the dead ends its already been to. i am able to reach the end of the maze but i come into 2 problems.
the method i wrote that does all this work is the solve() function. I cant understand why 2 things happen...
1st thing is that when the red dot comes to a branch of dead ends, sometimes itll just go to one dead end, to a different dead end , back to the same dead end.. traveling to the same 'numbers' when im trying to have it only go towards the boxes that have 1's or just the lower numbers.
2nd thing is that once it inevitably reaches the end of the maze.. the red dot goes into the green area, where i specifically say in the while loop, it can not be in a green box.
if M[y][x] = 0, its a green box and if its = 1 its a black box. anything higher than 1 will also be inside the box.
your help is highly appreciated as ive been stuck on this problem for hours and cant seem to find out the problem.
the problem persists in the solve() method
import java.awt.*;
import java.awt.event.*;
import java.awt.Graphics;
import javax.swing.*;
public class mazedfs extends JFrame implements KeyListener
{
/* default values: */
private static int bh = 16; // height of a graphical block
private static int bw = 16; // width of a graphical block
private int mh = 41; // height and width of maze
private int mw = 51;
private int ah, aw; // height and width of graphical maze
private int yoff = 40; // init y-cord of maze
private Graphics g;
private int dtime = 40; // 40 ms delay time
byte[][] M; // the array for the maze
public static final int SOUTH = 0;
public static final int EAST = 1;
public static final int NORTH = 2;
public static final int WEST = 3;
public static boolean showvalue = true; // affects drawblock
// args determine block size, maze height, and maze width
public mazedfs(int bh0, int mh0, int mw0)
{
bh = bw = bh0; mh = mh0; mw = mw0;
ah = bh*mh;
aw = bw*mw;
M = new byte[mh][mw]; // initialize maze (all 0's - walls).
this.setBounds(0,0,aw+10,10+ah+yoff);
this.setVisible(true);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
try{Thread.sleep(500);} catch(Exception e) {} // Synch with system
this.addKeyListener(this);
g = getGraphics(); //g.setColor(Color.red);
setup();
}
public void paint(Graphics g) {} // override automatic repaint
public void setup()
{
g.setColor(Color.green);
g.fill3DRect(0,yoff,aw,ah,true); // fill raised rectangle
g.setColor(Color.black);
// showStatus("Generating maze...");
digout(mh-2,mw-2); // start digging!
// digout exit
M[mh-1][mw-2] = M[mh-2][mw-1] = 1;
drawblock(mh-2,mw-1);
solve(); // this is the function you will write for parts 1 and 2
play(); // for part 3
}
public static void main(String[] args)
{
int blocksize = bh, mheight = 41, mwidth = 41; // need to be odd
if (args.length==3)
{
mheight=Integer.parseInt(args[0]);
mwidth=Integer.parseInt(args[1]);
blocksize=Integer.parseInt(args[2]);
}
mazedfs W = new mazedfs(blocksize,mheight,mwidth);
}
public void drawblock(int y, int x)
{
g.setColor(Color.black);
g.fillRect(x*bw,yoff+(y*bh),bw,bh);
g.setColor(Color.yellow);
// following line displays value of M[y][x] in the graphical maze:
if (showvalue)
g.drawString(""+M[y][x],(x*bw)+(bw/2-4),yoff+(y*bh)+(bh/2+6));
}
void drawdot(int y, int x)
{
g.setColor(Color.red);
g.fillOval(x*bw,yoff+(y*bh),bw,bh);
try{Thread.sleep(dtime);} catch(Exception e) {}
}
/////////////////////////////////////////////////////////////////////
/* function to generate random maze */
public void digout(int y, int x)
{
M[y][x] = 1; // digout maze at coordinate y,x
drawblock(y,x); // change graphical display to reflect space dug out
int dir = (int)(Math.random()*4);
for (int i=0;i<4;i++){
int [] DX = {0,0,2,-2};
int [] DY = {-2,2,0,0};
int newx = x + DX[dir];
int newy = y + DY[dir];
if(newx>=0 && newx<mw && newy>=0 && newy<mh && M[newy][newx]==0)
{
M[y+DY[dir]/2][x+DX[dir]/2] = 1;
drawblock(y+DY[dir]/2,x+DX[dir]/2);
digout(newy,newx);
}
dir = (dir + 1)%4;}
} // digout
public void solve() // This is the method i need help with.
