I have applied two process critical section solution to two threads instead of processes. My code is:
class Main
{
static boolean flag[];
static int turn;
static int count;
synchronized static void print(char ch,int n)
{
int i;
System.out.println(ch);
for(i=0;i<n;i++){
System.out.println(i);
}
}
public static void main(String[] args) throws IOException
{
flag = new boolean[2];
flag[0] = flag[1] = false;
turn = 0;
count = 0;
ThreadLevelOne t1 = new ThreadLevelOne('a');
ThreadLevelTwo t2 = new ThreadLevelTwo('b');
t1.start();
t2.start();
}
static class ThreadLevelOne extends Thread{
private char ch;
public ThreadLevelOne(char ch){
this.ch = ch;
}
public void run(){
while(true)
{
flag[0] = true;
turn = 1;
while(flag[1] && turn == 1);
print(ch,3);
count++;
System.out.println("Counter is : " + count);
flag[0] = false;
}
}
}
static class ThreadLevelTwo extends Thread{
private char ch;
public ThreadLevelTwo(char ch){
this.ch = ch;
}
public void run()
{
while(true)
{
flag[1] = true;
turn = 0;
while(flag[0] && turn == 0);
print( ch, 4);
count++;
System.out.println("Counter is : " + count);
flag[1] = false;
}
}
}
}
On executing the above code, it does not run infinitely but halts at arbitrary counter value on each execution. Is this a valid application of the two process solution to threads? If yes, then why is program halting at arbitrary counter value? If no, then how can this be achieved in threads?
Edit after the answer of codeBlind:
output: Program execution halts at this stage
Even if i dont increment the counter value, then also the program halts after a certain time
You're a victim of concurrently executing non-atomic operations, specifically count++, as well as the way you are using flags in each thread. But for simplicity's sake, let's talk about count++. The ++ operator actually executes three commands, each in their own clock-cycle:
read value of count
add 1 to value retrieved from count
store new value into count
The problem you're seeing is a result of these commands being interleaved across two threads. Thread A may not have stored the new count value by the time that Thread B attempts to read it.
A quick fix would be to use AtomicInteger for count instead of primitive int - AtomicInteger guarantees thread safety for integer operations.
EDIT
There are other race conditions in this code as well. Each thread's while loop argument (e.g. flag[0] && turn == 0) is non-atomic, but both threads are capable of modifying turn. You've left open the possibility that one thread could set turn before the other thread's while argument is fully evaluated, causing your threads to deadlock down the road.
If you only wish to guarantee that each thread must not be inside the while loop while the other thread is, then you should instead write each of your while loops to look something like this:
while(true){
synchronized(Main.class){
print( ch, 4);
count++;
System.out.println("Counter is : " + count);
}
}
If you want to guarantee that each thread must "take turns", you should look into using wait() and notify().
Ok so I figured it out, the issue is that each thread needs to pause in order for the other thread to run.
Instead of just spinning the cpu using:
while(flag[0] && turn == 0);
You need to pause the thread by calling the sleep method.
while(flag[0] && turn == 0){
try {
this.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
Related
I am writing a thread safe counter. When I test and the threads go first one, then the second everything works correctly. But when threads enter the increment () method at the same time, the counter does not work properly. The reason is not clear, I am using atomic integer.
public class CASCount {
private final AtomicReference<Integer> count = new AtomicReference<>(0);
private AtomicInteger oldValue = new AtomicInteger(0);
private AtomicInteger newValue = new AtomicInteger(0);
public void increment() {
do {
oldValue.set(count.get());
System.out.println(oldValue + " old");
if (oldValue.get() == -1) {
throw new UnsupportedOperationException("Count is not impl.");
}
newValue.incrementAndGet();
System.out.println(newValue + " new");
} while (!count.compareAndSet(oldValue.get(), newValue.get()));
}
public int get() {
int result = -1;
result = count.get();
if (result == -1) {
throw new UnsupportedOperationException("Count is not impl.");
}
return result;
}
}
#Test
public void whenUseCASCount() throws InterruptedException {
CASCount count = new CASCount();
Thread one = new Thread(() -> {
for (int i = 0; i < 5; i++) {
System.out.println("one");
count.increment();
}
});
Thread two = new Thread(() -> {
for (int i = 0; i < 5; i++) {
System.out.println("two");
count.increment();
}
});
one.start();
two.start();
one.join();
two.join();
assertThat(count.get(), is(10));
}
its my decision
private final AtomicReference<Integer> count = new AtomicReference<>(0);
public void increment() {
int current, next;
do {
current = count.get();
next = current + 1;
} while (!count.compareAndSet(current, next));
}
public int get() {
return count.get();
}
TL;DR - Make your increment method synchronized.
