Generating random integers uniformly in log space - java

I want to generate random integers which are uniformly distributed in log space. That is, the log of the values of will be uniformly distributed.
A normal uniformly distributed unsigned int will have 75% of its magnitudes above 1 billion, and something like 99.98% above 1 million, so small values are underrepresented. A uniform value from log space would have the same number of values in the range 4-8, as 256-512, for example.
Ignoring negative values for now, one way I can think of is something like:
Random r = new Random();
return (int)Math.pow(2, r.nextDouble() * 31);
That should generate a 31-bit log-uniformly distributed. It's not going to be fast though, with an pow() operation in there and to introduce floating point values to generate integers is a bit of a smell. Furthermore, a lot of the range of double is lost by Random.nextDouble() and it is not clear to me if this code can even generate all 2^31-1 positive integer values.
Better solutions welcome.
There are two similar solutions below which both involve filling the integer with random bits, then shifting a random number of bits to the right. Something like:
int number = rand.nextInt(Integer.MAX_VALUE) >> rand.nextInt(Integer.SIZE);
This has two types of bias:
Step-wise bias
This produces sort of a stepwise log distributed value, not a smooth one. In particular, the right shift by a random value in [0,31], means there are 31 equally probable "sizes" of integers, and every value in that range is equally probable. Since there are 2^N values in range N, the values in one range are twice as probable as the ones in the next - so you get log behavior between the ranges, but the ranges themselves are flat.
I don't know of an easy way to get rid of this bias.
Top bit bias
A second form of bias occurs because the MSB is not always 1 (e.g., even a shift amount of 10, doesn't necessary produce a 31-10=21 bit value, there is an additional distortion. In effect, the ranges overlap. The value 1 is not just present (with p(1)=.5) for a shift amount of 30, but also for shifts of 29 (p(1)=0.25), 28 (p(1)=.125), and so on. That effect cancels out for smaller values (i.e., if you look at shift amounts of 30 and 29 only, 1 seems like it is 3x more likely than 2, rather than the predicted value of 2x, but once you look at more values it converges. It doesn't cancel out for large values, however, which is why you see the 20:32207 bucket be smaller than the others in #sprinter's answer.
I think this form of bias can pretty easily be removed simply by forcing the top bit to zero, so something like:
(r.nextInt(0x40000000) | 0x40000000) >> r.nextInt(31)
This has a couple of other tweaks - it a max of 2^30 for the rand, which is faster (special case for powers of 2 in nextInt(int) code), since we never want the second-from-MSB bit set anyway (we force it to 1). This also eliminates a microscopic additional source of bias which is that Integer.MAX_VALUE could never be generated, so one value is missing from full representation.
It shifts by [0,31) bits so you never get zero, if you want zeros too, change that to shift by [0,32) bits and you'll get zeros equal in frequency to ones (technically not log-distributed anymore, but useful in many cases). Another approach is to subtract one from the final value to get zeros (at the cost of never getting Integer.MAX_VALUE).

Incorrect answer provided for information only. This does not satisfy OP's requirements for the reasons given in the question.
int number = rand.nextInt(Integer.MAX_VALUE) >> rand.nextInt(Integer.SIZE);
My informal test of that seems to indicate there is the expected skew. I generated 1M numbers this way and had the following distribution of the log (ignoring zeros)
0:46819
1:47045
2:40663
3:44001
4:45306
5:43802
6:46447
7:43355
8:47366
9:42747
10:46387
11:43899
12:45179
13:45496
14:44431
15:46751
16:43055
17:47127
18:41243
19:41837
20:32207
21:11965

Related

Searching a file for unknown integer with minimum memory requirement [duplicate]

I have been given this interview question:
Given an input file with four billion integers, provide an algorithm to generate an integer which is not contained in the file. Assume you have 1 GB memory. Follow up with what you would do if you have only 10 MB of memory.
My analysis:
The size of the file is 4×109×4 bytes = 16 GB.
We can do external sorting, thus letting us know the range of the integers.
My question is what is the best way to detect the missing integer in the sorted big integer sets?
My understanding (after reading all the answers):
Assuming we are talking about 32-bit integers, there are 232 = 4*109 distinct integers.
Case 1: we have 1 GB = 1 * 109 * 8 bits = 8 billion bits memory.
Solution:
If we use one bit representing one distinct integer, it is enough. we don't need sort.
Implementation:
int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
Scanner in = new Scanner(new FileReader("a.txt"));
while(in.hasNextInt()){
int n = in.nextInt();
bitfield[n/radix] |= (1 << (n%radix));
}
for(int i = 0; i< bitfield.lenght; i++){
for(int j =0; j<radix; j++){
if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
}
}
}
Case 2: 10 MB memory = 10 * 106 * 8 bits = 80 million bits
Solution:
For all possible 16-bit prefixes, there are 216 number of
integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket.
Build the counter of each bucket through the first pass through the file.
Scan the buckets, find the first one who has less than 65536 hit.
Build new buckets whose high 16-bit prefixes are we found in step2
through second pass of the file
Scan the buckets built in step3, find the first bucket which doesnt
have a hit.
The code is very similar to above one.
Conclusion:
We decrease memory through increasing file pass.
A clarification for those arriving late: The question, as asked, does not say that there is exactly one integer that is not contained in the file—at least that's not how most people interpret it. Many comments in the comment thread are about that variation of the task, though. Unfortunately the comment that introduced it to the comment thread was later deleted by its author, so now it looks like the orphaned replies to it just misunderstood everything. It's very confusing, sorry.
