In an interview I was given this questions:
Write a function to print first n prime numbers
The function looks like this:
Live on ideone
while (true) {
boolean isPrime = true;
for (int divisor = 2; divisor <= (int)(Math.sqrt(number)); divisor++) {
if (number % divisor == 0) {
isPrime = false;
break;
}
}
number++;
if(isPrime) {
System.out.print(number + " ");
primes++;
}
if (primes == n)
break;
}
A simple complexity analysis could led to O(n√n)
But the interviewer said that the outerloop doesn't go to simply n because for example to find the first 100 prime numbers we need to loop to 541 (that is the 100th prime numbers)
So how do we express the time complexity given this?
Answering this takes high math, namely the distribution law of the prime numbers. It tells you (https://en.wikipedia.org/wiki/Prime_number_theorem) that the value of the n-th prime number is about n.log(n).
Then your complexity is O(n√n.log(n)√log(n)).
I may turn out that this bound is pessimistic, because not all iterations run until √n. For instance, even numbers are detected immediately. For a tighter bound, you would need the distribution law of the smallest factor of the integers.
Related
Okay my issue is less of how to figure out if a number is prime, because I think I figured that out, but more of how to get it to display properly.
Here's my code:
public static void main(String[] args) {
// Declare Variables
int randomNumbers = 0;
int sum = 0;
//Loop for number generation and print out numbers
System.out.print("The five random numbers are: ");
for (int i = 0; i <= 4; i++)
{
randomNumbers = (int)(Math.random()*20);
sum += randomNumbers;
if (i == 4) {
System.out.println("and " + randomNumbers + ".");
}
else {
System.out.print(randomNumbers + ", ");
}
}
//Display Sum
System.out.println("\nThe sum of these five numbers is " + sum + ".\n");
//Determine if the sum is prime and display results
for(int p = 2; p < sum; p++) {
if(sum % p == 0)
System.out.println("The sum is not a prime number.");
else
System.out.println("The sum is a prime number.");
break;
}
}
}
Now my problem is, if the number ends up being something like 9, it'll say it is a prime number, which it is not. I think the issue is that the break is stopping it after one loop so it's not incrementing variable p so it's only testing dividing by 2 (I think). But if I remove the break point it will print out "The sum is/is not a prime number" on every pass until it exits the loop. Not sure what to do here.
Your method for finding if your number is prime is the correct method.
To make it so that it does not consistently print out whether or not the number is prime, you could have an external variable, which represents whether or not the number is prime.
Such as
boolean prime = true;
for (int p = 2; p < sum; p++) {
if (sum % p == 0) {
prime = false;
break;
}
}
if (prime)
System.out.println("The sum is a prime number.");
else
System.out.println("The sum is not a prime number.");
By doing this method the program will assume the number is prime until it proves that wrong. So when it finds it is not prime it sets the variable to false and breaks out of the loop.
Then after the loop finishes you just have to print whether or not the number was prime.
A way that you could make this loop faster is to go from when p = 2 to when p = the square root of sum. So using this method your for loop will look like this:
double sq = Math.sqrt((double)sum);
for (int p = 2; p < sq; p++) {
//Rest of code goes here
}
Hope this helps
You need to store whether or not the number is prime in a boolean outside of the loop:
//Determine if the sum is prime and display results
boolean isPrime = true;
for(int p = 2; p < sum; p++) {
if(sum % p == 0){
isPrime = false;
break;
}
}
if(isPrime){
System.out.println("The sum is a prime number.");
} else {
System.out.println("The sum is not a prime number.");
}
You are right, currently your code tests dividing by two, and the break command is stopping after one loop.
After the first go of your loop (p==2), the break will always stop the loop.
The fastest fix to your code will change the loop part like this:
boolean isPrime=true;
for(int p = 2; p < sum; p++) {
if(sum % p == 0) {
isPrime=false;
System.out.println("The sum is not a prime number.");
break;
}
}
if (isPrime)
System.out.println("The sum is a prime number.");
This code can be improved for efficiency and for code elegance.
For efficiency, you don't need to check divisibility by all numbers smaller than sum, it's enough to check all numbers smaller by square-root of sum.
For better code, create a seperate function to test if a number is prime.
Here is an example that implements both.
// tests if n is prime
public static boolean isPrime(int n) {
if (n<2) return false;
for(int p = 2; p < Math.sqrt(n); p++) {
if(n % p == 0) return false; // enough to find one devisor to show n is not a prime
}
return true; // no factors smaller than sqrt(n) were found
}
public static void main(String []args){
...
