Display Android Certificate - java

I have a short question: What does this call return exactely?
context.getPackageManager().getPackageInfo(context.getPackageName(), GET_SIGNATURES).signatures[0].toByteArray();
I know it returns the first app certificate for the app which is the CERT.RSA in the META-INF folder, but what exately does it return? Just a byte-array which represents the whole certificate as the file or some other byte-array? I don't really know much about the structure of certificates and the data they contain so I really don't have any clue.
The best answer would be an instruction for openssl with that I get the returned value from the above code line.

I finally tested it myself on an android simulator and got the final answer. It's actually not hard to understand once I realized that PKCS7 is just a storage-form or rather a container for various signature-types.
Within the app
The call returns the first signature within the CERT.RSA file. It's a PKCS7 file which embeds the X.509-certificate and from what I've read it's always just one signature for android apps.
Signature sig = context.getPackageManager().getPackageInfo(context.getPackageName(), GET_SIGNATURES).signatures[0];
This Signature obtained from above can be directly used to generate a working X.509-certificate like this (taken from here):
byte[] rawCert = sig.toByteArray();
InputStream certStream = new ByteArrayInputStream(rawCert);
CertificateFactory certFactory;
X509Certificate x509Cert;
try {
certFactory = CertificateFactory.getInstance("X509");
x509Cert = (X509Certificate) certFactory.generateCertificate(certStream);
//do stuff with your certificate
} catch(Exception ex) {
//handle exception
}
Anywhere else
If you have the certificate outside of your own android app and want the same byte-stream, that is provided by the function above you can do the same with a simple Java-program like this:
FileInputStream is = new FileInputStream("CERT.RSA");
CertificateFactory cf = CertificateFactory.getInstance("X.509");
X509Certificate c = (X509Certificate) cf.generateCertificates(is).toArray()[0];
byte[] rawCert = c.getEncoded();
This code first reads the file, creates the CertificateFactory and then the important step it to isolate the first certificate in the PKCS7-container. And then c.getEncoded() finally gives you the exact same representation as the method above.
openssl
And last but not least the openssl-command for it(taken from here):
openssl pkcs7 -inform DER -in CERT.RSA -print_certs -text
It will give you a pretty overview of the information contained and at the end the
-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----
block. It contains the same data as above. If you parse the contents of this block and decode it with base64 it will give you the exact same byte array as in the upper two examples.

context.getPackageManager().getPackageInfo(context.getPackageName(), GET_SIGNATURES).signatures[0]
Would return the representation of the signing certificate associated with an application package. It would be an instance of a Signature class as defined here in the documentation. (The name 'Signature' is slightly misleading and even mentioned in the documentation itself).
context.getPackageManager().getPackageInfo(context.getPackageName(), GET_SIGNATURES).signatures[0].toByteArray();
Would return its byte Array representation. ie: The certificate file's byte array representation.
Adding to that, a certificate is nothing new than a text file, but the data is structured into a common format and encoded. X.509 is one of the most widely used formats. You can find it here. The RFC for a X.509 certificate is here. Certificates are structured such that they can be easily checked if altered by a 3rd party.
There isn't any openssl command which directly returns a byte[]. The closest which I could think of is the openssl command which you can use to get the textual representation of a certificate.
$ openssl x509 -in <your-certificate> -noout -text

The signatures member of PackageInfo is simply an array of all signatures read from the package file.
public Signature[] signatures;
The class android.content.pm.Signature stores a signature in the form
private final byte[] mSignature;
This is what toByteArray() does:
/**
* #return the contents of this signature as a byte array.
*/
public byte[] toByteArray() {
byte[] bytes = new byte[mSignature.length];
System.arraycopy(mSignature, 0, bytes, 0, mSignature.length);
return bytes;
}
So essentially this code simply provides you the byte array of a signature used to sign the package.
Assuming CERT.RSA is the RSA file in META-INF folder of the apk, you can get the package MD5, SHA1, and SHA256 signatures through:
keytool -printcert -file CERT.RSA