{
int x=1, y=1;
drawdot(y,x);
while(y!=mh-1 || x!=mw-1 && M[y][x]!=0){
int min = 0x7fffffff;
int DX = 0;
int DY = 0;
if (y-1>0 && min>M[y-1][x] && M[y-1][x]!=0){
min = M[y-1][x];
DX = 0;
DY = -1;
}//ifNORTH
if (y+1>0 && min>M[y+1][x] && M[y+1][x]!=0){
min = M[y+1][x];
DY = 1;
DX = 0;
}//ifSOUTH
if (x-1>0 && min>M[y][x-1] && M[y][x-1]!=0){
min = M[y][x-1];
DX = -1;
DY = 0;
}//ifWEST
if (x+1>0 && min>M[y][x+1] && M[y][x+1]!=0){
min = M[y][x+1];
DX = 1;
DY = 0;
}//ifEAST
M[y][x]++;
drawblock(y,x);
x = x+DX;
y = y+DY;
drawdot(y,x);
}//while
// modify this function to move the dot to the end of the maze. That
// is, when the dot reaches y==mh-2, x==mw-2
} // solve
///////////////////////////////////////////////////////////////
/// For part three (save a copy of part 2 version first!), you
// need to implement the KeyListener interface.
public void play() // for part 3
{
// code to setup game
}
// for part 3 you may also define some other instance vars outside of
// the play function.
// for KeyListener interface
public void keyReleased(KeyEvent e) {}
public void keyTyped(KeyEvent e) {}
public void keyPressed(KeyEvent e) // change this one
{
int key = e.getKeyCode(); // code for key pressed
System.out.println("YOU JUST PRESSED KEY "+key);
}
} // mazedfs
////////////
// define additional classes (stack) you may need here.
The issue causing the second problem you are facing (dot moving to green box) lies in the while loop conditiony!=mh-1 || x!=mw-1 && M[y][x]!=0 . The condition evaluates to y!=mh-1 ||(x!=mw-1 && M[y][x]!=0) since && has higher precedence over the || and || just needs one of its operand to be true. In your case, y!=mh-1 is still ture at the end of maze. Hence the loop continues and the dot moves into green area. To fix the issue modify the condition as (y!=mh-1 || x!=mw-1) && M[y][x]!=0. Hope this helps.
i have a program that generates a random maze. In the maze a red dot is displayed and the red dot flashes on by each block in the maze. all the blocks in the maze are == 1 and if the red dot goes through that block, it increments ++. the red dot goes in the direction towards the lowest number, that way it wont stay in an infinite loop by a dead end. once it reaches the end, ive solved the maze.
This is where im stumped, im trying to print the red dot to find the optimal route all the way back to the beginning where it started. I used a stack class that i made to record all the y and x components of where the red dot traveled. im able to traceback every where the red dot has gone but that isnt the optimal solution.
My question is how could i print the red dot tracing back in only the optimal path. My idea of solving this would be to check and see if the coordinates of a stack where visited before, if so..find the last case where it was visited and print the red dot up until that point. that way itll never deal with the dead ends it traveled.
the method solve() is what contains the traceback and solving technique for the red dot to travel through the maze and back.
Im not the greatest programmer and im still learning how to use stacks, ive been stumped for hours and dont know how to approach this. Please be kind and explain how you would do it using the stack i made. Thank you
import java.awt.*;
import java.awt.event.*;
import java.awt.Graphics;
import javax.swing.*;
public class mazedfs extends JFrame implements KeyListener
{
/* default values: */
private static int bh = 16; // height of a graphical block
private static int bw = 16; // width of a graphical block
private int mh = 41; // height and width of maze
private int mw = 51;
private int ah, aw; // height and width of graphical maze
private int yoff = 40; // init y-cord of maze
private Graphics g;
private int dtime = 40; // 40 ms delay time
byte[][] M; // the array for the maze
public static final int SOUTH = 0;
public static final int EAST = 1;
public static final int NORTH = 2;
public static final int WEST = 3;
public static boolean showvalue = true; // affects drawblock
// args determine block size, maze height, and maze width
public mazedfs(int bh0, int mh0, int mw0)
{
bh = bw = bh0; mh = mh0; mw = mw0;
ah = bh*mh;
aw = bw*mw;
M = new byte[mh][mw]; // initialize maze (all 0's - walls).
this.setBounds(0,0,aw+10,10+ah+yoff);
this.setVisible(true);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
try{Thread.sleep(500);} catch(Exception e) {} // Synch with system
this.addKeyListener(this);
g = getGraphics(); //g.setColor(Color.red);
setup();
}
public void paint(Graphics g) {} // override automatic repaint
public void setup()
{
g.setColor(Color.green);
g.fill3DRect(0,yoff,aw,ah,true); // fill raised rectangle
g.setColor(Color.black);
// showStatus("Generating maze...");
digout(mh-2,mw-2); // start digging!
