Java shifting bytes returns an unexpected result - java

I am trying to shift 2 bytes into a short. These 2 bytes represent an unsigned short that in turn represents a port. I've tried multiple ways to shift these bytes into a short on java. However, I constantly fail to do this correctly.
These are the ways I've tried:
byte a = 0x17;
byte b = 0xCC;
(short)((a << 8) | b);
(short)(((short)a << 8) | b);
The result is 0xFFCC, but should be 0x17CC.

Any value that undergoes arithmetic in Java, is first cast to higher type which could cover both operands. Both of operands are cast to int if they are still smaller.
As a result, b is first cast to int and becomes 0xFFFFFFCC. Or-ing it with anything shifted by 8 bits to the left always keeps the mask 0xFFFFFF00 and therefore has no impact on result. Casting it to short just shrinks off the left 16 bits.
To resolve it, explicitly mask with 0xFF before doing the operation:
(short)(((a&0xFF)<<8)|(b&0xFF))

//Try this, since you cannot convert from int to byte:
short a = 0x17;
short b = 0xCC;
System.out.println("r = " + String.format("0x%04X", (short)((a << 8) | b)));
//Output: r = 0x17CC

Related

Write two integers into high 4bits and lower 4 bits in a byte using java

i have a java code to read a unsigned integer from high 4bit and another from lower 4bit
byte[] value = getBytes(1);
int first = (value[0] & 0xF0) >> 4;
int second = value[0] & 0x0F;
i have to write those 2 integers(first, second) back to new 1 byte using java.
please help me
Basically:
first << 4 | second
(assuming first and second were obtained with the original code, so they are in the range 0x0..0xF).
However, the result of bitwise operations is int for int operands, so this expression is of type int. You need to cast it to byte:
byte b = (byte) (first << 4 | second)

Storing unsigned long value in two 16bit register

I want to store unsigned long value in two 16bit register.For example if I have long value (-2,147,483,648 to 2,147,483,647) then I'm using formula like:
v[0] = myValue % 65536
v[1] = myValue / 65536
To get value from register
outVal = reg0 + (reg1 * 65536)
But how to do for unsigned long which value range is from 0 to 4,294,967,295?
As commenter harold pointed out already, your formula doesn't even work correctly for negative numbers.
You should do it bitwise instead of using math to avoid surprises (and speed things up in case the compiler didn't optimize it for you already).
Splitting:
v[0] = myValue & 0xFFFF
v[1] = myValue >> 16 // this implicitly cuts off the lower 16 bits
// by shifting them away into the nirvana
Joining:
outVal = reg0 | (reg1 << 16)
This now applies to both signed and unsigned (provided that all your variables have the same "sign type").
Legend, in case your language (which you didn't specify) uses different operators:
& is bitwise AND, | is bitwise OR, << and >> are bitwise shifting left/right (SHL/SHR), 0x marks a hexadecimal literal (you could use 65536 instead of 0xFFFF, but I think the hex literal makes it clearer where this magic number comes from).

