I want to call Rust code from Java / Android, and I've found 3 variants to do so:
JNI
JNA
JNR FFI
JNI looks good and powerful enough, but you have to
write too much code by hand.
JNA, if not taking into consideration that it crashes on my machine, requires writing Rust struct data type description in Java by hand,
the same problem with JNR FFI.
So I wonder how difficult will be generate JNI code
for traits and struct with macros or a compiler plugin?
This compiler should match traits implementations for concrete struct,
and also struct
#[JNI]
struct Foo {
a: i32,
}
trait Boo {
fn f(&self, b: f64) -> f64;
}
#[JNI]
impl Boo for Foo {
fn f(&self, b: f64) -> f64 {
0f64
}
}
and create Java classes for struct and Java classes with native functions, plus generate pub no_mangle functions that wrap traits functions.
In order to provide #[jni] annotations that work like that you'd need to use a compiler plugin. It would be an awesome tool, but it doesn't exist yet, as far as I know.
There are bits and pieces of tooling lying around that might be helpful, if you want to create a project that does this.
Plugins are currently unstable, and don't work on non-nightly rust; you would probably want to use syntex, which provides a stable interface to compiler plugins. You could also write a raw plugin (see here for the API for those), but most people won't be able to use it.
There's rusty-cheddar, which generates c header files; you could take a look at that to see how it works. The author of that also seems to be working on a more general bindings-generation framework, but I don't know if it's active. You might be able to hook the output of cheddar up to something like JNAerator, but it probably won't create the prettiest interfaces on the java side.
There's also rust-bindgen and corrode, which work in the other direction; they translate c headers and arbitrary c code to rust respectively. I don't know if that's actually helpful.
JNI-sys provides low-level JNI bindings; rust-on-mobile is a small project that uses it. Also see First steps with Rust and Java, a blog post that shows some rudiments of getting things hooked up.
Finally, there's cbox, which lets you work around awkwardness with ownership and FFI.
Finally I created such project (link to github repository) to automate
binding creation.
You can use jnaerator to auto-generate your structure mappings for JNA.
Alternatively, if you want to use JNI (and compile some more native code) you should go with SWIG.
Related
I am having a rather interesting scenario here. Let's say I have a piece of C code stored in a Java String. I need to run this code inside my Java program it self.
Case 1
class Main{
public static void main(String[] args) {
String cCode = "printf(\"Hello World\n\");"
// I need to run the cCode here.
// We are allowed to call a method with params.
}
}
What I think I should do is.
Create a native field in the Main
write the sCode to a file
Exceulte shell commands from Java to compile the c code.
invoke the native method from java
Case 2
I am thinking of doing the above procedure because I know how to do this with JNI if the source code is pre-defined.
class Main{
static {
System.loadLibrary("Main"); // Load native library at runtime
}
private native void sayHello();
public static void main(String[] args) {
new Main().sayHello();
}
}
In the case of pre-written C code. What we do is.
Compile the java class with javac Main.java
Generate the header for C lib. javah -jni Main
Complete the Main.c by writing the C code
Compile the C code with gcc -share -I/path/to/jni -I/path/to/jni_md -o Main.so
Run Main. java Main
Can anyone tell me whether I am taking the correct path (in Case 1) or not? or is there is a better way to do it?
** Note: The key point here is, I am allowed to compile the java code only once. (At the beginning).**
EDIT: After checking the comments and answer from #Dúthomhas I think I should explain one more thing. The reason why I am doing this for a machine learning project. It has been decided that the numeric computation part has a bottleneck and using C as the above-mentioned method is worth the risk of trying it. So security is off the book right now. We just need to do this as an experiment.
Non-answer answer: Don’t do that.
What you are asking to do is a pretty bad idea for several reasons, the two major ones are:
It potentially opens (serious) security holes
Cost to implement likely outweighs the benefit
Asking to embed an entirely different language means adding and linking a library and a lot of code to synchronize the library, plus code to perform static analysis and sandbox the code. In other words, you are asking to implement an entire language on top of what you already have.
It could be argued that C is the base system anyway, upon which the JVM may even be implemented (usually is), but that is not the point. The issue is not the C library, it is the C compiler/interpreter, which is a fairly complex code base as far as simple interpreted programming languages go.
Suggestion: Use Java
The ToolProvider class is specifically designed to provide you with dynamic compilation of Java code. Take a look through it.
Make sure to use the SecurityManager class to properly sandbox the code. (And, if possible, run it in a separate, restricted JVM.)
Suggestion: Use JavaScript/ECMAScript
The ScriptEngine classes are designed exactly for this. Again, Google around for examples. And, again, don’t forget security.