// digout exit
M[mh-1][mw-2] = M[mh-2][mw-1] = 1;
drawblock(mh-2,mw-1);
solve(); // this is the function you will write for parts 1 and 2
play(); // for part 3
}
public static void main(String[] args)
{
int blocksize = bh, mheight = 41, mwidth = 41; // need to be odd
if (args.length==3)
{
mheight=Integer.parseInt(args[0]);
mwidth=Integer.parseInt(args[1]);
blocksize=Integer.parseInt(args[2]);
}
mazedfs W = new mazedfs(blocksize,mheight,mwidth);
}
public void drawblock(int y, int x)
{
g.setColor(Color.black);
g.fillRect(x*bw,yoff+(y*bh),bw,bh);
g.setColor(Color.yellow);
// following line displays value of M[y][x] in the graphical maze:
if (showvalue)
g.drawString(""+M[y][x],(x*bw)+(bw/2-4),yoff+(y*bh)+(bh/2+6));
}
void drawdot(int y, int x)
{
g.setColor(Color.red);
g.fillOval(x*bw,yoff+(y*bh),bw,bh);
try{Thread.sleep(dtime);} catch(Exception e) {}
}
/////////////////////////////////////////////////////////////////////
/* function to generate random maze */
public void digout(int y, int x)
{
M[y][x] = 1; // digout maze at coordinate y,x
drawblock(y,x); // change graphical display to reflect space dug out
int dir = (int)(Math.random()*4);
for (int i=0;i<4;i++){
int [] DX = {0,0,2,-2};
int [] DY = {-2,2,0,0};
int newx = x + DX[dir];
int newy = y + DY[dir];
if(newx>=0 && newx<mw && newy>=0 && newy<mh && M[newy][newx]==0)
{
M[y+DY[dir]/2][x+DX[dir]/2] = 1;
drawblock(y+DY[dir]/2,x+DX[dir]/2);
digout(newy,newx);
}
dir = (dir + 1)%4;}
} // digout
/* Write a routine to solve the maze.
Start at coordinates x=1, y=1, and stop at coordinates
x=mw-1, y=mh-2. This coordinate was especially dug out
after the program called your digout function (in the "actionPerformed"
method).
*/
public void solve()
{
int x=1, y=1;
Stack yourstack = null;
drawdot(y,x);
while(y!=mh-2 || x!=mw-2 && M[y][x]!=0){
int min = 0x7fffffff;
int DX = 0;
int DY = 0;
if (y-1>0 && min>M[y-1][x] && M[y-1][x]!=0){
min = M[y-1][x];
DX = 0;
DY = -1;
}//ifNORTH
if (y+1>0 && min>M[y+1][x] && M[y+1][x]!=0){
min = M[y+1][x];
DY = 1;
DX = 0;
}//ifSOUTH
if (x-1>0 && min>M[y][x-1] && M[y][x-1]!=0){
min = M[y][x-1];
DX = -1;
DY = 0;
}//ifWEST
if (x+1>0 && min>M[y][x+1] && M[y][x+1]!=0){
min = M[y][x+1];
DX = 1;
DY = 0;
}//ifEAST
M[y][x]++;
drawblock(y,x);
x = x+DX;
y = y+DY;
drawdot(y,x);
yourstack = new Stack(y,x,yourstack); // creates new stack for each coordinate travelled
}//while
while(yourstack != null){
yourstack = yourstack.tail;
drawdot(yourstack.y,yourstack.x); // this will traceback every box ive been through
}//while
} // solve
class Stack{
int x;
int y;
Stack tail;
public Stack(int a, int b, Stack t){
y = a;
x=b;
tail=t;
}
}//stackclass
///////////////////////////////////////////////////////////////
/// For part three (save a copy of part 2 version first!), you
// need to implement the KeyListener interface.
public void play() // for part 3
{
// code to setup game
}
// for part 3 you may also define some other instance vars outside of
// the play function.
// for KeyListener interface
public void keyReleased(KeyEvent e) {}
public void keyTyped(KeyEvent e) {}
public void keyPressed(KeyEvent e) // change this one
{
int key = e.getKeyCode(); // code for key pressed
System.out.println("YOU JUST PRESSED KEY "+key);
}
} // mazedfs
////////////
// define additional classes (stack) you may need here.
when you trace your path back you currently just go back to your stack - but thats not the shortest path...
