Bullets not getting shot out of the gun - java

I'm making a little game just for fun and I got stuck making the bullets come out of the gun. In the code below, the direction of the player is a degree angle called rot.
float gunOffsetX = 106, gunOffsetY = 96;
double angle = Math.toRadians(rot); // convert direction of player from degrees to radians for sin and cos
x = getX(); // player X
y = getY(); // player Y
float bulletX = (float) (x + (gunOffsetX * Math.cos(angle) - gunOffsetY * Math.sin(angle)));
float bulletY = (float) (y + (gunOffsetX * Math.sin(angle) + gunOffsetY * Math.cos(angle)));
Instances.fire.add(new Fire(bulletX, bulletY, rot, weapon));
Also tried:
bulletX = (float) (x + Math.cos(angle + Math.atan2(gunOffsetX, gunOffsetY)) * Point2D.distance(0, 0, gunOffsetX, gunOffsetY));
But same results
Supposedly the bullets should spawn at the end of the gun but this isn't the case as you can see in the following gif..
Any help appreciated

One big issue (at least in my opinion) is how this game handles anchor points of shapes, like the player.
We can highlight the anchor point by drawing a little red rectangle on its place:
g.setColor(Color.RED);
g.drawRect((int)player.getX() -5, (int)player.getY() -5, 10, 10);
This comes into the Draw#renderGame(Graphics2D) method, so it looks like:
private void renderGame(Graphics2D g) {
g.rotate(Math.toRadians(player.rot), player.getX()+64, player.getY()+64);
g.drawImage(player.getCurrentFrame(), (int)player.getX(), (int)player.getY(), player.getWidth(), player.getHeight(), null);
g.setColor(Color.RED);
g.drawRect((int)player.getX() -5, (int)player.getY() -5, 10, 10);
g.rotate(-Math.toRadians(player.rot), player.getX()+64, player.getY()+64);
//...
then we'll see that the anchor point is not in the center of the image:
As you can see, the anchor point (the original (0,0) point before the rotation) isn't in the center of the image and the crosshair is related to it, instead of the view of the player.
This happens due to the shifting operation while the player rotation:
g.rotate(Math.toRadians(player.rot), player.getX()+64, player.getY()+64);
//...
g.rotate(-Math.toRadians(player.rot), player.getX()+64, player.getY()+64);
You're shifting the postion with +64. I suggest to remove that and add the shifting to the g.drawImage call instead, so the anchor point is correctly in the center (mind that I avoided the fixed value 64):
g.rotate(Math.toRadians(player.rot), player.getX(), player.getY());
g.drawImage(player.getCurrentFrame(), (int)player.getX() - (player.getWidth() / 2), (int)player.getY() - (player.getHeight() / 2), player.getWidth(), player.getHeight(), null);
g.rotate(-Math.toRadians(player.rot), player.getX(), player.getY());
Then you now fire the gun you'll see that the bullet always "starts" from a certain position from the player. The problem here is the incorrect offset you used. The proper values are:
float gunOffsetX = 35, gunOffsetY = 29;
(I got them by trial and error, so you may adjust them a bit more, if you like)
Now it looks like this:
As you can see, the shot is still a bit misplaced, but this happens due to the incorrect rotation of the bullet (like you did it for the player shape):
g.rotate(Math.toRadians(f.rot), f.getX()+f.getWidth()/2, f.getY()+f.getHeight()/2);
g.drawImage(f.img, (int)f.getX(), (int)f.getY(), f.getWidth(), f.getHeight(), null);
g.rotate(-Math.toRadians(f.rot), f.getX()+f.getWidth()/2, f.getY()+f.getHeight()/2);
It should look like this (without any X or Y adjustments):
g.rotate(Math.toRadians(f.rot), f.getX(), f.getY());
g.drawImage(f.img, (int)f.getX(), (int)f.getY(), f.getWidth(), f.getHeight(), null);
g.rotate(-Math.toRadians(f.rot), f.getX(), f.getY());
The end result is:
The player now correctly looks at the crosshair and the shots are placed in front of the gun.
If you like to fire directly through the center of the crosshair, you'll only need to adjust the player position and the bullet offset a bit.
Player (in Draw#renderGame(Graphics2D)):
g.drawImage(player.getCurrentFrame(), (int)player.getX() - (player.getWidth() / 2), (int)player.getY() - (player.getHeight() / 2) - 30, player.getWidth(), player.getHeight(), null);
(mind the -30 in (int)player.getY() - (player.getHeight() / 2) - 30)
Bullet:
float gunOffsetX = 35, gunOffsetY = 0;
Now the bullet travels right through the crosshair (mind that the red rectangle is right on the weapon):
(I'm a bit too stupid to create proper GIF files, so I can only provide pictures)
Now you have the necessary offset values to get the result you want, but you should definitely try to understand why the values are like they are right now. You need to replace them later with dynamic values, since different weapons need different offsets for the bullet, because the player image differs. It should be helpful to have some kind of class with instances for each weapon type, which contains the images and the coordinates where the weapon barrel is located in the image. Then you can use these coordinates to correctly set the offsets for the bullet image.