Assuming that "integer" means 32 bits: 10 MB of space is more than enough for you to count how many numbers there are in the input file with any given 16-bit prefix, for all possible 16-bit prefixes in one pass through the input file. At least one of the buckets will have be hit less than 216 times. Do a second pass to find of which of the possible numbers in that bucket are used already.
If it means more than 32 bits, but still of bounded size: Do as above, ignoring all input numbers that happen to fall outside the (signed or unsigned; your choice) 32-bit range.
If "integer" means mathematical integer: Read through the input once and keep track of the largest number length of the longest number you've ever seen. When you're done, output the maximum plus one a random number that has one more digit. (One of the numbers in the file may be a bignum that takes more than 10 MB to represent exactly, but if the input is a file, then you can at least represent the length of anything that fits in it).
Statistically informed algorithms solve this problem using fewer passes than deterministic approaches.
If very large integers are allowed then one can generate a number that is likely to be unique in O(1) time. A pseudo-random 128-bit integer like a GUID will only collide with one of the existing four billion integers in the set in less than one out of every 64 billion billion billion cases.
If integers are limited to 32 bits then one can generate a number that is likely to be unique in a single pass using much less than 10 MB. The odds that a pseudo-random 32-bit integer will collide with one of the 4 billion existing integers is about 93% (4e9 / 2^32). The odds that 1000 pseudo-random integers will all collide is less than one in 12,000 billion billion billion (odds-of-one-collision ^ 1000). So if a program maintains a data structure containing 1000 pseudo-random candidates and iterates through the known integers, eliminating matches from the candidates, it is all but certain to find at least one integer that is not in the file.
A detailed discussion on this problem has been discussed in Jon Bentley "Column 1. Cracking the Oyster" Programming Pearls Addison-Wesley pp.3-10
Bentley discusses several approaches, including external sort, Merge Sort using several external files etc., But the best method Bentley suggests is a single pass algorithm using bit fields, which he humorously calls "Wonder Sort" :)
Coming to the problem, 4 billion numbers can be represented in :
4 billion bits = (4000000000 / 8) bytes = about 0.466 GB
The code to implement the bitset is simple: (taken from solutions page )
#define BITSPERWORD 32
#define SHIFT 5
#define MASK 0x1F
#define N 10000000
int a[1 + N/BITSPERWORD];
void set(int i) { a[i>>SHIFT] |= (1<<(i & MASK)); }
void clr(int i) { a[i>>SHIFT] &= ~(1<<(i & MASK)); }
int test(int i){ return a[i>>SHIFT] & (1<<(i & MASK)); }
Bentley's algorithm makes a single pass over the file, setting the appropriate bit in the array and then examines this array using test macro above to find the missing number.
If the available memory is less than 0.466 GB, Bentley suggests a k-pass algorithm, which divides the input into ranges depending on available memory. To take a very simple example, if only 1 byte (i.e memory to handle 8 numbers ) was available and the range was from 0 to 31, we divide this into ranges of 0 to 7, 8-15, 16-22 and so on and handle this range in each of 32/8 = 4 passes.
HTH.
Since the problem does not specify that we have to find the smallest possible number that is not in the file we could just generate a number that is longer than the input file itself. :)
For the 1 GB RAM variant you can use a bit vector. You need to allocate 4 billion bits == 500 MB byte array. For each number you read from the input, set the corresponding bit to '1'. Once you done, iterate over the bits, find the first one that is still '0'. Its index is the answer.
If they are 32-bit integers (likely from the choice of ~4 billion numbers close to 232), your list of 4 billion numbers will take up at most 93% of the possible integers (4 * 109 / (232) ). So if you create a bit-array of 232 bits with each bit initialized to zero (which will take up 229 bytes ~ 500 MB of RAM; remember a byte = 23 bits = 8 bits), read through your integer list and for each int set the corresponding bit-array element from 0 to 1; and then read through your bit-array and return the first bit that's still 0.
In the case where you have less RAM (~10 MB), this solution needs to be slightly modified. 10 MB ~ 83886080 bits is still enough to do a bit-array for all numbers between 0 and 83886079. So you could read through your list of ints; and only record #s that are between 0 and 83886079 in your bit array. If the numbers are randomly distributed; with overwhelming probability (it differs by 100% by about 10-2592069) you will find a missing int). In fact, if you only choose numbers 1 to 2048 (with only 256 bytes of RAM) you'd still find a missing number an overwhelming percentage (99.99999999999999999999999999999999999999999999999999999999999995%) of the time.
But let's say instead of having about 4 billion numbers; you had something like 232 - 1 numbers and less than 10 MB of RAM; so any small range of ints only has a small possibility of not containing the number.
If you were guaranteed that each int in the list was unique, you could sum the numbers and subtract the sum with one # missing to the full sum (½)(232)(232 - 1) = 9223372034707292160 to find the missing int. However, if an int occurred twice this method will fail.
However, you can always divide and conquer. A naive method, would be to read through the array and count the number of numbers that are in the first half (0 to 231-1) and second half (231, 232). Then pick the range with fewer numbers and repeat dividing that range in half. (Say if there were two less number in (231, 232) then your next search would count the numbers in the range (231, 3*230-1), (3*230, 232). Keep repeating until you find a range with zero numbers and you have your answer. Should take O(lg N) ~ 32 reads through the array.