Related

RSA decryption according to the private key reports an error

My code using RSA on the front end:
const rsa = new JSEncrypt();
rsa.setPublicKey(k);
const resultText = rsa.encrypt("violet");
console.log(resultText);
My code using RSA in the backend:
byte[] inputByte = org.apache.commons.codec.binary.Base64.decodeBase64(str.getBytes("UTF-8"));
byte[] decoded = org.apache.commons.codec.binary.Base64.decodeBase64(privateKey);
PrivateKey priKey = KeyFactory.getInstance("RSA").generatePrivate(new
PKCS8EncodedKeySpec(decoded));
Cipher cipher = Cipher.getInstance("RSA");
cipher.init(Cipher.DECRYPT_MODE,priKey);
String outStr=new String(cipher.doFinal(inputByte));
return outStr;
PublicKey like this:
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA13gYdCmOjR9yqQD7ldzG
ZXabSon6SiLceCK6vRXf4NMbF+EQke0vRpqU3IZ/S1pFdvoQswQabsA4zf0WACVT
iaGIhWDlPu3mecri8rYtmOSfd8GCE0vEgFNvSD6IXRLPeLCB+i7WENBa4fCEtW8W
Hzdas96CLiESbjSAruRasQXP2OLqEA2GU83/069vh8uRKzui+yw0aAXZFyFyFRFa
lxYltFadVpz3+kBplvpzuj82t4fc3yCRbrpeRyTyX1sz0ULSxx/k3/p1OuJtIq9Y
9uN0G4gxhcDFJ4L41uXOln5CPapk7tlsYobhhvxYHw1rrweY+06hrQ7r0Hblv2nH
GQIDAQAB
-----END PUBLIC KEY-----
PrivateKey like this:
-----BEGIN RSA PRIVATE KEY-----
MIIEogIBAAKCAQEA13gYdCmOjR9yqQD7ldzGZXabSon6SiLceCK6vRXf4NMbF+EQ
ke0vRpqU3IZ/S1pFdvoQswQabsA4zf0WACVTiaGIhWDlPu3mecri8rYtmOSfd8GC
E0vEgFNvSD6IXRLPeLCB+i7WENBa4fCEtW8WHzdas96CLiESbjSAruRasQXP2OLq
EA2GU83/069vh8uRKzui+yw0aAXZFyFyFRFalxYltFadVpz3+kBplvpzuj82t4fc
3yCRbrpeRyTyX1sz0ULSxx/k3/p1OuJtIq9Y9uN0G4gxhcDFJ4L41uXOln5CPapk
7tlsYobhhvxYHw1rrweY+06hrQ7r0Hblv2nHGQIDAQABAoIBAAyqFmXde294BblB
QYhRbafRDNeYvIlW+zZkdC1g98OzJMiGhf7NvhWcSFud3CWFrMeNcyXSe+s+iRgy
Y/SmPP6969RLGa5VNVK7RhOV+aAe7/COAyM3NNmGDehlJIaz8FXbqggWcKaUWIMn
K+WuHdK/4ijoTyZ+8yJfG6Er8tisryLQ9io9+op9g/ZWzaUKgu934/cDxUt70bfm
x+ZEPi6YfkJ1uOpXnnadDyw2RUDcvCM3fK3KF5fqM7SJAXY9b1pmLr+Ccn1qkT9G
I+QHidEsGfJciX5AoHnlIMLPMVIPKBbq4GwC/Ngb41LprNJWlPR38N2ySjky/Jyt
159XWHECgYEA9lx2KfFmyLyVjnkIF3JI50mSZAw4YPBBqB27UInacvxXbjfVURht
xK60GB9OkDbFdeNh89x86Gfwvm5bTq4W8YSH4Obd5Fg8XjTuaicTi03CSfF5SdJn
JLLOUmlqP75gkbEPNUoOfqhqq6IbyJVB3egyL90cd2/wCdJOVLEUly8CgYEA3+Y4
lNdl0xedkDNkWsCyyA4iPSUzVxsuch9hW/VGBwzga8rtiNllpKifVvctQOEu/KUe
vVQRF78ojZaMGT33l6TivnUL54z9Lo9uWghoG8TqMfnG34pFPe3R+zvGP87Hrozw
1EUhiMT198SlB/YHrgGGGlJbG+rlm5GIx3lEdDcCgYA4RSw0LlA0v2ZFkX14pYDj
WxmVwnjKI3ZLqObU4XfE1cA+i4AssrC3wNOfwt7V77ywTYxc/9qD1uHVDS3LzdWt
uoCyrOi3tDOtrNdb5asAIXWkIAR9CRLH/hNEHZHIF3rFLDT2DgE7iso6g59m9DiE
L/nulsleunGQPLnpfDzgvwKBgDRV5Q3tl3CTSZJGYQPRnTikDR7LzkdjJCUq7qAH
IhpNyTuJEKL3ZgnqHGzAlERhHpGRqzDIMMKjPUBzW0YfNPuuYA3y4Bh83UV/42SK
KIOtMK0D3JeuA2dparbWDw4lMIm9iiGkEyWcHH6Q6Z6FxN/InWcTrxZEfu0xRI6T
6wtbAoGAfl5dW9LNoaNfQbgIq+PJKZm9f1frza55mFTJgo3ravdb3GmzWVHN8xRf
nLKyKyNLqbkT35IGc39NkALJLxT5RibkAZLiUiwqdMF63sgODbA9AGTmhe+JHS+V
hBmFnCyp6UiN9E4ZAWcZQILa0rRMftMFngAJ3El0ZP+HziRnNzs=
-----END RSA PRIVATE KEY-----
Bu-t, when i do the java code decryption, it reported such an error:
java.security.InvalidKeyException: IOException : DerInputStream.getLength(): lengthTag=111, too big.
How can i solve this problem ?