Related

Java Arc2D Collision detection (With Rotation)

I have tried to create NPC character that can "see" the player by using cones of vision.
The NPC will rotate back and forth at all times.
My problem is that the arc has a generic and unchanging position, but when its drawn to the screen it looks correct.
[Screenshots of the collisions in action][1]
[GitHub link for java files][2]
I'm using Arc2D to draw the shape like this in my NPC class
// Update the shapes used in the npc
rect.setRect(x, y, w, h);
ellipse.setFrame(rect);
visionArc.setArcByCenter(cx, cy, visionDistance, visionAngle, visionAngle * 2, Arc2D.PIE);
/ CenterX, CenterY (of the npc),
/ the distance from the arc to the npc
/ a constant value around 45 degrees and a constant value around 90 degress (to make a pie shape)
I've tried multiplying the position and the angles by the sin and cosine of the NPC's current angle
something like these
visionArc.setArcByCenter(cx * (Math.cos(Math.toRadians(angle))), cy (Math.sin(Math.toRadians(angle)), visionDistance, visionAngle, visionAngle * 2, Arc2D.PIE);
or
visionArc.setArcByCenter(cx, cy, visionDistance, visionAngle - angle, (visionAngle + angle) * 2, Arc2D.PIE);
or
visionArc.setArcByCenter(cx, cy, visionDistance, visionAngle * (Math.cos(Math.toRadians(angle))), visionAngle * 2, Arc2D.PIE);
I've tried a lot but can't seem to find what works. Making the vision angles not constant makes an arc that expands and contracts, and multiplying the position by the sin or cosine of the angle will make the arc fly around the screen, which doesn't really work either.
This is the function that draws the given NPC
public void drawNPC(NPC npc, Graphics2D g2, AffineTransform old) {
// translate to the position of the npc and rotate
AffineTransform npcTransform = AffineTransform.getRotateInstance(Math.toRadians(npc.angle), npc.x, npc.y);
// Translate back a few units to keep the npc rotating about its own center
// point
npcTransform.translate(-npc.halfWidth, -npc.halfHeight);
g2.setTransform(npcTransform);
// g2.draw(npc.rect); //<-- show bounding box if you want
g2.setColor(npc.outlineColor);
g2.draw(npc.visionArc);
g2.setColor(Color.BLACK);
g2.draw(npc.ellipse);
g2.setTransform(old);
}
This is my collision detection algorithim - NPC is a superclass to ninja (Shorter range, higher peripheral)
public void checkNinjas(Level level) {
for (int i = 0; i < level.ninjas.size(); i++) {
Ninja ninja = level.ninjas.get(i);
playerRect = level.player.rect;
// Check collision
if (playerRect.getBounds2D().intersects(ninja.visionArc.getBounds2D())) {
// Create an area of the object for greater precision
Area area = new Area(playerRect);
area.intersect(new Area(ninja.visionArc));
// After checking if the area intersects a second time make the NPC "See" the player
if (!area.isEmpty()) {
ninja.seesPlayer = true;
}
else {
ninja.seesPlayer = false;
}
}
}
}
Can you help me correct the actual positions of the arcs for my collision detection? I have tried creating new shapes so I can have one to do math on and one to draw to the screen but I scrapped that and am starting again from here.
[1]: https://i.stack.imgur.com/rUvTM.png
[2]: https://github.com/ShadowDraco/ArcCollisionDetection
After a few days of coding and learning and testing new ideas I came back to this program and implemented the collision detection using my original idea (ray casting) and have created the equivalent with rays!
Screenshot of the new product
Github link to the project that taught me the solution
Here's the new math
public void setRays() {
for (int i = 0; i < rays.length; i++) {
double rayStartAngleX = Math.sin(Math.toRadians((startAngle - angle) + i));
double rayStartAngleY = Math.cos(Math.toRadians((startAngle - angle) + i));
rays[i].setLine(cx, cy, cx + visionDistance * rayStartAngleX, cy + visionDistance * rayStartAngleY);
}
}
Here is a link the the program I started after I asked this question and moved on to learn more, and an image to what the new product looks like
(The original github page has been updated with a new branch :) I'm learning git hub right now too
I do not believe that using Arc2D in the way I intended is possible, however there is .setArcByTangent method, it may be possible to use that but I wasn't going to get into that. Rays are cooler.