Details - Even though you have atomic variables that you use, that does not mean that your class is thread safe. It's not safe because there can be (and are) race conditions between the checks and increments for your variables.
do {
oldValue.set(count.get());
System.out.println(oldValue + " old");
if (oldValue.get() == -1) {
throw new UnsupportedOperationException("Count is not impl.");
}
newValue.incrementAndGet(); <--- between here
System.out.println(newValue + " new");
} while (!count.compareAndSet(oldValue.get(), newValue.get())); <--- and here
A typical case of check-then-act race condition.
This happens because your atomic variables can be accessed by multiple threads and their shared state can mutate from one thread and not be seen in another.
To preserve state consistency, update related state variables in a single
atomic operation.
- Java Concurrency in Practice
Hence, we use intrinsic locks (built-in synchronized) to make the method safe when multiple threads access it. What happens is that the state of the atomic variables would not change because each thread will access the increment method one at a time.
I am trying to print even odd numbers using two threads with interrupt method.
I refereed code from internet and wrote a code showing below.It prints properly but after prints 20,program is continuing it's execution.
What change do i have to make in the code to stop the execution of the program?
Without oldNum check code is working fine. Is there any logic to provide oldNum check ?
If I remove Thread.sleep(1000L) from Line-a then it only prints "Even Thread prints 20" and continue execution.What is happening here?
Provided break points inside run() method and inside for loop of main method ,run() methods break points are not hitting.Why this is happening?
In short I want to know what is the code flow here.
Thanks
Vikash
public class PrintOddEvenUsingInterrupt {
public static volatile int count;
public static void main(String[] args) throws InterruptedException {
Thread oddThread = new Thread(new OddInterruptThread(), "Odd Thread ");
Thread evenThread = new Thread(new EvenInterruptThread(),"Even Thread ");
oddThread.start();
evenThread.start();
for (int i = 0; i < 20; i++) {
count++;
oddThread.interrupt();//Break points works here
evenThread.interrupt();
Thread.sleep(1000L);// Line-a
}
}
static class OddInterruptThread implements Runnable {
public void run() {
int oldNum = 0;//Break points doesn't works here
while (true) {
try {
Thread.sleep(Integer.MAX_VALUE);
} catch (InterruptedException e) {
}
if (oldNum != count && count % 2 == 1) {
System.out.println(Thread.currentThread().getName()
+ " prints " + count);
oldNum = count;
}
}
}
}
static class EvenInterruptThread implements Runnable {
public void run() {
int oldNum = 0;//Break points doesn't works here
while (true) {
try {
Thread.sleep(Integer.MAX_VALUE);
} catch (InterruptedException e) {
}
if (oldNum != count && count % 2 == 0) {
System.out.println(Thread.currentThread().getName()
+ " prints " + count);
oldNum = count;
}
}
}
}
}
The reason your program is not stopping is: while your main thread exits, your odd and even threads sleeps in infinite loop.
You will need to define a stopping condition for your threads to come out.
One way to achieve this is via using conditions.
Eg:
public volatile static boolean oddFinished = false;
public volatile static boolean evenFinished = false;
Then in your threads, instead of looping infinitely, loop against condition
while (! oddFinished){
// also change your thread sleep to sleep for fewer time interval (say 1000L or whatever your program wants to wait for)
}
Do the same for even thread...
while (! evenFinished){
// also change your thread sleep to sleep for fewer time interval (say 1000L or whatever your program wants to wait for)
}
And in the main thread, you can add the following code after your for loop ends...
oddFinished = true;
evenFinished = true;
oddThread.join();
evenThread.join();
This will allow your code to stop gracefully.
I think the simplest solution will be to make your threads demons.
Just add the following lines before starting your thteads.
oddThread.setDaemon(true);
evenThread.setDaemon(true);
And your program will exit immediately after exiting from main.
I want to implement simple threadsafe counter. The numbers are in the right order so that part is ok, the only problem is the condition is not always met and sometimes the numbers go up to 51 or 52.
Should I use the tag synchronized also around the while loop?