...whenever you can go back check the values of M around you:
byte valueOfFieldNorthOfXY = M[x][y-1]; //x/y is your current position
byte valueOfFieldWesthOfXY = M[x-1][y];
byte ...;
byte ...; //and so on...
while the first while-loop in your solve-methode simplay solves the maze by flooding it the second while-method is for going back...
and when i say flooding i mean: each time a field has been passed by the 'walker' the value of M[x][y] has been increased by 1 (when the 'walker' has walked 3x over field 5/6 then the value from M[5][6] = 3)
so when you go back from the end (#40/50) to the start (#1/1), you do this algorith:
1) i stand on x/y
2) i check the values north/east/south/west of me
2a) if i come from north, then i ignore the north field
2 ) ... and so on...
2d) if i come from west , then i ignore the west field
3) i pick that direction, where the value is the least
4) put the current field int your packPathStack and walk to
the 'best' direction
5) repeat (go back to Nr.1) until you are #1/1
example
? 4 ? //i'm standing at X (x/y)
2 x f //? are values from walls or not yet considerd
? ? ? //f is where i come from
--> i pick direction WEST(2) because thats less than NORTH(4)
implement this algorithm and you a NEW stack i call it yourPathBackStack
Stack yourPathBackStack = new Stack();
while(x != 1 && y != 1 ){ //x/y = 1/1 = start - do it until you are there (Nr. 5)
// 1) i stand on x/y
int x = yourPathBackStack.x;
int y = yourPathBackStack.y;
// 2) i check the values north/east/south/west of me
byte valueOfFieldNorthOfXY = ... ; //as seen above
// 2a) if i come from north, then i ignore the north field
if (yourstack.tail.x == x && yourstack.tail.y == y-1){
//check - i DO come from north
//make then valueOfFieldNorthOfXY very high
valueOfFieldNorthOfXY = 100; //it's the same as ignoring
}
// 2 ) ... and so on...
// 2d) if i come from west , then i ignore the west field
if (yourstack.tail.x == x-1 && ...// as seen above
// 3) i pick that direction, where the value is the least
int direction = NORTH; //lets simply start with north;
byte maxValue = 100;
if ( valueOfFieldNorthOfXY < maxValue ){ //First north
maxValue = valueOfFieldNorthOfXY;
direction = NORTH;
}
if ( valueOfFieldWestOfXY < maxValue ){ //Then east
maxValue = valueOfFieldWestOfXY ;
direction = WEST;
}
//then the also other directions
if ( value ... //as seen above
// 4) put the current field int your yourPathBackStack and walk to
// the 'best' direction
int newx = x;
int newy = y;
if (direction == NORTH){ //direction has been caclulated above
newy = newy - 1;
}
if (direc ... //with all other direction)
yourPathBackStack = new Stack(newx, newy, yourPathBackStack );
drawdot(yourPathBackStack.y,yourPathBackStack.x);
}
EDIT: Found solution. I've added it after the question.
I'm designing a game for Android and I'm trying to come up with ways to reduce the calculations at the render stage. I've got a method at the moment which takes all the metal and rubber blocks in the level and stores a texture id into a int[][] grid so that the renderer just reads that instead of calculating every blocks tiled textures every frame.
This works fine but now I'm trying to create a list of corner and straight pieces for the level edges and the laser blocks in the level. The level bounds and laser blocks are drawn using a set of straight laser textures and corner textures. I'm not sure how best to tackle working out where not to render lasers where blocks overlap with other blocks and with the level edges. The pictures below shows what I mean:
drawing
ingame
Here you can see the level edge (the L shaped laser path extending beyond the pictures edges) and three/two internal laser blocks (respectively to picture order). As far as I can tell I should create a similar grid to above but with booleans so any square that kills the player on upon touching (highlighted in red) is true and the safe squares are false.
I then first thought of going through all the true (red) cells in the grid and work out what the laser outline would look like using their neighbouring grid cells but I realised this could very difficult so I'm certain now that I use the false squares to find it out. I'm sure I could get a rough solution working by starting at the lower left square of the level bounds and iterate through the grid until I find a false tile (unless the first square is false) and then travel through the grid going right until I reach a true cell to the right and so I would turn left and continue up through the grid until a true is found above to turn left OR a false is found on the right to turn right. I'd repeat this process until I reach my starting false cell.
I came up with this while writing this question out lol. It seems like the easiest way so I guess my question is is this a good way to do it and how would I work out the laser blocks which touch each other but not touch the level bounds as the above method would only trace the outer most laser path.
Thank you for taking the time to read through this. I hope I've explained it well enough and I look forward to any light that can be shed on this subject.