LibGdx - Make sprite follow a line path

I have an isometric map drawn.
I take the current position of my sprite and the target position of where my sprite should be at after the move:
// region is my TextureRegion.
int x1 = getIsometricX(1,1,region);
int x2 = getIsometricX(1,2,region);
int y1= getIsometricY(1,1,region);
int y2 = getIsometricY(1,2,region);
And then I draw a simple line using ShapeRenderer to see if the local/target points are correctly set, and the rectangle so you can see where the sprite rendering starts.
renderer.setProjectionMatrix(camera.combined);
renderer.begin(ShapeRenderer.ShapeType.Line);
renderer.setColor(Color.RED);
renderer.line(x1 + location.getOffsetx(), y1 + location.getOffsety(), x2 + location.getOffsetx(), y2 + location.getOffsety());
renderer.rect(x1 + location.getOffsetx(), y1 + location.getOffsety(), region.getRegionWidth(), region.getRegionHeight());
renderer.end();
Every sprite of mine has set offsetX and offsetY to adjust its location on the isometric tile, because every sprite is different.
Output looks like this:
what you can see here, is the starting point of where the sprite starts to draw (you see that offsets adjusted it so the sprite looks like its on the 1,1 tile.
and you can see the line which starts at the starting draw point of the sprite, and ends at the target draw point of the sprite.
Now my question is, how can I make that sprite move on that line's path, so it will look like the ship is moving forward?
So the main concept of the question is.. How can you make a sprite move in a straight line, from local point to target point?
Some functions you might need to see:
public int getIsometricX(int x, int y, TextureRegion region) {
return (x * GameTile.TILE_WIDTH / 2) - (y * GameTile.TILE_WIDTH / 2) - (region.getRegionWidth() / 2);
}
public int getIsometricY(int x, int y, TextureRegion region) {
return (x * GameTile.TILE_HEIGHT / 2) + (y * GameTile.TILE_HEIGHT / 2) - (region.getRegionHeight() / 2);
}
Tiles are drawn using the same method, just with Tile's texture.
I would like to answer myself this question, because other people might have the same issue and just over-complicate it like me.
If you want to perform any move on your isometric map, do not follow my misunderstandings and calculate it on the isometric coordinates.
You have to calculate it on your flat screen matrix coordinates, and then convert it to isometric coordinates.
For example, I want to move up like this line, all I need to do is this:
ship.y += 0.1f // when it reaches 1, then it will be at 0, 1
So you know that you want to be at 0,1 on your non-isometric map.
So you do this increment, and then for last, you have to convert it to isometric coordinates before drawing:
float x = (ship.x * GameTile.TILE_WIDTH / 2) - (ship.y * GameTile.TILE_WIDTH / 2) - (textyure.getWidth() / 2);
float y = (ship.x * GameTile.TILE_HEIGHT / 2) + (ship.y * GameTile.TILE_HEIGHT / 2) - (texture.getHeight() / 2);
And that will draw it on the isometric map, exactly like on your screen-coordinates, but on an isometric format.
for(float x : new float[targetx - currentx]) {ship.setPosition(ship.getX + x, ship.getY); }
And you would do the same for y.
Edit:
I guess this is wrong since you're calling this every frame I assume.
Instead you would keep track of your distance traveled between target and ship and you would increment sip position by 1 each time to x and y until it reached the distance.