I mean, I can double check and put a condition in the method printAndIncrement but that doesn't seem very elegant.
public class MyCounter implements Runnable {
static int currentValue = 0;
private static synchronized void printAndIncrement() {
System.out.print(Thread.currentThread().getName() + ": " + currentValue + "\n");
currentValue++;
}
#Override
public void run() {
while (currentValue <= 50) {
printAndIncrement();
}
}
public static void main(String[] args) {
MyCounter counter = new MyCounter();
Thread thread1 = new Thread(counter);
Thread thread2 = new Thread(counter);
Thread thread3 = new Thread(counter);
thread1.start();
thread2.start();
thread3.start();
}
}
The check currentValue <= 50 and the call to printAndIncrement must be in the same synchronized block. Otherwise this problem is going to happen.
Let currentValue be 50. All three threads can do the check that the current value is no more than 50 and then try to call printAndIncrement(); simultaneously.
Due to the synchronized void printAndIncrement() the threads will execute this method sequentially, but for the first thread the currentValue will be 50, for the second thread it will be 51 and for the third thread it will be 52.
The problem is that your boundary check and the increment are not both synchronized, which defeats the point of synchronization altogether.
The best alternative I can suggest that allows both synchronizing read/update and allowing your loop to stop would be to make the incrementing method return a boolean:
/** Prints and increments, returning true if max value has not been reached */
private static synchronized boolean printAndIncrement() {
if(currentValue < 51) {
System.out.print(Thread.currentThread().getName()
+ ": " + currentValue + "\n");
currentValue++;
return true;
} else {
return false;
}
}
And change the run method to:
public void run() {
while (printAndIncrement()) {
//nothing needs to be done here
}
}
I'm trying to get into the nitty gritty of understanding how wait and notifyAll work and have hit a roadblock.
This program downloads a long text document, starts multiple threads to count characters and then outputs the count totals.
I'm using wait and notifyAll to control the thread execution so that they are completed in alphabetical order. Here's the code. I'll follow with an explanation of the problem.
public class Test {
public static void main(String[] args) {
//code that reads in the data
LongTask a = new LongTask(buffer, 'a', "Thread_a", 0);
a.start();
LongTask b = new LongTask(buffer, 'b', "Thread_b", 1);
b.start();
//Repeat code for all other characters
a.join();
System.out.println("Alphabet count is: " + SharedResults.getResults());
LongTask class contains constructor and run()
public class LongTask extends Thread {
//Instance variables created here
//LongTask constructor
public LongTask (StringBuffer buffer, char target, String name, int turn)
{
super(name);
this.sharedData = sharedData;
inputData = buffer;
this.target = target;
this.turn = turn;
}
//Run method iterates through input data and counts matching characters,
//then calls addToResults
public synchronized void run()
{
//Thread t = Thread.currentThread();
String name = this.getName();
int runTurn = this.turn;
System.out.println(name + " running - Turn " + runTurn);
Integer count = 0;
for (int i = 0; i < inputData.length(); i++) {
if (inputData.charAt(i) == target) {
count ++;
}
}
ResultsEntry newResult = new ResultsEntry(count, target);
SharedResults.addToResults(newResult, turn);
}
}
SharedResults class adds results to Array. addToResults method performs this action and controls the synchronization.
public class SharedResults extends Thread{
//Code that creates array
//Code for SharedResults constructor
public synchronized static void addToResults(ResultsEntry newResult, int turn)
{
Integer resultsCount = newResult.getCount();
char resultsTarget = newResult.getTarget();
Thread t = Thread.currentThread();
/*
* Turn number is compared to the size of the results array to control the
* order of execution.
*/
while (turn != results.size()){
try {
System.out.println("Wait printout");
t.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(t.getName() + " is adding " + newResult);
SharedResults input = new SharedResults(resultsCount, resultsTarget);
System.out.println("Cumulative Results are " + results);
t.notifyAll();
}
Here's what I'm seeing when I watch this step through in Debug.
-Input executes and all LongTask threads start
(Thread_a should be the first thread to execute addToResults)
-Some threads (not Thread_a) hit the while evaluation of addToResults and do not proceed
-Thread_a hits the while evaluation and fully executes. (Now it should be Thread_b's turn)
-Thread_e executes the "Wait printout" (just a debugging feature that tells me when a thread is waiting) and then the program hangs.
It looks to me like I haven't set up wait correctly. The program actually worked (or appeared to be) correctly until I added in the sysout. Any ideas what's going on here?