1. You are decoding wrong. PEM format has a dash-BEGIN line identifying the type of data, a block of base64 encoding the data, and a dash-END line. The BEGIN and END lines are part of the format, but they do not contain base64-encoded data; only the lines in between contain the base64-encoded data. You are apparently passing the whole thing, including the BEGIN and END lines, to commons.codec.Base64, which results in decoding a bunch of garbage before and after the actual data. That garbage isn't valid ASN.1 DER, so when Java tries to parse it as DER it fails.
2. Plus your data is not a PKCS8-clear privatekey. The PEM type 'RSA PRIVATE KEY' is an OpenSSL-defined format that contains a 'traditional' or 'legacy' format, namely the PKCS1 representation of the private key. This is not PKCS8, which is the only key format Java supports natively; that's why the spec class is named PKCS8EncodedKeySpec, because it is a key spec encoded as PKCS8 and more specifically PKCS8-clear. If you fix the above problem by removing the BEGIN and END lines before base64-decoding, Java can parse the result as DER, but not as a PKCS8-clear key; you get a different exception about 'algid parse error, not a sequence'. To fix this there are 5 approaches:
change whatever process you use to initially generate the keypair so it generates PKCS8, not OpenSSL-legacy PKCS1. Especially since you need anyway to replace the keypair you compromised by publishing it, as 207421 said. You give no clue what that process is or was, so I can't give any details.
convert your generated privatekey, or a copy, to PKCS8-clear. This is not programming or development and offtopic, but if you have or get OpenSSL (on the same or any accessible and secure system), you can do
openssl pkey -in oldfile -out newfile # 1.0.0 up only, but older is now rare
# or
openssl pkcs8 -topk8 -nocrypt -in oldfile -out newfile # even ancient versions
Once you have a PKCS8-clear file, just remove the BEGIN and END lines and base64-decode what is left, and pass that to KeyFactory as PKCS8EncodedKeySpec as you already do.
use https://www.bouncycastle.org . The 'bcpkix' jar has (Java) code to read a large range of OpenSSL-supported PEM formats, including the RSA-PKCS1 private key format you have. There are lots of existing Qs about this; just search for PEMParser and JcaPEMKeyConverter.
convert it yourself. Decode the body of the file you have, after removing the BEGIN and END lines, to get the PKCS1 key, then build the PKCS8 format for that key, and then pass it to KeyFactory as PKCS8EncodedKeySpec. See answers by Noa Resare and Jean-Alexis Aufauvre on Getting RSA private key from PEM BASE64 Encoded private key file or mine in Java: Convert DKIM private key from RSA to DER for JavaMail .
do it entirely yourself. Decode the file you have without BEGIN/END to get PCKS1, parse that as DER following e.g. RFC8447, and build RSAPrivateCrtKeySpec. Some other As on the Q I linked just above do this. However, this requires either: using undocumented internal sun.* classes, which used to work in Java (hence the existing answers) but which 'modular' Java versions (9 up) since 2017 have steadily made more difficult or impossible; using BouncyCastle which has documented (and good) support for ASN.1 -- but then it's easier to use bcpkix for the whole job as above; or writing your own ASN.1 parsing, which is a good deal of work.
PS: encrypting text with RSA is usually a bad design; it's not suited for that. But that's not really a programming issue and doesn't belong here.