That method was inefficient. We are only using two integers in each step (or about 8 bytes of RAM with a 4 byte (32-bit) integer). A better method would be to divide into sqrt(232) = 216 = 65536 bins, each with 65536 numbers in a bin. Each bin requires 4 bytes to store its count, so you need 218 bytes = 256 kB. So bin 0 is (0 to 65535=216-1), bin 1 is (216=65536 to 2*216-1=131071), bin 2 is (2*216=131072 to 3*216-1=196607). In python you'd have something like:
import numpy as np
nums_in_bin = np.zeros(65536, dtype=np.uint32)
for N in four_billion_int_array:
nums_in_bin[N // 65536] += 1
for bin_num, bin_count in enumerate(nums_in_bin):
if bin_count < 65536:
break # we have found an incomplete bin with missing ints (bin_num)
Read through the ~4 billion integer list; and count how many ints fall in each of the 216 bins and find an incomplete_bin that doesn't have all 65536 numbers. Then you read through the 4 billion integer list again; but this time only notice when integers are in that range; flipping a bit when you find them.
del nums_in_bin # allow gc to free old 256kB array
from bitarray import bitarray
my_bit_array = bitarray(65536) # 32 kB
my_bit_array.setall(0)
for N in four_billion_int_array:
if N // 65536 == bin_num:
my_bit_array[N % 65536] = 1
for i, bit in enumerate(my_bit_array):
if not bit:
print bin_num*65536 + i
break
Why make it so complicated? You ask for an integer not present in the file?
According to the rules specified, the only thing you need to store is the largest integer that you encountered so far in the file. Once the entire file has been read, return a number 1 greater than that.
There is no risk of hitting maxint or anything, because according to the rules, there is no restriction to the size of the integer or the number returned by the algorithm.
This can be solved in very little space using a variant of binary search.
Start off with the allowed range of numbers, 0 to 4294967295.
Calculate the midpoint.
Loop through the file, counting how many numbers were equal, less than or higher than the midpoint value.
If no numbers were equal, you're done. The midpoint number is the answer.
Otherwise, choose the range that had the fewest numbers and repeat from step 2 with this new range.
This will require up to 32 linear scans through the file, but it will only use a few bytes of memory for storing the range and the counts.
This is essentially the same as Henning's solution, except it uses two bins instead of 16k.
EDIT Ok, this wasn't quite thought through as it assumes the integers in the file follow some static distribution. Apparently they don't need to, but even then one should try this:
There are ≈4.3 billion 32-bit integers. We don't know how they are distributed in the file, but the worst case is the one with the highest Shannon entropy: an equal distribution. In this case, the probablity for any one integer to not occur in the file is
( (2³²-1)/2³² )⁴ ⁰⁰⁰ ⁰⁰⁰ ⁰⁰⁰ ≈ .4
The lower the Shannon entropy, the higher this probability gets on the average, but even for this worst case we have a chance of 90% to find a nonoccurring number after 5 guesses with random integers. Just create such numbers with a pseudorandom generator, store them in a list. Then read int after int and compare it to all of your guesses. When there's a match, remove this list entry. After having been through all of the file, chances are you will have more than one guess left. Use any of them. In the rare (10% even at worst case) event of no guess remaining, get a new set of random integers, perhaps more this time (10->99%).
Memory consumption: a few dozen bytes, complexity: O(n), overhead: neclectable as most of the time will be spent in the unavoidable hard disk accesses rather than comparing ints anyway.
The actual worst case, when we do not assume a static distribution, is that every integer occurs max. once, because then only
1 - 4000000000/2³² ≈ 6%
of all integers don't occur in the file. So you'll need some more guesses, but that still won't cost hurtful amounts of memory.
If you have one integer missing from the range [0, 2^x - 1] then just xor them all together. For example:
>>> 0 ^ 1 ^ 3
2
>>> 0 ^ 1 ^ 2 ^ 3 ^ 4 ^ 6 ^ 7
5
(I know this doesn't answer the question exactly, but it's a good answer to a very similar question.)
They may be looking to see if you have heard of a probabilistic Bloom Filter which can very efficiently determine absolutely if a value is not part of a large set, (but can only determine with high probability it is a member of the set.)
Based on the current wording in the original question, the simplest solution is:
Find the maximum value in the file, then add 1 to it.
Use a BitSet. 4 billion integers (assuming up to 2^32 integers) packed into a BitSet at 8 per byte is 2^32 / 2^3 = 2^29 = approx 0.5 Gb.
To add a bit more detail - every time you read a number, set the corresponding bit in the BitSet. Then, do a pass over the BitSet to find the first number that's not present. In fact, you could do this just as effectively by repeatedly picking a random number and testing if it's present.
Actually BitSet.nextClearBit(0) will tell you the first non-set bit.
Looking at the BitSet API, it appears to only support 0..MAX_INT, so you may need 2 BitSets - one for +'ve numbers and one for -'ve numbers - but the memory requirements don't change.
If there is no size limit, the quickest way is to take the length of the file, and generate the length of the file+1 number of random digits (or just "11111..." s). Advantage: you don't even need to read the file, and you can minimize memory use nearly to zero. Disadvantage: You will print billions of digits.
However, if the only factor was minimizing memory usage, and nothing else is important, this would be the optimal solution. It might even get you a "worst abuse of the rules" award.
If we assume that the range of numbers will always be 2^n (an even power of 2), then exclusive-or will work (as shown by another poster). As far as why, let's prove it:
The Theory
Given any 0 based range of integers that has 2^n elements with one element missing, you can find that missing element by simply xor-ing the known values together to yield the missing number.