SOLUTION:
public static boolean[][] laserField = new boolean[(int) Static.WORLD_SIZE][(int)Static.WORLD_SIZE];
public static List<LaserData> laserData = new ArrayList<LaserData>();
public static void calcLaserBoundryAreas() {
laserField = new boolean[(int) Level.levelBounds.bounds.width+5][(int) Level.levelBounds.bounds.height+5];
for (int i=0;i<laserField.length;i++) {
for (int j=0;j<laserField[i].length;j++) {
if(i==0 || i==laserField.length-1 || j==0 || j==laserField[i].length-1)
laserField[i][j] = true;
else
laserField[i][j] = false;
}
}
for (LaserBlock lBlock : lBlocks) {
int cols = (int)lBlock.bounds.width;
int rows = (int)lBlock.bounds.height;
float startX = lBlock.position.x - (cols-1f)/2f;
float startY = lBlock.position.y - (rows-1f)/2f;
for (int i=0;i<cols;i++) {
for (int j=0;j<rows;j++) {
addLaserCell(startX+i, startY+j);
}
}
}
addLaserData();
}
private static void addLaserCell(float x, float y) {
int cellX = (int)(x- Level.levelBounds.bounds.lowerLeft.x+2);
int cellY = (int)(y- Level.levelBounds.bounds.lowerLeft.y+2);
if (cellX < 0 || cellX > laserField.length-1) return;
if (cellY < 0 || cellY > laserField[cellX].length-1) return;
laserField[cellX][cellY] = true;
}
private static void addLaserData() {
laserData = new ArrayList<LaserData>();
for (int i=1;i<laserField.length-1;i++) {
for (int j=1;j<laserField[i].length-1;j++) {
if (!laserField[i][j]) {
checkNeighbours(i,j);
}
}
}
optimiseLaserData();
}
private static void checkNeighbours(int x, int y) {
boolean u = laserField[x][y+1];
boolean ul = laserField[x-1][y+1];
boolean l = laserField[x-1][y];
boolean bl = laserField[x-1][y-1];
boolean b = laserField[x][y-1];
boolean br = laserField[x+1][y-1];
boolean r = laserField[x+1][y];
boolean ur = laserField[x+1][y+1];
/*
* TOP LEFT CORNER
*/
float posX, posY;
posX = Level.levelBounds.bounds.lowerLeft.x+x-2.5f;
posY = Level.levelBounds.bounds.lowerLeft.y+y-1.5f;
if(u && ul && l)
laserData.add(new LaserData(posX, posY, true, 0, 0));
else if(!u && ul && l)
laserData.add(new LaserData(posX, posY, false, 1, 0));
else if(!u && ul && !l)
laserData.add(new LaserData(posX, posY, true, 0, 2));
/*
* BOTTOM LEFT CORNER
*/
posX = Level.levelBounds.bounds.lowerLeft.x+x-2.5f;
posY = Level.levelBounds.bounds.lowerLeft.y+y-2.5f;
if(l && bl && b)
laserData.add(new LaserData(posX, posY, true, 0, 1));
else if(!l && bl && b)
laserData.add(new LaserData(posX, posY, false, 1, 1));
else if(!l && bl && !b)
laserData.add(new LaserData(posX, posY, true, 0, 3));
/*
* BOTTOM RIGHT CORNER
*/
posX = Level.levelBounds.bounds.lowerLeft.x+x-1.5f;
posY = Level.levelBounds.bounds.lowerLeft.y+y-2.5f;
if(b && br && r)
laserData.add(new LaserData(posX, posY, true, 0, 2));
else if(!b && br && r)
laserData.add(new LaserData(posX, posY, false, 1, 2));
else if(!b && br && !r)
laserData.add(new LaserData(posX, posY, true, 0, 0));
/*
* TOP RIGHT CORNER
*/
posX = Level.levelBounds.bounds.lowerLeft.x+x-1.5f;
posY = Level.levelBounds.bounds.lowerLeft.y+y-1.5f;
if(r && ur && u)
laserData.add(new LaserData(posX, posY, true, 0, 3));
else if(!r && ur && u)
laserData.add(new LaserData(posX, posY, false, 1, 3));
else if(!r && ur && !u)
laserData.add(new LaserData(posX, posY, true, 0, 1));
}
private static void optimiseLaserData() {
List<LaserData> optiLaserData = new ArrayList<LaserData>();
for(LaserData ld : laserData) {
if(ld.cornerPiece)
optiLaserData.add(ld);
else if(ld.dir == 0 || ld.dir == 2){
float x = ld.x;
float bottomY = ld.y;
float topY = ld.y;
float count = 1;
while (searchStraightLaserData(laserData, x, topY+1, ld.dir)) {
count++;
topY++;
}
while (searchStraightLaserData(laserData, x, bottomY-1, ld.dir)) {
count++;
bottomY--;
}
float centerY = bottomY + (topY-bottomY)/2;
if(!searchStraightLaserData(optiLaserData, x, centerY, ld.dir))
optiLaserData.add(new LaserData(x, centerY, false, count, ld.dir));
} else {
float y = ld.y;
float leftX = ld.x;
float rightX = ld.x;
float count = 1;
while (searchStraightLaserData(laserData, rightX+1, y, ld.dir)) {
count++;
rightX++;
}
while (searchStraightLaserData(laserData, leftX-1, y, ld.dir)) {
count++;
leftX--;
}
float centerX = leftX + (rightX-leftX)/2;
if(!searchStraightLaserData(optiLaserData, centerX, y, ld.dir))
optiLaserData.add(new LaserData(centerX, y, false, count, ld.dir));
}
}
laserData = optiLaserData;
}
private static boolean searchStraightLaserData(List<LaserData> data, float x, float y, int dir) {
for(LaserData ld : data)
if(ld.x == x && ld.y == y && ld.dir == dir && !ld.cornerPiece)
return true;
return false;
}
These methods first create a boolean grid that is the size of the level edge bounds with a 1 square extra edge on each side. This is initialised to false to represent safe areas and the extra edge is set to true so that we have a kind of hollow box. The extra edge helps later by eliminating the need to check for incorrect indices on the laserField.