System.out.println("sum is "+ sum);
if (isPrime(sum))
System.out.println("The sum is a prime number.");
else
System.out.println("The sum is not a prime number.");
}
Small prime numbers
Use Apache Commons Math primality test, method is related to prime numbers in the range of int. You can find source code on GitHub.
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-math3</artifactId>
<version>3.6.1</version>
</dependency>
// org.apache.commons.math3.primes.Primes
Primes.isPrime(2147483629);
It uses the Miller-Rabin probabilistic test in such a way that a
result is guaranteed: it uses the firsts prime numbers as successive
base (see Handbook of applied cryptography by Menezes, table 4.1 / page 140).
Big prime numbers
If you are looking for primes larger than Integer.MAX_VALUE:
Use BigInteger#isProbablePrime(int certainty) to pre-verify the prime candidate
Returns true if this BigInteger is probably prime, false if it's
definitely composite. If certainty is ≤ 0, true is returned.
Parameters: certainty - a measure of the uncertainty that the caller
is willing to tolerate: if the call returns true the probability that
this BigInteger is prime exceeds (1 - 1/2certainty). The execution
time of this method is proportional to the value of this parameter.
Next use "AKS Primality Test" to check whether the candidate is indeed prime.
So many answers have been posted so far which are correct but none of them is optimized. That's why I thought to share the optimized code to determine prime number here with you. Please have a look at below code snippet...
private static boolean isPrime(int iNum) {
boolean bResult = true;
if (iNum <= 1 || iNum != 2 && iNum % 2 == 0) {
bResult = false;
} else {
int iSqrt = (int) Math.sqrt(iNum);
for (int i = 3; i < iSqrt; i += 2) {
if (iNum % i == 0) {
bResult = false;
break;
}
}
}
return bResult;
}
Benefits of above code-:
It'll work for negative numbers and 0 & 1 as well.
It'll run the for loop only for odd numbers.
It'll increment the for loop variable by 2 rather than 1.
It'll iterate the for loop only upto square root of number rather than upto number.
Explanation-:
I have mentioned the four points above which I'll explain one by one. Code must be appropriately written for the invalid inputs rather the only for valid input. Whatever answers have been written so far are restricted to valid range of input in which number iNum >=2.
We should be aware that only odd numbers can be prime, Note-: 2 is the only one even prime. So we must not run for loop for even numbers.
We must not run for loop for even values of it's variable i as we know that only even numbers can be devided by even number. I have already mentioned in the above point that only odd numbers can be prime except 2 as even. So no need to run code inside for loop for even values of variable i in for.
We should iterate for loop only upto square root of number rather than upto number. Few of the answers has implemented this point but still I thought to mention it here.
With most efficient time Complexity ie O(sqrt(n)) :
public static boolean isPrime(int num) {
for (int i = 2; i * i <= num; i++) {
if (num % i == 0) {
return false;
}
}
return true;
}
you can use the Java BigInteger class' isProbablePrime method to determine and print whether the sum is prime or not prime in an easy way.
BigInteger number = new BigInteger(sum);
if(number.isProbablePrime(1)){
System.out.println("prime");
}
else{
System.out.println("not prime");
}
You can read more about this method here https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html#isProbablePrime%28int%29
I don't understand this 'for' loop in Java
This loop is just to check if a number is prime or not. I understand the first statement because 1 is not a prime number but it's what happens in the 'for' statement. Why is 'primeNumber' being divided by two and why is the second 'if' calculating for a remainder of zero? how does this code help to confirm a prime number? what is it doing?
public static boolean isPrime (int primeNumber) {
if (primeNumber == 1) {
return false;
}
for (int primeDivider=2; primeDivider <= primeNumber/2; primeDivider++) {
if (primeNumber % primeDivider == 0) {
return false;
}
}
return true;
}
A prime number can only be divided by itself and one. 7 is prime because only 1 and 7 divide into 7. Also 8 is not prime because as well as 1 and 8, both 2 and 4 divide into 8.
Look at the for loop and see what values primeDivider takes: 2, 3, 4, 5, ... The loop tries each of these in turn to see if it divides into the number you are testing. If it divides evenly, with a remainder 0, then the number being tested is not prime and the method returns false. If none of the numbers divide, then the number being tested in prime and the method returns true. As an aside, primeNumber is a bad variable name. Something like possiblePrime would be better. The number being tested might not be prime.