The Proof
Let's look at n = 2. For n=2, we can represent 4 unique integers: 0, 1, 2, 3. They have a bit pattern of:
0 - 00
1 - 01
2 - 10
3 - 11
Now, if we look, each and every bit is set exactly twice. Therefore, since it is set an even number of times, and exclusive-or of the numbers will yield 0. If a single number is missing, the exclusive-or will yield a number that when exclusive-ored with the missing number will result in 0. Therefore, the missing number, and the resulting exclusive-ored number are exactly the same. If we remove 2, the resulting xor will be 10 (or 2).
Now, let's look at n+1. Let's call the number of times each bit is set in n, x and the number of times each bit is set in n+1 y. The value of y will be equal to y = x * 2 because there are x elements with the n+1 bit set to 0, and x elements with the n+1 bit set to 1. And since 2x will always be even, n+1 will always have each bit set an even number of times.
Therefore, since n=2 works, and n+1 works, the xor method will work for all values of n>=2.
The Algorithm For 0 Based Ranges
This is quite simple. It uses 2*n bits of memory, so for any range <= 32, 2 32 bit integers will work (ignoring any memory consumed by the file descriptor). And it makes a single pass of the file.
long supplied = 0;
long result = 0;
while (supplied = read_int_from_file()) {
result = result ^ supplied;
}
return result;
The Algorithm For Arbitrary Based Ranges
This algorithm will work for ranges of any starting number to any ending number, as long as the total range is equal to 2^n... This basically re-bases the range to have the minimum at 0. But it does require 2 passes through the file (the first to grab the minimum, the second to compute the missing int).
long supplied = 0;
long result = 0;
long offset = INT_MAX;
while (supplied = read_int_from_file()) {
if (supplied < offset) {
offset = supplied;
}
}
reset_file_pointer();
while (supplied = read_int_from_file()) {
result = result ^ (supplied - offset);
}
return result + offset;
Arbitrary Ranges
We can apply this modified method to a set of arbitrary ranges, since all ranges will cross a power of 2^n at least once. This works only if there is a single missing bit. It takes 2 passes of an unsorted file, but it will find the single missing number every time:
long supplied = 0;
long result = 0;
long offset = INT_MAX;
long n = 0;
double temp;
while (supplied = read_int_from_file()) {
if (supplied < offset) {
offset = supplied;
}
}
reset_file_pointer();
while (supplied = read_int_from_file()) {
n++;
result = result ^ (supplied - offset);
}
// We need to increment n one value so that we take care of the missing
// int value
n++
while (n == 1 || 0 != (n & (n - 1))) {
result = result ^ (n++);
}
return result + offset;
Basically, re-bases the range around 0. Then, it counts the number of unsorted values to append as it computes the exclusive-or. Then, it adds 1 to the count of unsorted values to take care of the missing value (count the missing one). Then, keep xoring the n value, incremented by 1 each time until n is a power of 2. The result is then re-based back to the original base. Done.
Here's the algorithm I tested in PHP (using an array instead of a file, but same concept):
function find($array) {
$offset = min($array);
$n = 0;
$result = 0;
foreach ($array as $value) {
$result = $result ^ ($value - $offset);
$n++;
}
$n++; // This takes care of the missing value
while ($n == 1 || 0 != ($n & ($n - 1))) {
$result = $result ^ ($n++);
}
return $result + $offset;
}
Fed in an array with any range of values (I tested including negatives) with one inside that range which is missing, it found the correct value each time.
Another Approach
Since we can use external sorting, why not just check for a gap? If we assume the file is sorted prior to the running of this algorithm:
long supplied = 0;
long last = read_int_from_file();
while (supplied = read_int_from_file()) {
if (supplied != last + 1) {
return last + 1;
}
last = supplied;
}
// The range is contiguous, so what do we do here? Let's return last + 1:
return last + 1;
Trick question, unless it's been quoted improperly. Just read through the file once to get the maximum integer n, and return n+1.
Of course you'd need a backup plan in case n+1 causes an integer overflow.
Check the size of the input file, then output any number which is too large to be represented by a file that size. This may seem like a cheap trick, but it's a creative solution to an interview problem, it neatly sidesteps the memory issue, and it's technically O(n).
void maxNum(ulong filesize)
{
ulong bitcount = filesize * 8; //number of bits in file
for (ulong i = 0; i < bitcount; i++)
{
Console.Write(9);
}
}
Should print 10 bitcount - 1, which will always be greater than 2 bitcount. Technically, the number you have to beat is 2 bitcount - (4 * 109 - 1), since you know there are (4 billion - 1) other integers in the file, and even with perfect compression they'll take up at least one bit each.
The simplest approach is to find the minimum number in the file, and return 1 less than that. This uses O(1) storage, and O(n) time for a file of n numbers. However, it will fail if number range is limited, which could make min-1 not-a-number.
The simple and straightforward method of using a bitmap has already been mentioned. That method uses O(n) time and storage.
A 2-pass method with 2^16 counting-buckets has also been mentioned. It reads 2*n integers, so uses O(n) time and O(1) storage, but it cannot handle datasets with more than 2^16 numbers. However, it's easily extended to (eg) 2^60 64-bit integers by running 4 passes instead of 2, and easily adapted to using tiny memory by using only as many bins as fit in memory and increasing the number of passes correspondingly, in which case run time is no longer O(n) but instead is O(n*log n).