To answer my own question,
This was covered in this thread.
The problem is that notifyAll() notify all of that object's threads that are waiting. Because I was calling wait() on each thread, the notifyAll() from another thread wasn't notifying any of the other threads.
As suggested by the linked post, I created a static synchronized object and called the wait and notify methods on that object. The resulting code looked like this:
private static final Object LOCK = new Object();
public static void addToResults(ResultsEntry newResult, int turn)
{
Integer resultsCount = newResult.getCount();
char resultsTarget = newResult.getTarget();
Thread thread = Thread.currentThread();
/*
* Turn number is compared to the size of the results array to control the
* order of execution.
*/
synchronized (LOCK){
while (turn != results.size()){
try {
System.out.println(thread.getName() + " is waiting");
LOCK.wait();
} catch (InterruptedException e) {}
}
System.out.println(thread.getName() + " is adding " + newResult);
SharedResults input = new SharedResults(resultsCount, resultsTarget);
System.out.println("Cumulative Results are " + results);
LOCK.notifyAll();
}
}
Thanks to all who commented!
I am doing a sample program with wait() and notify(), but when notify() is called, more than one thread is wakes up instead of one.
The code is:
public class MyQueue<T> {
Object[] entryArr;
private volatile int addIndex;
private volatile int pending = -1;
private final Object lock = new Object();
private volatile long notifiedThreadId;
private int capacity;
public MyQueue(int capacity) {
entryArr = new Object[capacity];
this.capacity = capacity;
}
public void add(T t) {
synchronized (lock) {
if (pending >= 0) {
try {
pending++;
lock.wait();
System.out.println(notifiedThreadId + ":" + Thread.currentThread().getId());
} catch (InterruptedException e) {
e.printStackTrace();
}
} else if (pending == -1) {
pending++;
}
}
if (addIndex == capacity) { // its ok to replace existing value
addIndex = 0;
}
try {
entryArr[addIndex] = t;
} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("ARRAYException:" + Thread.currentThread().getId() + ":" + pending + ":" + addIndex);
e.printStackTrace();
}
addIndex++;
synchronized (lock) {
if (pending > 0) {
pending--;
notifiedThreadId = Thread.currentThread().getId();
lock.notify();
} else if (pending == 0) {
pending--;
}
}
}
}
public class TestMyQueue {
public static void main(String args[]) {
final MyQueue<String> queue = new MyQueue<>(2);
for (int i = 0; i < 200; i++) {
Runnable r = new Runnable() {
#Override
public void run() {
for (int i = 0; i < Integer.MAX_VALUE; i++) {
queue.add(Thread.currentThread().getName() + ":" + i);
}
}
};
Thread t = new Thread(r);
t.start();
}
}
}
After some time, I see two threads being wake up by single thread. The output looks like:
91:114
114:124
124:198
198:106
106:202
202:121
121:40
40:42
42:83
83:81
81:17
17:189
189:73
73:66
66:95
95:199
199:68
68:201
201:70
70:110
110:204
204:171
171:87
87:64
64:205
205:115
Here I see 115 thread notified two threads, and 84 thread notified two threads; because of this we are seeing the ArrayIndexOutOfBoundsException.
115:84
115:111
84:203
84:200
ARRAYException:200:199:3
ARRAYException:203:199:3
What is the issue in the program?
What is the issue in the program?
You have a couple of problems with your code that may be causing this behavior. First, as #Holder commented on, there are a lot of code segments that can be run by multiple threads simultaneously that should be protected using synchronized blocks.
For example:
if (addIndex == capacity) {
addIndex = 0;
}
If multiple threads run this then multiple threads might see addIndex == capacity and multiple would be overwriting the 0th index. Another example is:
addIndex++;
This is a classic race condition if 2 threads try to execute this statement at the same time. If addIndex was 0 beforehand, after the 2 threads execute this statement, the value of addIndex might be 1 or 2 depending on the race conditions.
Any statements that could be executed at the same time by multiple threads have to be properly locked within a synchronized block or otherwise protected. Even though you have volatile fields, there can still be race conditions because there are multiple operations being executed.
Also, a classic mistake is to use if statements when checking for over or under flows on your array. They should be while statements to make sure you don't have the class consumer producer race conditions. See my docs here or take a look at the associated SO question: Why does java.util.concurrent.ArrayBlockingQueue use 'while' loops instead of 'if' around calls to await()?