The primeDivider sequence stops at half the number being tested. If a number is not prime (a composite number) then at least one of its divisors is guaranteed to be less than or equal to half the number.
As others have said, this is not a very efficient test. Here is a slightly more efficient version for you to study:
public static boolean isPrime (int possiblePrime) {
// Test negatives, zero and 1.
if (possiblePrime <= 1) {
return false;
}
// Test even numbers
if (possiblePrime % 2 == 0) {
// 2 is the only even prime.
return possiblePrime == 2;
}
// Test odd numbers >= 3.
int limit = possiblePrime / 2;
for (int primeDivider = 3; primeDivider <= limit; primeDivider += 2) {
if (possiblePrime % primeDivider == 0) {
return false;
}
}
// Only prime numbers reach this point.
return true;
}
By treating odd and even numbers separately, you can catch all the even numbers with a single test and by stepping primeDivider by 2 each time, roughly halve the time taken for odd numbers.
As billjamesdev says, that can be made even more efficient by using:
int limit = (int)Math.floor( Math.sqrt( possiblePrime ));
A composite number will always have a divisor, other than 1, less than or equal to its square root.
I know this is a classic problem. I solved it in Java. I have my solution below. However, when I used this solution in codefights.com, It went beyond the execution time limit. I would appreciate if anyone could give me suggestions on improving this code in any way possible. Please feel free to criticize my code so that I can improve on my coding skills. Thanks
You're given number n.
Return n as a product of its prime factors.
Example
For n = 22 the output should be "2*11".
For n = 120 the output should be "2*2*2*3*5".
For n = 17194016 the output should be "2*2*2*2*2*7*59*1301".
[input] integer n
An integer number smaller than 109. [output] string
The Prime factors of n which splitted by * symbol. prime factors
should be in increasing order.
Solution (JAVA):
public String primefactors(int n) {
String factors = "";
for (int i = 2; i <= n / 2; i++) {
if (isPrime(i)) {
while (n % i == 0) {
n /= i;
if (isPrime(n) && n != 1) {
factors = factors + Integer.valueOf(i).toString() + "*"
+ Integer.valueOf(n).toString();
break;
} else if (n == 1)
factors = factors + Integer.valueOf(i).toString();
else
factors = factors + Integer.valueOf(i).toString() + "*";
}
}
}
return factors;
}
public boolean isPrime(int n) {
boolean prime = true;
if (n == 1)
return false;
else if (n % 2 == 0 && n!=2)
return false;
else if (n % 3 == 0 && n!=3)
return false;
else {
for (int j = 2; j < n / 2; j++) {
if (n % j == 0) {
return false;
}
}
}
return prime;
}
Since n is smaller than a fixed number (109), simply use a table containing all prims <= 109, instead of generating them dynamically. Or atleast generate the prims first using the sieve of erathostenes or atkin. The hardcoded table would be preferable, but using a sieve for generating the table dynamically would aswell speed things up alot. The isPrime() function you implemented is a performance killer.
The function isPrime() is called too much times in primefactors. For example, i == 2 and there are many divisors 2 in n. The top call (isPrime(i)) is fine. However, inside the loop while (n % i == 0) you check isPrime(n) after each dividing n /= 2;. So, if initial n is 100 the function isPrime() is called for 50 and on the next loop for 25. That does not make any sense. I think that it is the biggest problem here, since even if isPrime works in linear time it is too much to call it many times in the internal loop.
It is possible to exit from the loop for i in two cases: n is equal 1 after divisions or n is for sure prime if i is larger than sqrt(n).
public String primefactors(int n) {
String factors = "";
int max_divisor = sqrt(n);
for (int i = 2; i <= max_divisor; i++) {
if (isPrime(i)) {
while (n % i == 0) {
n /= i;
if (n == 1)
factors = factors + Integer.valueOf(i).toString();
else
factors = factors + Integer.valueOf(i).toString() + "*";
}
max_divisor = sqrt(n);
}
}
// check for the last prime divisor
if (n != 1)
factors = factors + Integer.valueOf(n).toString();
return factors;
}
Even after that improvement (and sqrt(n) as the max limit in isPrime()) your algorithm will have linear complexity O(n), since there are at most sqrt(n) loops for i and the maximum number of probes for prime in isPrime is also sqrt(n).