The method of XOR'ing all the numbers together, mentioned so far by rfrankel and at length by ircmaxell answers the question asked in stackoverflow#35185, as ltn100 pointed out. It uses O(1) storage and O(n) run time. If for the moment we assume 32-bit integers, XOR has a 7% probability of producing a distinct number. Rationale: given ~ 4G distinct numbers XOR'd together, and ca. 300M not in file, the number of set bits in each bit position has equal chance of being odd or even. Thus, 2^32 numbers have equal likelihood of arising as the XOR result, of which 93% are already in file. Note that if the numbers in file aren't all distinct, the XOR method's probability of success rises.
Strip the white space and non numeric characters from the file and append 1. Your file now contains a single number not listed in the original file.
From Reddit by Carbonetc.
For some reason, as soon as I read this problem I thought of diagonalization. I'm assuming arbitrarily large integers.
Read the first number. Left-pad it with zero bits until you have 4 billion bits. If the first (high-order) bit is 0, output 1; else output 0. (You don't really have to left-pad: you just output a 1 if there are not enough bits in the number.) Do the same with the second number, except use its second bit. Continue through the file in this way. You will output a 4-billion bit number one bit at a time, and that number will not be the same as any in the file. Proof: it were the same as the nth number, then they would agree on the nth bit, but they don't by construction.
You can use bit flags to mark whether an integer is present or not.
After traversing the entire file, scan each bit to determine if the number exists or not.
Assuming each integer is 32 bit, they will conveniently fit in 1 GB of RAM if bit flagging is done.
Just for the sake of completeness, here is another very simple solution, which will most likely take a very long time to run, but uses very little memory.
Let all possible integers be the range from int_min to int_max, and
bool isNotInFile(integer) a function which returns true if the file does not contain a certain integer and false else (by comparing that certain integer with each integer in the file)
for (integer i = int_min; i <= int_max; ++i)
{
if (isNotInFile(i)) {
return i;
}
}
For the 10 MB memory constraint:
Convert the number to its binary representation.
Create a binary tree where left = 0 and right = 1.
Insert each number in the tree using its binary representation.
If a number has already been inserted, the leafs will already have been created.
When finished, just take a path that has not been created before to create the requested number.
4 billion number = 2^32, meaning 10 MB might not be sufficient.
EDIT
An optimization is possible, if two ends leafs have been created and have a common parent, then they can be removed and the parent flagged as not a solution. This cuts branches and reduces the need for memory.
EDIT II
There is no need to build the tree completely too. You only need to build deep branches if numbers are similar. If we cut branches too, then this solution might work in fact.
I will answer the 1 GB version:
There is not enough information in the question, so I will state some assumptions first:
The integer is 32 bits with range -2,147,483,648 to 2,147,483,647.
Pseudo-code:
var bitArray = new bit[4294967296]; // 0.5 GB, initialized to all 0s.
foreach (var number in file) {
bitArray[number + 2147483648] = 1; // Shift all numbers so they start at 0.
}
for (var i = 0; i < 4294967296; i++) {
if (bitArray[i] == 0) {
return i - 2147483648;
}
}
As long as we're doing creative answers, here is another one.
Use the external sort program to sort the input file numerically. This will work for any amount of memory you may have (it will use file storage if needed).
Read through the sorted file and output the first number that is missing.
Bit Elimination
One way is to eliminate bits, however this might not actually yield a result (chances are it won't). Psuedocode:
long val = 0xFFFFFFFFFFFFFFFF; // (all bits set)
foreach long fileVal in file
{
val = val & ~fileVal;
if (val == 0) error;
}
Bit Counts
Keep track of the bit counts; and use the bits with the least amounts to generate a value. Again this has no guarantee of generating a correct value.
Range Logic
Keep track of a list ordered ranges (ordered by start). A range is defined by the structure:
struct Range
{
long Start, End; // Inclusive.
}
Range startRange = new Range { Start = 0x0, End = 0xFFFFFFFFFFFFFFFF };
Go through each value in the file and try and remove it from the current range. This method has no memory guarantees, but it should do pretty well.
2128*1018 + 1 ( which is (28)16*1018 + 1 ) - cannot it be a universal answer for today? This represents a number that cannot be held in 16 EB file, which is the maximum file size in any current file system.
I think this is a solved problem (see above), but there's an interesting side case to keep in mind because it might get asked:
If there are exactly 4,294,967,295 (2^32 - 1) 32-bit integers with no repeats, and therefore only one is missing, there is a simple solution.
Start a running total at zero, and for each integer in the file, add that integer with 32-bit overflow (effectively, runningTotal = (runningTotal + nextInteger) % 4294967296). Once complete, add 4294967296/2 to the running total, again with 32-bit overflow. Subtract this from 4294967296, and the result is the missing integer.
The "only one missing integer" problem is solvable with only one run, and only 64 bits of RAM dedicated to the data (32 for the running total, 32 to read in the next integer).
Corollary: The more general specification is extremely simple to match if we aren't concerned with how many bits the integer result must have. We just generate a big enough integer that it cannot be contained in the file we're given. Again, this takes up absolutely minimal RAM. See the pseudocode.
# Grab the file size
fseek(fp, 0L, SEEK_END);
sz = ftell(fp);
# Print a '2' for every bit of the file.
for (c=0; c<sz; c++) {
for (b=0; b<4; b++) {
print "2";
}
}
As Ryan said it basically, sort the file and then go over the integers and when a value is skipped there you have it :)
EDIT at downvoters: the OP mentioned that the file could be sorted so this is a valid method.