How to calculate a point out of an angle and a distance?

I searched and implemented things from this forum, it doesn't come out right.
What I'm trying to achieve is to calculate a spawnPoint for player bullets relative to his position and rotation.
The spawnPoint should be and his X + his width (the player is set to point to the right by default) and y + height/2 (to spawn from his center on the Y axis).
This is what I got from this forum:
this.bulletSpawn.x = (float)(this.position.x + this.width/2 + this.width * Math.cos(rotation));
this.bulletSpawn.y = (float)(this.position.y + this.height/2 + this.height/2 * Math.sin(rotation));
The rotation is in Radians. The this is the Player class.
Images showing what I expect to happen:
Original Position
Expected Behaviour
The red dot is the spawnPoint I'm trying to calculate knowing the player position and rotation.
The player Sprite is what rotates, and it rotates related to his center x and y, which is done with a lib, i do not have these variables. The entire arrow would be the player , the arrow direction is where the player is pointing at, and the red dot would be the bulletSpawn point (or the expected one)
Using the code I posted, the bullets seem to be spawning from somewhere else. Even at the beggining they have an offset and when I rotate the player the spawnPoint seems to be relative to a different origin than what I'm expecting.
This is the bullet position code:
position.x = holder.bulletSpawn.x - (float)(this.width/2 * holder.rotation);
position.y = holder.bulletSpawn.y - (float)(this.height/2 * holder.rotation);
This is inside the Bullet class. The position variable is a Vector2 of bullet, and holder is the player instance. This code is merely to give an offset for the bullet to spawn at the center of its own size
I added some fixes related to the comments, but the bullets still have a tiny offset that looks wrong at certain angles.
Basically the distance i want to get is the width of the player, and his center y which is height/2.
Let's initial position is X0, Y0, rotation is about center point CX, CY, and rotation angle is Theta. So new position after rotation is:
NX = CX + (X0-CX) * Cos(Theta) - (Y0-CY) * Sin(Theta)
NY = CY + (X0-CX) * Sin(Theta) + (Y0-CY) * Cos(Theta)
This equations describe affine transformation of rotation of arbitrary point about center point, and affine matrix is combination of translation, rotation, and back translation matrices.
About center CX, CY - you wrote
it rotates related to his x and y origin at his bottom left
About initial point coordinate - for bullet it seems to be
X + Width, Y + Height/2
Swift extension:
extension CGSize {
static func offsetFrom(angle:CGFloat, distance:CGFloat) -> CGSize {
let rad = angle * CGFloat.pi / 180
return CGSize(width: sin(rad) * distance, height: cos(rad) * distance)
}
}

Shooting object based on arm rotation in libgdx java

I am trying to shoot an object(a spell) depending on the rotation of the players arm. The spell is supposed to come out of the hand and shoot towards where the mouse cicked(the arm rotates and points to where the mouse is). This is how the arm rotates in game.
public boolean mouseMoved(int screenX, int screenY) {
tmp.x = screenX;
tmp.y = screenY;
tmp.z = 0;
cam.unproject(tmp);
rot = MathUtils.radiansToDegrees * MathUtils.atan2((float)tmp.y - (float)player.getArmSprite().getY() - player.getArmSprite().getHeight(),
tmp.x -player.getArmSprite().getX() - player.getArmSprite().getWidth());
if (rot < 0) rot += 360;
//Last right or left means if hes looking left or right
if(player.lastRight)
player.setObjectRotation(rot + 80);
if(player.lastLeft)
player.setObjectRotation(-rot - 80);
And this is how the spell is supposed to shoot based off rotation
//destination is a vector of where on screen the mouse was clicked
if(position.y < destination.y){
position.y += vel.y * Gdx.graphics.getDeltaTime();
}
if(position.x < destination.x){
position.x += vel.x * Gdx.graphics.getDeltaTime();
}
However this is very wonky and never really reacts the way it supposed to with a few exceptions. It fires from the hand and then if the y axis is equal it completely evens out and goes till it reaches the x position, I want it to fire from the hand to the position clicks perfectly straight from point a to point b, this is clearly a rotation problem that I just can't seem to figure out how to tackle.
Here is an image of what is happening
Example image
The red indicates where I clicked, as you can see it reached the x pos first and now is traveling to the y when it should have reached the x and y pos of where I clicked first
Any help with this problem is extremely appreciated!
I'm pretty bad at radians and tangents but luckily we have vectors.
Since you have the rot ation in degrees of the arm. I advice to use Vectors to use for any Vector related math now.
//A vector pointing up
Vector2 direction = new Vector2(0, 1);
//Let's rotate that by the rotation of the arm
direction.rotate(rot);
Now direction is the direction the arm is pointing. If your rotation is calculated where up = 0. So you might need to rotate it 180, 90 or -90 degrees. Or in the case you did something silly any degrees.
Your spell should have a Vector too for it's position. Set that to the hand or wherever you want to start from. Now all you need to do is scale that direction since it's currently has a length of 1. If you want to move 5 units each frame you can do direction.scl(5) now it is of length 5. But technically speaking it's no direction anymore now everybody calls it velocity so let's do.
//when you need to fire
float speed = 5;
Vector2 velocity = direction.cpy().scl(speed);
//update
position.add(velocity);
draw(fireballImage, position.x, position.y);
I copied direction first, otherwise it would also be scaled. Then I just added the velocity to the position and draw using that Vector.
And to show Vectors are awesome you should see this awesome badlogic vs mouse program I created. https://github.com/madmenyo/FollowMouse there are just a view lines of my own code. It just takes a little bit of vector knowledge and it's very readable.