Is there any way to get the plain text from signed data using private key?

The plain text is signed using java.security.Signature. Below is the code used to sign the plain text
public String getSignature(String plainText) throws Exception
{
KeyStore keyStore = loadKeyStore(); // A local method to read the keystore file from file system.
PrivateKey privateKey = (PrivateKey) keyStore.getKey(KEY_ALIAS_IN_KEYSTORE, KEYSTORE_PASSWORD.toCharArray());
Signature privateSignature = Signature.getInstance(SIGNATUREALGO);
privateSignature.initSign(privateKey);
privateSignature.update(plainText.getBytes("UTF-8"));
byte[] signature = privateSignature.sign();
return String.valueOf(signature);
// KEY_ALIAS_IN_KEYSTORE, KEYSTORE_PASSWORD and SIGNATUREALGO are all constant Strings
}
Note 1: I found online a way to verify the signature using the public key Java Code Examples for java.security.Signature#verify(). But this is not what I require.
Note 2: I also found a ways to encrypt and decrypt as mentioned here RSA Signing and Encryption in Java. But the use case I have in hand is to get the original plain text from a signed data. Is that possible?
No, you can't retrieve the original content from just the signature.
The signature alone does not contain enough information to restore the original clear text, no matter what keys you have access to.
The basic idea of a signature is to send it together with the clear text. That means the clear text will be visible, but the signature can be used to verify that the message was written (or at least signed) by who claims to have done so and has not been tampered with since then.
Signing something is different from encrypting it. The two often uses the same or related technologies and both fall under cryptography.