If you don't assume the 32-bit constraint, just return a randomly generated 64-bit number (or 128-bit if you're a pessimist). The chance of collision is 1 in 2^64/(4*10^9) = 4611686018.4 (roughly 1 in 4 billion). You'd be right most of the time!
(Joking... kind of.)

Java - normalize and denormalize nominal attributes in neural networks

Hi I am building a simple multilayer network which is trained using back propagation. My problem at the moment is that some attributes in my dataset are nominal (non numeric) and I have to normalize them. I wanted to know what the best approach is. I was thinking along the lines of counting up how many distinct values there are for each attribute and assigning each an equal number between 0 and 1. For example suppose one of my attributes had values A to E then would the following be suitable?:
A = 0
B = 0.25
C = 0.5
D = 0.75
E = 1
The second part to my question is denormalizing the output to get it back to a nominal value. Would I first do the same as above to each distinct output attribute value in the dataset in order to get a numerical representation? Also after I get an output from the network, do I just see which number it is closer to? For example if I got 0.435 as an output and my output attribute values were assigned like this:
x = 0
y = 0.5
z = 1
Do I just find the nearest value to the output (0.435) which is y (0.5)?
You can only do what you are proposing if the variables are ordinal and not nominal, and even then it is a somewhat arbitrary decision. Before I suggest a solution, a note on terminology:
Nominal vs ordinal variables
Suppose A, B, etc stand for colours. These are the values of a nominal variable and can not be ordered in a meaningful way. You can't say red is greater than yellow. Therefore, you should not be assigning numbers to nominal variables .
Now suppose A, B, C, etc stand for garment sizes, e.g. small, medium, large, etc. Even though we are not measuring these sizes on an absolute scale (i.e. we don't say that small corresponds to 40 a chest circumference), it is clear that small < medium < large. With that in mind, it is still somewhat arbitrary whether you set small=1, medium=2, large=3, or small=2, medium=4, large=8.
One-of-N encoding
A better way to go about this is to to use the so called one-out-of-N encoding. If you have 5 distinct values, you need five input units, each of which can take the value 1 or 0. Continuing with my garments example, size extra small can be encoded as 10000, small as 01000, medium as 00100, etc.
A similar principle applies to the outputs of the network. If we treat garment size as output instead of input, when the network output the vector [0.01 -0.01 0.5 0.0001 -.0002], you interpret that as size medium.
In reply to your comment on #Daan's post: if you have 5 inputs, one of which takes 20 possible discrete values, you will need 24 input nodes. You might want to normalise the values of your 4 continuous inputs to the range [0, 1], because they may end out dominating your discrete variable.
It really depends on the meaning of the attributes you're trying to normalize, and the functions used inside your NN. For example, if your attributes are non-linear, or if you're using a non-linear activation function, then linear normalization might not end up doing what you want it to do.
If the ranges of attribute values are relatively small, splitting the input and output into sets of binary inputs and outputs will probably be simpler and more accurate.
EDIT:
If the NN was able to accurately perform it's function, one of the outputs will be significantly higher than the others. If not, you might have a problem, depending on when you see inaccurate results.
Inaccurate results during early training are expected. They should become less and less common as you perform more training iterations. If they don't, your NN might not be appropriate for the task you're trying to perform. This could be simply a matter of increasing the size and/or number of hidden layers. Or it could be a more fundamental problem, requiring knowledge of what you're trying to do.
If you've succesfully trained your NN but are seeing inaccuracies when processing real-world data sets, then your training sets were likely not representative enough.
In all of these cases, there's a strong likelihood that your NN did something entirely different than what you wanted it to do. So at this point, simply selecting the highest output is as good a guess as any. But there's absolutely no guarantee that it'll be a better guess.

Why are initial random numbers similar when using similar seeds?

I discovered something strange with the generation of random numbers using Java's Random class.
Basically, if you create multiple Random objects using close seeds (for example between 1 and 1000) the first value generated by each generator will be almost the same, but the next values looks fine (i didn't search further).
Here are the two first generated doubles with seeds from 0 to 9 :
0 0.730967787376657 0.24053641567148587
1 0.7308781907032909 0.41008081149220166
2 0.7311469360199058 0.9014476240300544
3 0.731057369148862 0.07099203475193139
4 0.7306094602878371 0.9187140138555101
5 0.730519863614471 0.08825840967622589
6 0.7307886238322471 0.5796252073129174
7 0.7306990420600421 0.7491696031336331
8 0.7302511331990172 0.5968915822372118
9 0.7301615514268123 0.7664359929590888
And from 991 to 1000 :
991 0.7142160704801332 0.9453385235522973
992 0.7109015598097105 0.21848118381994108
993 0.7108119780375055 0.38802559454181795
994 0.7110807233541204 0.8793923921785096
995 0.7109911564830766 0.048936787999225295
996 0.7105432327208906 0.896658767102804
997 0.7104536509486856 0.0662031629235198
998 0.7107223962653005 0.5575699754613725
999 0.7106328293942568 0.7271143712820883
1000 0.7101849056320707 0.574836350385667
And here is a figure showing the first value generated with seeds from 0 to 100,000.
First random double generated based on the seed :
I searched for information about this, but I didn't see anything referring to this precise problem. I know that there is many issues with LCGs algorithms, but I didn't know about this one, and I was wondering if this was a known issue.
And also, do you know if this problem only for the first value (or first few values), or if it is more general and using close seeds should be avoided?