Yes, it can be done better by choosing better algorithms for isPrime(). Even if you are not allowed to use hardcoded table of prime numbers it is possible to generate such look up table in runtime (if there are enough memory). So, it is possible to use automatically generated list of primes organized in ascending order to probe given number up to sqrt(n). If i becomes larger than sqrt(n) it means that the next prime is found and it should be appended to the look up table and isPrime() should return true.
Example
Suppose isPrime is called for 113. At that moment the look up table has a list of previous prime numbers: 2,3,5,7,11,13.... So, we try to divide 113 by items from that list up to sqrt(113) (while (i <= 10)). After trying 2,3,5,7 the next item on the list 11 is too large, so 113 is appended to the list of primes and the function returns true.
The other algorithms may give better performance in the worst case. For example the sieve of Eratosthenes or sieve of Atkin can be used to effectively precomputed list of prime numbers up to given n with the best O(n) complexity for the best implementation. Here you need to find all primes up to sqrt(n), so it takes O(sqrt(n)) to generate such list. Once such list is generated you need to try to divide your input by numbers is the list that takes at most sqrt(n) probes. So, the algorithm complexity is O(sqrt(n)). However, suppose that your input is 1024 that is 2 to the power of 10. In that case the first algorithm will be better, since it will not go to primes larger than 2.
Do you really need the function isPrime()?
With flexible thinking If we look closer it appears that you do not have to search for all primes in some range. You only needed to find all prime divisors of one given integer. However if we try to divide n by all integers in range up to sqrt(n) that is also good solution. Even if such integer is not prime it will be skipped due to the condition n % i == 0, since all primes lower than the integer under test are already removed from n, so that simple modular division does here the same as isPrime(). The full solution with O(sqrt(n)) complexity:
public String primefactors(int n) {
String factors = "";
int max_divisor = sqrt(n);
for (int i = 2; i <= max_divisor; i++) {
while (n % i == 0) {
n /= i;
max_divisor = sqrt(n);
if (n == 1)
factors = factors + Integer.valueOf(i).toString();
else
factors = factors + Integer.valueOf(i).toString() + "*";
}
}
// check for the last prime divisor
if (n != 1)
factors = factors + Integer.valueOf(n).toString();
return factors;
}
It is also possible to split the function to avoid if (n == 1) check in the inner loop, however it does not change the algorithm complexity.
I am trying to print out all the prime factors of a number. My code is as follows:
public static boolean isPrime(long n){
long i = n;
while (i > 0){
if (n % i == 0 && !(i == 1 || i == n)){
return false;
}
i--;
}
return true;
}
public static void primeFactors(long n){
long i = n;
while (i > 0){
if (isPrime(i)){
System.out.println(i);
}
i--;
}
}
This code works for small numbers: 5, 5000,e.g. When I input 600851475143 to the method, my program runs and nothing is output. Why is this happening?
Your primality test function is horrible.
Quick win: count forwards not backwards. Currently you'll count through at lease half your number until you find a factor! That probably accounts for the delay you are observing.
Bit better: count odd numbers up to the square root.
Perhaps better still: count prime numbers up to the square root. precompute those using a sieve depending on the requirements.
The other answers have focused on your function isPrime, which is inefficient. I will instead focus on your function primeFactors which is incorrect. Indeed, you can see that it prints primes up to n in reverse order, rather than the prime factors of n. Instead, do
public static void primeFactors(long n) {
// Handle factors of 2
while (n%2==0) {
System.out.println(2);
n /= 2;
}
// Handle all odd prime factors except the largest
for (long p = 3; p*p <= n; p += 2) {
while (n%p == 0) {
System.out.println(p);
n /= p;
}
}
// Handle the largest prime factor
if (n > 1) {
System.out.println(2);
}
}
You might notice that isPrime is never used! In fact it is not needed: as long as they are removed as you find them, all of the numbers you print will be primes.
There are many possible improvements here, but this method is fast enough as-is. One simple way would be to compute an upper bound of Math.sqrt(n) and compare p to it rather than multiplying p by itself each time. You might also want to check for 0 and negative numbers, and possibly 1, depending on how you want to handle those numbers.
When given the input number 600851475143, your program is printing nothing because the way you check for prime numbers is slow. Given enough patience, your program will print something - but this could be hours, days, even years. You would need to come up with a better algorithm for this calculation.