How to position a Node along a circular orbit around a fixed center based on mouse coordinates (JavaFX)?

Im trying to get into some basic JavaFX game development and I'm getting confused with some circle maths.
I have a circle at (x:250, y:250) with a radius of 50.
My objective is to make a smaller circle to be placed on the circumference of the above circle based on the position of the mouse.
Where Im getting confused is with the coordinate space and the Trig behind it all.
My issues come from the fact that the X/Y space on the screen is not centered at 0,0. But the top left of the screen is 0,0 and the bottom right is 500,500.
My calculations are:
var xpos:Number = mouseEvent.getX();
var ypos:Number = mouseEvent.getY();
var center_pos_x:Number = 250;
var center_pos_y:Number = 250;
var length = ypos - center_pos_y;
var height = xpos - center_pos_x;
var angle_deg = Math.toDegrees(Math.atan(height / length));
var angle_rad = Math.toRadians(angle_deg);
var radius = 50;
moving_circ_xpos = (radius * Math.cos(angle_rad)) + center_pos_x;
moving_circ_ypos = (radius * Math.sin(angle_rad)) + center_pos_y;
I made the app print out the angle (angle_deg) that I have calculated when I move the mouse and my output is below:
When the mouse is (in degrees moving anti-clockwise):
directly above the circle and horizontally inline with the center, the angle is -0
to the left and vertically centered, the angle is -90
directly below the circle and horizontally inline with the center, the angle is 0
to the right and vertically centered, the angle is 90
So, what can I do to make it 0, 90, 180, 270??
I know it must be something small, but I just cant think of what it is...
Thanks for any help
(and no, this is not an assignment)
atan(height/length) is not enough to get the angle. You need to compensate for each quadrant, as well as the possibility of "division-by-zero". Most programming language libraries supply a method called atan2 which take two arguments; y and x. This method does this calculation for you.
More information on Wikipedia: atan2
You can get away without calculating the angle. Instead, use the center of your circle (250,250) and the position of the mouse (xpos,ypos) to define a line. The line intersects your circle when its length is equal to the radius of your circle:
// Calculate distance from center to mouse.
xlen = xpos - x_center_pos;
ylen = ypos - y_center_pos;
line_len = sqrt(xlen*xlen + ylen*ylen); // Pythagoras: x^2 + y^2 = distance^2
// Find the intersection with the circle.
moving_circ_xpos = x_center_pos + (xlen * radius / line_len);
moving_circ_ypos = y_center_pos + (ylen * radius / line_len);
Just verify that the mouse isn't at the center of your circle, or the line_len will be zero and the mouse will be sucked into a black hole.
There's a great book called "Graphics Gems" that can help with this kind of problem. It is a cookbook of algorithms and source code (in C I think), and allows you to quickly solve a problem using tested functionality. I would totally recommend getting your hands on it - it saved me big time when I quickly needed to add code to do fairly complex operations with normals to surfaces, and collision detections.

Categories