After the level extents are mapped to a grid individual cells are changed to true where ever is covered by a laser block.
Once the boolean grid is fully mapped it then iterates through each grid cell and when it finds a cell which is false it passes it grid coordinates to the next method which looks at 12 different neighbour patterns to determine if any lasers should be rendered around this cell. The LaserData constructor takes the following args (float x, float y, boolean cornerPiece, float length, int direction)
The last section does a brute force search to check if any adjacent straight pieces can be replaced by a single longer straight piece to save rendering extra sprites.
The renderer can then just read through the laserData list each frame and it has all the information it needs to render the correct texture, its position, length etc...
NOTE: The width and height of the Level bounds are 3 units smaller than the actual playing area to account for width of player outside the boundry. That's where the levelBounds.lowerleft+5, +2 and + 1.5f etc... come from. It's a little hacky I know but it's old code and I daren't touch it xD
Is there a reason that they decided not to add the contains method (for Path) in Android?
I'm wanting to know what points I have in a Path and hoped it was easier than seen here:
How can I tell if a closed path contains a given point?
Would it be better for me to create an ArrayList and add the integers into the array? (I only check the points once in a control statement) Ie. if(myPath.contains(x,y)
So far my options are:
Using a Region
Using an ArrayList
Extending the Class
Your suggestion
I'm just looking for the most efficient way I should go about this
I came up against this same problem a little while ago, and after some searching, I found this to be the best solution.
Java has a Polygon class with a contains() method that would make things really simple. Unfortunately, the java.awt.Polygonclass is not supported in Android. However, I was able to find someone who wrote an equivalent class.
I don't think you can get the individual points that make up the path from the Android Path class, so you will have to store the data in a different way.
The class uses a Crossing Number algorithm to determine whether or not the point is inside of the given list of points.
/**
* Minimum Polygon class for Android.
*/
public class Polygon
{
// Polygon coodinates.
private int[] polyY, polyX;
// Number of sides in the polygon.
private int polySides;
/**
* Default constructor.
* #param px Polygon y coods.
* #param py Polygon x coods.
* #param ps Polygon sides count.
*/
public Polygon( int[] px, int[] py, int ps )
{
polyX = px;
polyY = py;
polySides = ps;
}
/**
* Checks if the Polygon contains a point.
* #see "http://alienryderflex.com/polygon/"
* #param x Point horizontal pos.
* #param y Point vertical pos.
* #return Point is in Poly flag.
*/
public boolean contains( int x, int y )
{
boolean oddTransitions = false;
for( int i = 0, j = polySides -1; i < polySides; j = i++ )
{
if( ( polyY[ i ] < y && polyY[ j ] >= y ) || ( polyY[ j ] < y && polyY[ i ] >= y ) )
{
if( polyX[ i ] + ( y - polyY[ i ] ) / ( polyY[ j ] - polyY[ i ] ) * ( polyX[ j ] - polyX[ i ] ) < x )
{
oddTransitions = !oddTransitions;
}
}
}
return oddTransitions;
}
}
I would just like to comment on #theisenp answer: The code has integer arrays and if you look on the algorithm description webpage it warns against using integers instead of floating point.
I copied your code above and it seemed to work fine except for some corner cases when I made lines that didnt connect to themselves very well.
By changing everything to floating point, I got rid of this bug.