Short answer: the program actually isn't terminating. The method that you are using is one of the most inefficient ways to check for primes. Check out the Sieve of Eratosthenes for an easy to understand, fairly efficient algorithm.
no need to check n numbers to check if n is prime or no, It's enough to start from 0 to n/2:
public static boolean isPrime(long n){
long i = 2;
while (i < n/2){
if (n % i == 0 ){
return false;
}
i++;
}
return true;
}
This will double performance
Although the number is not out of long primitive value range (9,223,372,036,854,775,807), you should use BigInteger since BigInteger has function for this purpose and I think it is more efficient then other implementations including yours.
new BigInteger(yourNumer).isProbablePrime(100) // returns true or false
Furthermore primality test is done by using many mathematical approaches and algorithms, there are some ways which runs faster for numbers < 64bit and there are some which are better to test much larger numbers. There some other ways here
Change your method to the following:
public static boolean isPrime(long num) {
for (int i = 2; i < Math.sqrt(num); i++) {
if (num % i == 0) {
return false;
}
}
return true;
}
Should be efficient enough.
This question was asked in an interview (about prime numbers)
Russian Doll Primes
They are more commonly known as Truncatable Primes.
I found this code on wiki
public static void main(String[] args){
final int MAX = 1000000;
//Sieve of Eratosthenes (using BitSet only for odd numbers)
BitSet primeList = new BitSet(MAX>>1);
primeList.set(0,primeList.size(),true);
int sqroot = (int) Math.sqrt(MAX);
primeList.clear(0);
for(int num = 3; num <= sqroot; num+=2)
{
if( primeList.get(num >> 1) )
{
int inc = num << 1;
for(int factor = num * num; factor < MAX; factor += inc)
{
//if( ((factor) & 1) == 1)
//{
primeList.clear(factor >> 1);
//}
}
}
}
//Find Largest Truncatable Prime. (so we start from 1000000 - 1
int rightTrunc = -1, leftTrunc = -1;
for(int prime = (MAX - 1) | 1; prime >= 3; prime -= 2)
{
if(primeList.get(prime>>1))
{
//Already found Right Truncatable Prime?
if(rightTrunc == -1)
{
int right = prime;
while(right > 0 && primeList.get(right >> 1)) right /= 10;
if(right == 0) rightTrunc = prime;
}
//Already found Left Truncatable Prime?
if(leftTrunc == -1 )
{
//Left Truncation
String left = Integer.toString(prime);
if(!left.contains("0"))
{
while( left.length() > 0 ){
int iLeft = Integer.parseInt(left);
if(!primeList.get( iLeft >> 1)) break;
left = left.substring(1);
}
if(left.length() == 0) leftTrunc = prime;
}
}
if(leftTrunc != -1 && rightTrunc != -1) //Found both? then Stop loop
{
break;
}
}
}
System.out.println("Left Truncatable : " + leftTrunc);
System.out.println("Right Truncatable : " + rightTrunc);
}
This gives the output:
Left Truncatable : 998443
Right Truncatable : 796339
But I am not able to solve this particular Russian doll prime number problem like if you have a prime number and you remove either left or right digit of this prime number then if that resulting number is prime number or not?
I am new to this so please pardon any mistake.
Let's start from the beginning:
According to the link you supplied with your question:
"Russian Doll Primes are
prime numbers whose right digit can be repeatedly removed, and are
still prime."
I will assume that you have a function boolean isPrime(int) to find out if a number is prime.
Googling, we will find from Wikipedia that the number of right-truncatable prime numbers up to 73,939,133 is 83, which makes brute-force a viable option; but a few optimization techniques can be employed here:
Since we right-truncate, we can safely eliminate even numbers (since any even number won't be prime, and so any number generated upon it will never be a russian doll prime).
Since any number that starts with 5 is divisible by 5, then based on the same rule I mentioned in the previous point, we can eliminate 5.
That leaves us with numbers that contain 1, 3, 7, and 9.
Now if we wanted to generate all possible combinations of these 4 numbers that do not exceed the maximum you mentioned (1,000,000), it would take only 4,096 iterations.
The downside of this technique is that we now have 4,096 numbers that contain possible non-prime numbers, or prime numbers that are formed from non-prime numbers and hence are not russian doll primes. We can eliminate these numbers by looping through them and checking; or better yet, we can examine russian doll primes more closely.
Upon examining the rule I quoted from your link above, we find that a russian doll primes are prime numbers whose right digit can be repeatedly removed, and are still prime (and hence are still russian doll prime, given the word repeatedly)!