Thanks.
You'd be best served by downloading and reading the Random source, as well as some papers on pseudo-random generators, but here are some of the relevant parts of the source. To begin with, there are three constant parameters that control the algorithm:
private final static long multiplier = 0x5DEECE66DL;
private final static long addend = 0xBL;
private final static long mask = (1L << 48) - 1;
The multiplier works out to approximately 2^34 and change, the mask 2^48 - 1, and the addend is pretty close to 0 for this analysis.
When you create a Random with a seed, the constructor calls setSeed:
synchronized public void setSeed(long seed) {
seed = (seed ^ multiplier) & mask;
this.seed.set(seed);
haveNextNextGaussian = false;
}
You're providing a seed pretty close to zero, so initial seed value that gets set is dominated by multiplier when the two are OR'ed together. In all your test cases with seeds close to zero, the seed that is used internally is roughly 2^34; but it's easy to see that even if you provided very large seed numbers, similar user-provided seeds will yield similar internal seeds.
The final piece is the next(int) method, which actually generates a random integer of the requested length based on the current seed, and then updates the seed:
protected int next(int bits) {
long oldseed, nextseed;
AtomicLong seed = this.seed;
do {
oldseed = seed.get();
nextseed = (oldseed * multiplier + addend) & mask;
} while (!seed.compareAndSet(oldseed, nextseed));
return (int)(nextseed >>> (48 - bits));
}
This is called a 'linear congruential' pseudo-random generator, meaning that it generates each successive seed by multiplying the current seed by a constant multiplier and then adding a constant addend (and then masking to take the lower 48 bits, in this case). The quality of the generator is determined by the choice of multiplier and addend, but the ouput from all such generators can be easily predicted based on the current input and has a set period before it repeats itself (hence the recommendation not to use them in sensitive applications).
The reason you're seeing similar initial output from nextDouble given similar seeds is that, because the computation of the next integer only involves a multiplication and addition, the magnitude of the next integer is not much affected by differences in the lower bits. Calculation of the next double involves computing a large integer based on the seed and dividing it by another (constant) large integer, and the magnitude of the result is mostly affected by the magnitude of the integer.
Repeated calculations of the next seed will magnify the differences in the lower bits of the seed because of the repeated multiplication by the constant multiplier, and because the 48-bit mask throws out the highest bits each time, until eventually you see what looks like an even spread.
I wouldn't have called this an "issue".
And also, do you know if this problem only for the first value (or first few values), or if it is more general and using close seeds should be avoided?
Correlation patterns between successive numbers is a common problem with non-crypto PRNGs, and this is just one manifestation. The correlation (strictly auto-correlation) is inherent in the mathematics underlying the algorithm(s). If you want to understand that, you should probably start by reading the relevant part of Knuth's Art of Computer Programming Chapter 3.
If you need non-predictability you should use a (true) random seed for Random ... or let the system pick a "pretty random" one for you; e.g. using the no-args constructor. Or better still, use a real random number source or a crypto-quality PRNG instead of Random.
For the record:
The javadoc (Java 7) does not specify how Random() seeds itself.
The implementation of Random() on Java 7 for Linux, is seeded from the nanosecond clock, XORed with a 'uniquifier' sequence. The 'uniquifier' sequence is LCG which uses different multiplier, and whose state is static. This is intended to avoid auto-correlation of the seeds ...
This is a fairly typical behaviour for pseudo-random seeds - they aren't required to provide completely different random sequences, they only provide a guarantee that you can get the same sequence again if you use the same seed.
The behaviour happens because of the mathematical form of the PRNG - the Java one uses a linear congruential generator, so you are just seeing the results running the seed through one round of the linear congruential generator. This isn't enough to completely mix up all the bit patterns, hence you see similar results for similar seeds.
Your best strategy is probably just to use very different seeds - one option would be to obtain these by hashing the seed values that you are currently using.
By making random seeds (for instance, using some mathematical functions on System.currentTimeMillis() or System.nanoTime() for seed generation) you can get better random result. Also can look at here for more information

Normalized Iteration Count does not work. What am I doing wrong?

As you can see from the title, I'm busy programming a little programm for visualizing fractals in Java. Anybody who deals with fractals will come to the point where he/she searches for a solution to get these stupid "bands" away, when you just colour a pixel by the number of iterations it took to escape.
So I searched for a more advanced colouring algorithm, finding the "normalized iteration count". The formula I'm using is:
float loc = (float) 1 - Math.log(Math.log(c.abs())) / Math.log(2);
Everybody on the Internet is so happy about this algorithm, everybody uses it, everbody gets great results. Except me. I thought, this algorithm should provide a float between 0 and 1. But that doesn't happen. I did some calculations and came to the conclusion, that this algorithm only works for c.abs() >= Math.E && c.abs() <= Math.exp(2) (that is Math.E * Math.E).
In numbers this means, my input into this equation has to be between about 2.718 and 7.389.
But a complex number c is considerd to tend towards infinity when its magnitude gets greater than 2. But for any Input smaller than Math.E, I get a value greater than one. And for any number greater than Math.exp(2), it gets negative. That is the case if a complex number escapes really fast.
So please tell me: what am I doing wrong. I'm desperate.
Thanks.
EDIT:
I was wrong: the code I posted is correct, I just
1. used it the wrong way and so it didn't provide the right output.
2. had to set the bailout value of the mandelbrot/julia algorithm to 10, otherwise I would've got stupid bands again.