Tried the other answer, but it gave an erroneous outcome for my case. Didn't bother to find the exact cause, but made my own direct translation from the algorithm on:
http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
Now the code reads:
/**
* Minimum Polygon class for Android.
*/
public class Polygon
{
// Polygon coodinates.
private int[] polyY, polyX;
// Number of sides in the polygon.
private int polySides;
/**
* Default constructor.
* #param px Polygon y coods.
* #param py Polygon x coods.
* #param ps Polygon sides count.
*/
public Polygon( int[] px, int[] py, int ps )
{
polyX = px;
polyY = py;
polySides = ps;
}
/**
* Checks if the Polygon contains a point.
* #see "http://alienryderflex.com/polygon/"
* #param x Point horizontal pos.
* #param y Point vertical pos.
* #return Point is in Poly flag.
*/
public boolean contains( int x, int y )
{
boolean c = false;
int i, j = 0;
for (i = 0, j = polySides - 1; i < polySides; j = i++) {
if (((polyY[i] > y) != (polyY[j] > y))
&& (x < (polyX[j] - polyX[i]) * (y - polyY[i]) / (polyY[j] - polyY[i]) + polyX[i]))
c = !c;
}
return c;
}
}
For completeness, I want to make a couple notes here:
As of API 19, there is an intersection operation for Paths. You could create a very small square path around your test point, intersect it with the Path, and see if the result is empty or not.
You can convert Paths to Regions and do a contains() operation. However Regions work in integer coordinates, and I think they use transformed (pixel) coordinates, so you'll have to work with that. I also suspect that the conversion process is computationally intensive.
The edge-crossing algorithm that Hans posted is good and quick, but you have to be very careful for certain corner cases such as when the ray passes directly through a vertex, or intersects a horizontal edge, or when round-off error is a problem, which it always is.
The winding number method is pretty much fool proof, but involves a lot of trig and is computationally expensive.
This paper by Dan Sunday gives a hybrid algorithm that's as accurate as the winding number but as computationally simple as the ray-casting algorithm. It blew me away how elegant it was.
My code
This is some code I wrote recently in Java which handles a path made out of both line segments and arcs. (Also circles, but those are complete paths on their own, so it's sort of a degenerate case.)
package org.efalk.util;
/**
* Utility: determine if a point is inside a path.
*/
public class PathUtil {
static final double RAD = (Math.PI/180.);
static final double DEG = (180./Math.PI);
protected static final int LINE = 0;
protected static final int ARC = 1;
protected static final int CIRCLE = 2;
/**
* Used to cache the contents of a path for pick testing. For a
* line segment, x0,y0,x1,y1 are the endpoints of the line. For
* a circle (ellipse, actually), x0,y0,x1,y1 are the bounding box
* of the circle (this is how Android and X11 like to represent
* circles). For an arc, x0,y0,x1,y1 are the bounding box, a1 is
* the start angle (degrees CCW from the +X direction) and a1 is
* the sweep angle (degrees CCW).
*/
public static class PathElement {
public int type;
public float x0,y0,x1,y1; // Endpoints or bounding box
public float a0,a1; // Arcs and circles
}
/**
* Determine if the given point is inside the given path.
*/
public static boolean inside(float x, float y, PathElement[] path) {
// Based on algorithm by Dan Sunday, but allows for arc segments too.
// http://geomalgorithms.com/a03-_inclusion.html
int wn = 0;
// loop through all edges of the polygon
// An upward crossing requires y0 <= y and y1 > y
// A downward crossing requires y0 > y and y1 <= y
for (PathElement pe : path) {
switch (pe.type) {
case LINE:
if (pe.x0 < x && pe.x1 < x) // left
break;
if (pe.y0 <= y) { // start y <= P.y
if (pe.y1 > y) { // an upward crossing
if (isLeft(pe, x, y) > 0) // P left of edge
++wn; // have a valid up intersect
}
}
else { // start y > P.y
if (pe.y1 <= y) { // a downward crossing
if (isLeft(pe, x, y) < 0) // P right of edge
--wn; // have a valid down intersect
}
}
break;
case ARC:
wn += arcCrossing(pe, x, y);
break;
case CIRCLE:
// This should be the only element in the path, so test it
// and get out.
float rx = (pe.x1-pe.x0)/2;
float ry = (pe.y1-pe.y0)/2;
float xc = (pe.x1+pe.x0)/2;
float yc = (pe.y1+pe.y0)/2;
return (x-xc)*(x-xc)/rx*rx + (y-yc)*(y-yc)/ry*ry <= 1;
}
}
return wn != 0;
}
/**
* Return >0 if p is left of line p0-p1; <0 if to the right; 0 if
* on the line.