How to use bitshifting in Java

I am trying to construct an IP header.
An IP header has the following fields: Version, IHL, DSCP etc. I would like to populate a Byte Array such that I can store the information in bytes.
Where I get confused however is that the Version field is only 4 bits wide. IHL is also only 4 bits wide. How do I fit the values of both of those fields to be represented as a byte? Do I need to do bitshifting?
E.g. Version = 4, IHL = 5. I would need to create a byte that would equal 0100 0101 = 45h or 69 decimal.
(byte) (4 << 4) | 5
This shifts the value 4 to the left, then sets lower 4 bits to the value 5.
00000100 A value (4)
01000000 After shifting left 4 bits (<< 4)
00000101 Another value (5)
01000101 The result of a bitwise OR (|) of #2 and #3
Because the operands are int types (and even if they were byte values, they'd be promoted to int when operators like | act on them), the final result needs a cast to be stored in a byte.
If you are using byte values as operands in any bitwise operations, the implicit conversion to int can cause unexpected results. If you want to treat a byte as if it were unsigned in that conversion, use a bitwise AND (&):
byte b = -128; // The byte value 0x80, -128d
int uint8 = b & 0xFF; // The int value 0x00000080, 128d
int i = b; // The int value 0xFFFFFF80, -128d
int uintr = (b & 0xFF) | 0x04; // 0x00000084
int sintr = b | 0x04; // 0xFFFFFF84
You can do something like this:
int a = 0x04;
a <<= 4;
a |= 0x05;
System.out.println(a);
which essentially turns 0b00000100 into 0b01000000, then into 0b01000101.
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op3.html
To make a compact field containing both Version and IHL in one byte, try doing
byte b = (byte)((Version << 4) + IHL);
This will only work if Version and IHL are numbers from 0 to 15
Just because a byte is 8 bits and your values can only be a maximum of 4 is not a problem. The extra 4 bits will just always be zeroes.
So if you were storing 1 for example:
0000 0001
or 15 (which is the maximum value right?):
0000 1111
Byte shifting is not possible in Java.
How does bitshifting work in Java?
However, as far as the logic is concerned, if you want the version and IHL in one byte, you could do it using the following
byte value = (byte) (IHL | VERSION << 4);

Why bit or operation will lead to sign extension but bit and won't?

I need to cast a byte to int in Java but I don't want sign extension so I did
byte b = -1
(int) (b & 0xF) // this returns 15, which is what I want
(int) (b | 0) // this returns -1, which is essentially 0xFFFF, sign extension happens, not what I want
I thought the above two should give same results but it turns out that's not the case.
I must miss something in bit operations.
The trick is to print the binary representation of those values and perform the binary operations on them
byte b = -1;
int a = (int) (b & 0xF); // this returns 15, which is what I want
int c = (int) (b | 0); // this returns -1, which is essentially 0xFFFF
System.out.println("b:" + Integer.toBinaryString(b));
System.out.println("a:" + Integer.toBinaryString(a));
System.out.println("c:" + Integer.toBinaryString(c));
System.out.println("0xF:" + Integer.toBinaryString(0xF));
prints
b:11111111111111111111111111111111
a:1111
c:11111111111111111111111111111111
0xF:1111
So b & OxF is
11111111111111111111111111111111
00000000000000000000000000001111 (AND)
--------------------------------
1111 (15)
and b | 0 is
11111111111111111111111111111111
00000000000000000000000000000000 (OR)
--------------------------------
11111111111111111111111111111111 (-1)
Hot Licks explains why the byte value -1 is represented in binary as it is.
The issue here is that bitwise operators work on ints or longs, not bytes. b & 0xF is essentially treated as ((int)b) & ((int)0xF). You can trace it all from the JLS definitions of each operation.
First JLS 15.22.1 (which defines & and |) explains that when both operands are convertible to integer primitive types, "binary numeric promotion is first performed on the operands (ยง5.6.2)."
JLS 5.6.2, in turn, says that unless either operand is a float, double or long, both values are widened to int.
Finally, widening is defined in JLS 5.1.2 and states that "widening conversion of a signed integer value to an integral type T simply sign-extends the two's-complement representation of the integer value to fill the wider format." Bytes are signed (JLS 4.2).
So, your b byte is widened to an int using sign extension before being AND'd or OR'ed with the right operand.
Note that this would imply that the result of b & 0F should be an int, not a byte. This is in fact the case (meaning that your explicitly casting it to int is superfluous). You can test this by auto-boxing it to an Object and then checking that object's type:
byte b = -1;
Object o = (b & 0xF);
System.out.println(o.getClass());
// prints "class java.lang.Integer", not "class java.lang.Byte"