Problem solved!
As you've already discovered, you need to increase the bailout radius before smoothing will look right.
Two is the minimum length that a coordinate can have such that when you square it and add the initial value, it cannot result in a smaller length. If the previous length was 2.0, and you squared it, you'd have a length of 4.0 (pointing in whichever direction), and the most that any value of c could reduce that by is 2.0 (by pointing in precisely the opposite direction). If c were larger than that then it would start to escape right away.
Now, to estimate the fractional part of the number of iterations we look at the final |z|. If z had simply been squared and c not added to it, then it would have a length between 2.0 and 4.0 (the new value must be larger than 2.0 to bail out, and the old value must have been less than 2.0 to have not bailed out earlier).
Without c, taking |z|'s proportional position between 2 and 4 gives us a fractional part of the number of iterations. If |z| is close to 4 then the previous length must have been close to 2, so it was already close to bailing out in the previous iteration and the smoothed result should be close to the previous iteration count to represent that. If it's close to 2, then the previous iteration was further from bailing out, and so the smoothed result should be closer to the new iteration count.
Unfortunately c messes that up. The larger c is, the larger the potential error is in that simple relationship. Even if the old length was nearly at 2.0, it might have landed such that c's influence made it look like it must have been smaller.
Increasing the bailout mitigates the effect of adding c. If the bailout is 64 then the resulting length will be between 64 and 4096, and c's maximum offset of 2 has a proportionally smaller very impact on the result.
You have left out the iteration value, try this:
float loc = <iteration_value> + (float) 1 - Math.log(Math.log(c.abs())) / Math.log(2);
The iteration_value is the number of iterations which yielded c in the formula.

How to be sure that random numbers are unique and not duplicated?

I have a simple code which generates random numbers
SecureRandom random = new SecureRandom();
...
public int getRandomNumber(int maxValue) {
return random.nextInt(maxValue);
}
The method above is called about 10 times (not in a loop). I want to ensure that all the numbers are unique (assuming that maxValue > 1000).
Can I be sure that I will get unique numbers every time I call it? If not, how can I fix it?
EDIT: I may have said it vaguely. I wanted to avoid manual checks if I really got unique numbers so I was wondering if there is a better solution.
There are different ways of achieving this and which is more appropriate will depend on how many numbers you need to pick from how many.
If you are selecting a small number of random numbers from a large range of potential numbers, then you're probably best just storing previously chosen numbers in a set and "manually" checking for duplicates. Most of the time, you won't actually get a duplicate and the test will have practically zero cost in practical terms. It might sound inelegant, but it's not actually as bad as it sounds.
Some underlying random number generation algorithms don't produce duplicates at their "raw" level. So for example, an algorithm called a XORShift generator can effectively produce all of the numbers within a certain range, shuffled without duplicates. So you basically choose a random starting point in the sequence then just generate the next n numbers and you know there won't be duplicates. But you can't arbitrarily choose "max" in this case: it has to be the natural maximum of the generator in question.
If the range of possible numbers is small-ish but the number of numbers you need to pick is within a couple of orders of magnitude of that range, then you could treat this as a random selection problem. For example, to choose 100,000 numbers within the range 10,000,000 without duplicates, I can do this:
Let m be the number of random numbers I've chosen so far
For i = 1 to 10,000,000
Generate a random (floating point) number, r, in the range 0-1
If (r < (100,000-m)/(10,000,000-i)), then add i to the list and increment m
Shuffle the list, then pick numbers sequentially from the list as required
But obviously, there's only much point in choosing the latter option if you need to pick some reasonably large proportion of the overall range of numbers. For choosing 10 numbers in the range 1 to a billion, you would be generating a billion random numbers when by just checking for duplicates as you go, you'd be very unlikely to actually get a duplicate and would only have ended up generating 10 random numbers.
A random sequence does not mean that all values are unique. The sequence 1,1,1,1 is exactly as likely as the sequence 712,4,22,424.
In other words, if you want to be guaranteed a sequence of unique numbers, generate 10 of them at once, check for the uniqueness condition of your choice and store them, then pick a number from that list instead of generating a random number in your 10 places.
Every time you call Random#nextInt(int) you will get
a pseudorandom, uniformly distributed int value between 0 (inclusive)
and the specified value (exclusive).
If you want x unique numbers, keep getting new numbers until you have that many, then select your "random" number from that list. However, since you are filtering the numbers generated, they won't truly be random anymore.
For such a small number of possible values, a trivial implementation would be to put your 1000 integers in a list, and have a loop which, at each iteration, generates a random number between 0 and list.size(), pick the number stored at this index, and remove it from the list.
This is code is very efficient with the CPU at the cost of memory. Each potiental value cost sizeof(int) * maxValue. An unsigned integer will work up to 65535 as a max. long can be used at the cost of a lot of memory 2000 bytes for 1000 values of 16 bit integers.
The whole purpose of the array is to say have you used this value before or not 1 = yes
'anything else = no
'The while loop will keep generating random numbers until a unique value is found.
'after a good random value is found it marks it as used and then returns it.
'Be careful of the scope of variable a as if it goes out of scope your array could erased.
' I have used this in c and it works.
' may take a bit of brushing up to get it working in Java.
unsigned int a(1000);
public int getRandomNumber(int maxValue) {
unsigned int rand;
while(a(rand)==1) {
rand=random.nextInt(maxValue);
if (a(rand)!=1) { a(rand)=1; return rand;}
}
}

Categories