*/
private static float
isLeft(float x0, float y0, float x1, float y1, float x, float y)
{
return (x1 - x0) * (y - y0) - (x - x0) * (y1 - y0);
}
private static float isLeft(PathElement pe, float x, float y) {
return isLeft(pe.x0,pe.y0, pe.x1,pe.y1, x,y);
}
/**
* Determine if an arc segment crosses the test ray up or down, or not
* at all.
* #return winding number increment:
* +1 upward crossing
* 0 no crossing
* -1 downward crossing
*/
private static int arcCrossing(PathElement pe, float x, float y) {
// Look for trivial reject cases first.
if (pe.x1 < x || pe.y1 < y || pe.y0 > y) return 0;
// Find the intersection of the test ray with the arc. This consists
// of finding the intersection(s) of the line with the ellipse that
// contains the arc, then determining if the intersection(s)
// are within the limits of the arc.
// Since we're mostly concerned with whether or not there *is* an
// intersection, we have several opportunities to punt.
// An upward crossing requires y0 <= y and y1 > y
// A downward crossing requires y0 > y and y1 <= y
float rx = (pe.x1-pe.x0)/2;
float ry = (pe.y1-pe.y0)/2;
float xc = (pe.x1+pe.x0)/2;
float yc = (pe.y1+pe.y0)/2;
if (rx == 0 || ry == 0) return 0;
if (rx < 0) rx = -rx;
if (ry < 0) ry = -ry;
// We start by transforming everything so the ellipse is the unit
// circle; this simplifies the math.
x -= xc;
y -= yc;
if (x > rx || y > ry || y < -ry) return 0;
x /= rx;
y /= ry;
// Now find the points of intersection. This is simplified by the
// fact that our line is horizontal. Also, by the time we get here,
// we know there *is* an intersection.
// The equation for the circle is x²+y² = 1. We have y, so solve
// for x = ±sqrt(1 - y²)
double x0 = 1 - y*y;
if (x0 <= 0) return 0;
x0 = Math.sqrt(x0);
// We only care about intersections to the right of x, so
// that's another opportunity to punt. For a CCW arc, The right
// intersection is an upward crossing and the left intersection
// is a downward crossing. The reverse is true for a CW arc.
if (x > x0) return 0;
int wn = arcXing1(x0,y, pe.a0, pe.a1);
if (x < -x0) wn -= arcXing1(-x0,y, pe.a0, pe.a1);
return wn;
}
/**
* Return the winding number of the point x,y on the unit circle
* which passes through the arc segment defined by a0,a1.
*/
private static int arcXing1(double x, float y, float a0, float a1) {
double a = Math.atan2(y,x) * DEG;
if (a < 0) a += 360;
if (a1 > 0) { // CCW
if (a < a0) a += 360;
return a0 + a1 > a ? 1 : 0;
} else { // CW
if (a0 < a) a0 += 360;
return a0 + a1 <= a ? -1 : 0;
}
}
}
Edit: by request, adding some sample code that makes use of this.
import PathUtil;
import PathUtil.PathElement;
/**
* This class represents a single geographic area defined by a
* circle or a list of line segments and arcs.
*/
public class Area {
public float lat0, lon0, lat1, lon1; // bounds
Path path = null;
PathElement[] pathList;
/**
* Return true if this point is inside the area bounds. This is
* used to confirm touch events and may be computationally expensive.
*/
public boolean pointInBounds(float lat, float lon) {
if (lat < lat0 || lat > lat1 || lon < lon0 || lon > lon1)
return false;
return PathUtil.inside(lon, lat, pathList);
}
static void loadBounds() {
int n = number_of_elements_in_input;
path = new Path();
pathList = new PathElement[n];
for (Element element : elements_in_input) {
PathElement pe = new PathElement();
pathList[i] = pe;
pe.type = element.type;
switch (element.type) {
case LINE: // Line segment
pe.x0 = element.x0;
pe.y0 = element.y0;
pe.x1 = element.x1;
pe.y1 = element.y1;
// Add to path, not shown here
break;
case ARC: // Arc segment
pe.x0 = element.xmin; // Bounds of arc ellipse
pe.y0 = element.ymin;
pe.x1 = element.xmax;
pe.y1 = element.ymax;
pe.a0 = a0; pe.a1 = a1;
break;
case CIRCLE: // Circle; hopefully the only entry here
pe.x0 = element.xmin; // Bounds of ellipse
pe.y0 = element.ymin;
pe.x1 = element.xmax;
pe.y1 = element.ymax;
// Add to path, not shown here
break;
}
}
path.close();
}