That means we can work from the smallest single-digit russian doll primes, work our generation magic that we used above, and since any prime number that is formed from russian doll prime numbers is a russian doll prime number, we can eliminate non-primes early on, resulting in a clean list of russian doll prime numbers, while reducing the running time of such a program dramatically.
Take a look at the generation code below:
void russianDollPrimesGeneration(int x) {
x *= 10;
if (x * 10 >= 1000000) return;
int j;
for (int i=1; i<=9; i+=2) {
if (i == 5) continue;
j = x + i;
if (isPrime(j)) {
addToRussianDollPrimesList(j);
russianDollPrimesGeneration(j);
}
}
}
Provided that void addToRussianDollPrimesList(int x) is a function that adds x to a list that we previously preserved to store the russian doll prime numbers.
UPDATED NOTE
Note that you can put the call to void russianDollPrimesGeneration(int x) that we made inside the if condition inside the void addToRussianDollPrimesList(int x) function, because whenever we call the former function, we will always call the latter function with the same arguments. I'm separating them here to emphasize the recursive nature of the generation function.
Also note that you must run this function with the integer 0.
A final note is that there are a number of cases that the generation function void russianDollPrimesGeneration(int x) above won't count, even though they are Russian Doll Primes.
Remember when we omitted 2 and 5, because even numbers and numbers divided by 5 cannot be primes and so cannot be Russian Doll Primes? and consequently cannot form Russian Doll Primes? Well, that case does not apply to 2 and 5, because they are prime, and since they are single digits, therefore they are Russian Doll Primes, and are eligible to form Russian Doll Primes, if placed in the left-side, like 23 and 53.
So how to correct our code to include these special cases?
We can make a wrapper function that adds these two numbers and checks for Russian Doll Primes that can be formed using them (which will be the same generation function we are using above).
void generationWrapperFunction(int x) {
addToRussianDollPrimesList(2);
russianDollPrimesGeneration(2);
addToRussianDollPrimesList(5);
russianDollPrimesGeneration(5);
russianDollPrimesGeneration(0);
}
END UPDATED NOTE
This little function will produce a list of russian doll prime numbers, which can then be searched for the number we are looking for.
An alternative, yet I believe will be more time-consuming, is the following recursive function:
boolean isRussianDollPrime(int n) {
if (!isPrime(n)) return false;
if (n < 10) return true;
return isRussianDollPrime(n / 10);
}
This function can be modified to work with left-truncatable primes. The generation-based solution, however, will be much difficult to implement for left-truncatable primes.
Your problem is to use this code or to solve the problem ?
if to solve it you can generate primes using Sieve algorithm then check if the element is prime or not (if it was prime then check if element/10 is also prime)
Let's start with a simple assumption that we know how to write code to detect if a value is a prime. In a coding interview, they won't likely won't expect you to pull out "Sieve of Eratosthenes". You should start with simple code that handles the special cases of x<=1 (false) and x==2(true). Then check for an even number !(x % 2)(false). Then loop on i from 3..sqrt(x) (incrementing by +2 each time) to see if there's an odd number divisor for x.
boolean isPrime(long x)
{
// your code goes here
}
And once we have a function to tell us if a value is prime, we can easily build the function to detect if a value is a Russian Prime. Therefore we just need to loop on our value, each time check for prime, and then chop off the right hand side. And the easiest way to remove the right-most digit from a number is to simply divide it by 10.
boolean isRussianPrime(long x)
{
boolean result = isPrime(x);
while ((x != 0) && result)
{
// chop off the right digit of x
x = x / 10;
if (x != 0)
{
result = isPrime(x);
}
}
return result;
}
And that's really all there is to it.
package com.example.tests;
public class RussianDollPrimeNumber {
public static void main(String[] args) {
int x= 373;
int k;
int n =x;
for ( k= String.valueOf(x).length()-1;k>0;k--){
System.out.println(n);
if (isPrime(n)){
String m=String.valueOf(n).substring(0, k);
n=Integer.parseInt(m);
continue;
}else {
break;
}
}
if( k==0){
System.out.println("Number is Russianl Doll Number "+x);
}else {
System.out.println("Number is not Russianl Doll Number "+x);
}
}
private static boolean isPrime(int x) {
boolean check=true;
for (int i=2;i<x/2;i++){
if( (x%i)==0){
check=false;
}
}
return check;
}
}