OpenSSL command equivalent using JAVA

So I have a very basic openssl command that was provided to me openssl smime -encrypt -binary -aes-256-cbc -in $inPath -out $encryptedPath -outform DER $pubCert, this command also works correctly and outputs an encrypted file. I need to use the equivalent of this command in a java application, preferably without invoking process and using openssl itself (only because I feel like that is probably bad practice).
I have researched quite a lot and there does not seem to be any equivalent out there that I can find.. I have tried several things and most of them do not seem to work. The weird thing is... I am able to get a simple "Hello World" string to encrypt using the code I wrote (although I don't believe it was encrypting it correctly because I had the cipher set to "RSA" not "AES") but when the byte array was coming from a file, it silently failed and just wrote 0 bytes. Right now this is what my code looks like.
Cipher aes = Cipher.getInstance("RSA");
CertificateFactory certF = CertificateFactory.getInstance("X.509");
File public_cert = new File( getClass().getClassLoader().getResource("public.crt").getFile());
FileInputStream certIS = new FileInputStream(public_cert);
X509Certificate cert = (X509Certificate) certF.generateCertificate(certIS);
certIS.close();
aes.init(Cipher.ENCRYPT_MODE, cert);
File tarGz = new File("C:\\volatile\\generic.tar.gz");
FileInputStream fis = new FileInputStream(tarGz);
byte[] tarGzBytes = FileUtils.readFileToByteArray(tarGz);
tarGzBytes = "Hello World".getBytes();
ByteArrayInputStream bais = new ByteArrayInputStream("Hello World".getBytes());
File encFile = new File("C:\\volatile\\generic.tar.gz.enc");
FileOutputStream enc = new FileOutputStream(encFile);
CipherOutputStream cos = new CipherOutputStream(enc, aes);
cos.write(tarGzBytes);
//IOUtils.copy(fis, cos);
//IOUtils.copy(bais, cos);
cos.flush();
cos.close();
So this works, and encrypts a little file with Hello World encrypted in it. I don't believe this is AES-256-CBC though, and it does not work when I use the FileUtils.readFileToByteArray(tarGz), although the resulting byte array in a debugger is correctly sized at about 94MB. Which seems really odd to me, that it works with "Hello World".toByteArray() and not FileUtils.readAllBytes(tarGz). Also as a side note, the ByteArrayInputStream using IOUtils.copy works, whereas the FileInputStream version writes 0 bytes as well.
Also, when I set the cipher mode to AES/CBC/PKCS5Padding (because I found something online suggesting to set it to that and it looks more like what I want) I get the following error message:
java.security.InvalidKeyException: No installed provider supports this key: sun.security.rsa.RSAPublicKeyImpl
at javax.crypto.Cipher.chooseProvider(Cipher.java:892)
at javax.crypto.Cipher.init(Cipher.java:1724)
~~~~
If anyone has any suggestions, or if I need to provide more information please let me know. I am fairly stuck right now and I am at this point debating writing a script to simply run the openssl command and run that script from java...
Conclusion
After reading through #dave-thompson-085's answer I realized that there was a really good reason why I could not find what I was wanting to do. So therefore I decided to go ahead and just call the openssl process from java using a process builder. I was able to recreate the openssl command from above as a Process in java, start it and run it with the following code:
File cert = new File(getClass().getClassLoader().getResource("public.crt").getFile());
ProcessBuilder openSslBuilder = new ProcessBuilder("openssl", "smime", "-encrypt", "-binary",
"-aes-256-cbc", "-in", "C:\\volatile\\generic.tar.gz", "-out",
"C:\\volatile\\generic.tar.gz.enc", "-outform", "DER", cert.getPath());
Process openssl = openSslBuilder.start();
openssl.waitFor();
System.out.println(openssl.exitValue());
openssl.destroy();
Hopefully this helps someone else who is looking to attempt this as well and maybe save someone a bunch of time!
First, to be clear: the openssl smime command actually handles both S/MIME and CMS (aka PKCS7) formats; these are related but different standards that basically use different file formats for essentially the same cryptographic operations. With -outform DER you are actually doing CMS/PKCS7.
Second and more fundamental: CMS/PKCS7, and S/MIME, and most other common cryptographic schemes like PGP, actually does hybrid encryption. Your data is not actually encrypted with RSA; instead your data is encrypted with a symmetric algorithm (here AES-256-CBC, since you selected that) using a randomly generated key called the DEK (data encryption key) and the DEK is encrypted with RSA using the recipient's publickey (obtained from their certificate), and both of those results plus a good deal of metadata is arranged into a fairly complicated data structure. The recipient can parse the message to extract these pieces, then use RSA with their privatekey to decrypt the DEK, then AES-decrypt the data with the DEK. Note you always use RSA keys for RSA, and AES keys for AES; symmetric keys are pretty much all just bits and only vary in size, but public-key cryptographic keys including RSA (also DH, DSA, ECC and more) are much more complicated and cannot be intermixed.
Trying to encrypt data directly with RSA as you did, in addition to being wrong, won't work in general because RSA can only encrypt limited amounts of data, depending on the key size used, typically about 100-200 bytes. Symmetric encryption also has some limits, but they are generally much larger; AES-CBC is good for about 250,000,000,000,000,000 bytes.