Converting Little Endian to Big Endian

All,
I have been practicing coding problems online. Currently I am working on a problem statement Problems where we need to convert Big Endian <-> little endian. But I am not able to jot down the steps considering the example given as:
123456789 converts to 365779719
The logic I am considering is :
1 > Get the integer value (Since I am on Windows x86, the input is Little endian)
2 > Generate the hex representation of the same.
3 > Reverse the representation and generate the big endian integer value
But I am obviously missing something here.
Can anyone please guide me. I am coding in Java 1.5
Since a great part of writing software is about reusing existing solutions, the first thing should always be a look into the documentation for your language/library.
reverse = Integer.reverseBytes(x);
I don't know how efficient this function is, but for toggling lots of numbers, a ByteBuffer should offer decent performance.
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
...
int[] myArray = aFountOfIntegers();
ByteBuffer buffer = ByteBuffer.allocate(myArray.length*Integer.BYTES);
buffer.order(ByteOrder.LITTLE_ENDIAN);
for (int x:myArray) buffer.putInt(x);
buffer.order(ByteOrder.BIG_ENDIAN);
buffer.rewind();
int i=0;
for (int x:myArray) myArray[i++] = buffer.getInt(x);
As eversor pointed out in the comments, ByteBuffer.putInt() is an optional method, and may not be available on all Java implementations.
The DIY Approach
Stacker's answer is pretty neat, but it is possible to improve upon it.
reversed = (i&0xff)<<24 | (i&0xff00)<<8 | (i&0xff0000)>>8 | (i>>24)&0xff;
We can get rid of the parentheses by adapting the bitmasks. E. g., (a & 0xFF)<<8 is equivalent to a<<8 & 0xFF00. The rightmost parentheses were not necessary anyway.
reversed = i<<24 & 0xff000000 | i<<8 & 0xff0000 | i>>8 & 0xff00 | i>>24 & 0xff;
Since the left shift shifts in zero bits, the first mask is redundant. We can get rid of the rightmost mask by using the logical shift operator, which shifts in only zero bits.
reversed = i<<24 | i>>8 & 0xff00 | i<<8 & 0xff0000 | i>>>24;
Operator precedence here, the gritty details on shift operators are in the Java Language Specification
Check this out
int little2big(int i) {
return (i&0xff)<<24 | (i&0xff00)<<8 | (i&0xff0000)>>8 | (i>>24)&0xff;
}
The thing you need to realize is that endian swaps deal with the bytes that represent the integer. So the 4 byte number 27 looks like 0x0000001B. To convert that number, it needs to go to 0x1B000000... With your example, the hex representation of 123456789 is 0x075BCD15 which needs to go to 0x15CD5B07 or in decimal form 365779719.
The function Stacker posted is moving those bytes around by bit shifting them; more specifically, the statement i&0xff takes the lowest byte from i, the << 24 then moves it up 24 bits, so from positions 1-8 to 25-32. So on through each part of the expression.
For example code, take a look at this utility.
Java primitive wrapper classes support byte reversing since 1.5 using reverseBytes method.
Short.reverseBytes(short i)
Integer.reverseBytes(int i)
Long.reverseBytes(long i)
Just a contribution for those who are looking for this answer in 2018.
I think this can also help:
int littleToBig(int i)
{
int b0,b1,b2,b3;
b0 = (i&0x000000ff)>>0;
b1 = (i&0x0000ff00)>>8;
b2 = (i&0x00ff0000)>>16;
b3 = (i&0xff000000)>>24;
return ((b0<<24)|(b1<<16)|(b2<<8)|(b3<<0));
}
Just use the static function (reverseBytes(int i)) in java which is under Integer Wrapper class
Integer i=Integer.reverseBytes(123456789);
System.out.println(i);
output:
365779719
the following method reverses the order of bits in a byte value:
public static byte reverseBitOrder(byte b) {
int converted = 0x00;
converted ^= (b & 0b1000_0000) >> 7;
converted ^= (b & 0b0100_0000) >> 5;
converted ^= (b & 0b0010_0000) >> 3;
converted ^= (b & 0b0001_0000) >> 1;
converted ^= (b & 0b0000_1000) << 1;
converted ^= (b & 0b0000_0100) << 3;
converted ^= (b & 0b0000_0010) << 5;
converted ^= (b & 0b0000_0001) << 7;
return (byte) (converted & 0xFF);
}

Categories