If you want to implement this yourself, you need to read the standard for CMS particularly the section on EnvelopedData using KeyTransRecipientInfo (for RSA), combined with the rules for ASN.1 BER/DER encoding. This is not a simple job, although it can be done if you want to put the effort in.
If you can use a third-party library in Java, the 'bcpkix' jar from https://www.bouncycastle.org has routines that support CMS, among several other things. This is usually easy if you are writing a program to run yourself, or in your department. If this is to be delivered to outside users or customers who may not like having to manage a dependency, maybe not.
That said, running another program to do something isn't necessarily bad practice in my book, and can be done directly from java (no script). Unless you (need to) do it very often, such as 100 times a second.

Convert RSAPublicKey to PEM [duplicate]

How can I convert this RSA public key:
109120132967399429278860960508995541528237502902798129123468757937266291492576446330739696001110 6039072308886100726558188253585034290 57592827629436413108566029093628 2126359538366865626758497206207862794310902180176810615217550567108238764764442605581471797071 19674283982419152118103759076030616683978566631413
to *.pem file?
A "pem" file is not really a format, and different kinds of objects may be be stored in things called "pem" files. Most often these files contain either a base64-encoded X509 certificate or else a base64-encoded private key object.
Assuming you want an X509 certificate, you should next realize that a certificate consists of many fields, only one of which is the public key. So would need to decide on the values of the other fields. Finally, a certificate must be signed, with a private key.
PS. An RSA public key consists of a modulus and a public exponent. What is your public exponent?
If your hex string is just a simple convert from base64 to hex. Then you can reverse it. Here is the script I did (in PHP) to solve my case:
<?php
$list = array_slice($argv, 1);
foreach ($list as $file) {
$hex = str_replace("\n", "", file_get_contents($file));
$pem = str_replace(".hex", ".pem", $file);
$b64 = base64_encode(hex2bin($hex));
$fd = fopen($pem, 'w');
fprintf($fd, "-----BEGIN PUBLIC KEY-----\n%s\n-----END PUBLIC KEY----\n", implode("\n", str_split($b64, 64)));
fclose($fd);
}
Given a list of .hex files, it convert back to ".pem". You can run it like this:
php script.php *.hex
I would use OpenSSL. Assuming that you have the key in DER format, you can use this command to convert from DER to PEM.
openssl x509 -inform der -in input.der -out output.pem
If you are not sure whether you have the correctly formatted DER (ASN.1) encoded key, try this tool to parse your input file.
First of all President James K. Polk is right. A complete RSA Key is formed by a modulus and a public exponent.
In Java, the interface RSAPublicKey from the package java.security.interfaces can hold well-formed RSA Keys. Assuming you have such object, the process of converting to a PEM format would involve encoding it, as follows:
String pemFormatKey = Base64.getEncoder().encodeToString(rsaPublicKey.getEncoded());
use putty programs, PuTTYgen does this conversion

Wrong vertificate signature algorithm in X509Certificate for SHA256withDSA using Java

I am having certificate with key type DSA, bit length 1024, Signature algorithm SHA256:
I am converting it to X509Certificate in java. When I am trying to get signature algorithm from X509Certificate I am getting something like 2.16.840.1.101.3.4.3.2.
CertificateFactory factory=CertificateFactory.getInstance("X.509");
X509Certificate cert=(X509Certificate) factory.generateCertificate(inputStream);
System.out.println(cert.getSigAlgName());
Above method working for all other type (getting name correctly as SHA256withRSA). Not working for SHA256withDSA (getting 2.16.840.1.101.3.4.3.2 Expecting SHA256withDSA). How can I get correct signature algorithm from certificate? Is there any other way to do it?
According X.509 specification Section 4.1.2.3
This field contains the algorithm identifier for the algorithm used by the CA to sign the certificate.
This field MUST contain the same algorithm identifier as the signatureAlgorithm field in the sequence Certificate (Section 4.1.1.2). The contents of the optional parameters field will vary according to the algorithm identified. [RFC3279], [RFC4055], and [RFC4491] list supported signature algorithms, but other signature algorithms MAY also be supported.
It's means X509Certificate#getSigAlgName returned algorithm used by the CA to sign the certificate, not algorithm used by end user (from current certificate) to sign data/document.
If you need take end-user algorithm, you must using another way.
Eventually you can use one certificate for differents compatible signature algorithms. Example: RSA certificate for SHA1withRSA and SHA256withRSA
Here is the code I tried in Eclipse:
InputStream inStream = null;
try {
inStream = new FileInputStream("<cert-file-name-with-path>");
CertificateFactory cf = CertificateFactory.getInstance("X.509");
X509Certificate cert = (X509Certificate)cf.generateCertificate(inStream);
System.out.println("##"+cert.getSigAlgName()+"##"+cert.getSigAlgOID()+"##"+cert.getType());
} finally {
if (inStream != null) {
inStream.close();
}
}
Output:
SHA256withDSA##2.16.840.1.101.3.4.3.2##X.509

Categories