Suggestion: Use an existing library
FScript
Scheme
Tcl
Python
But I really want/must use C
Alas. It is possible to use C, but only with great difficulty. Google around “embedded c interpreter” for small C interpreters that you may be able to integrate into your source. (Good luck, though!)
Let me clarify your two Cases.
Case 1 refers to running a C program out of process. This is not what most people consider "invoke the native method from java". You cannot create a native field in Main. Actually, Java does not have native fields, only native methods. But in Case 1, you don't use native methods, either. You can compile and run any program, written in C or any other language (provided a compiler is available in the runtime environment). To do so, you use shell commands (Runtime.exec()) both to compile the program and to run it. Parameters for the C program can be passed 'on the command line' as specified in Runtime.exec(). It can communicate with your Java process with any IPC of your choice. Typically, we simply use a pipe to read the stdout of the child process.
Case 2 runs the native code in-process, using JNI (Java Native Interface). The flow that you describe here is correct, but you can modify it to use a shared library that is built at runtime. First of all, remove the native method and also loadLibrary() to a separate class. Make sure that the classloader loads this class only after your Main class runs the gcc -o libMain.so command (using the same Runtime.exec() as in Case 1). This way, the static constructor will load the freshly built library.
In both Cases you don't need to recompile your Java. You don't need to run javah to build libMain.so - this is a convenience step only, to guarantee that the C headers are in sync with the Java class. But in your situation, the Java class does not change - therefore the native method signature does not change, too.
Note that Case 1 is easier, especially if you must run different compiled C 'strings', but Case 2 may deliver better performance, if you must call the native method many times.
Starting to digg into java, coming from c++. I am calling some functions in java from c++ (qt / Android). I miss a way to predefine some tags shareable between both languages avoiding having to define them twice or using strings.
Something like
define OPERATION_START 0X01
in c that would be compilable/readable in java.
Does something like this exists or you know some trick to achieve it?
Edit: How about something like this:
A java file stuff.java with
public enum Stuff{
Table, Apple, Beach, Eye };
and in Cpp+
'#define public
'#include "stuff.java"
'#undef public
Would that work? java would enumerate from 0 as does c, right?
You need something that can read one of the definitions and export the other.
There are a bunch of things that can do this.
Two that I know of are:
SWIG and protocol buffers.
SWIG will read the C++ declarations and generate code with the same things in other languages.
Protocol buffers will read some proprietary declaration and generate code for all the languages you need.
There are probably others as well, and I don't know of anything that is lighter weight than those. BTW, those are also good for defining more complex structures that you want to pass between C++ and java (and other languages).
You could model the shared definitions/enumerations in UML or maybe a DSL and use code generation from there to create matching definitions in Java and C++.
Or you could probably also define them in Java classes and build a generator which uses reflection to generate matching C++ headers from that.
I am creating a GUI using Jython. I want to program my logic in C. How could I can call a C Function from my Python Code. Sorry if this a newbie question, but I have never worked with linking files except Sparc Assembly from C.
Jython cannot use ctypes, or C extension modules (whether built manually, or with Cython, or otherwise).
The way to do this is the same way as in Java: Through a JNI bridge.
First, you write a C++ wrapper that talks to the so, and uses functions from <jni.h> to implement functions like this:
JNIEXPORT void JNICALL _PACKAGE(bar)(JNIEnv *env, jclass cls, jint i) {
if (bar(i)) {
throwPyFromErrno(env, OSError);
}
}
Next, in Java, you define a public class full of Java wrappers around those C++ wrappers, like this:
public class foo implements InitModule {
public final static native void bar(int i);
}
Finally, in Jython, you can just import the class (which acts like a Python module) from its Java module and use it like any other module:
try:
foo.bar(3)
except OSError as e:
print "Failed:", e
Most of this is standard JNI, but you also have to know things like how to create Jython objects. Ideally, you'll use wrappers for that, so you can just write makePyInteger(env, value) or throwPyFromErrno(env, exctype) instead of doing all the FindClass, GetStaticMethodID, etc. stuff manually.
I don't have any tutorials to recommend. But see jnios for a nice-sized example. The O'Reilly book's Chapter 25. Extending and Embedding Jython seems like it might be a decent primer (although I haven't read it). You'll probably want to read a tutorial on using JNI for Java before trying to tackle Jython.
A different way to solve this problem is to break your single program into two pieces.
The GUI program runs in Jython. When it needs to call the C code, it does that by running a worker program.
The worker program runs in CPython or PyPy, so it can use any of the usual techniques for talking to C libraries: ctypes, cffi, a custom C extension module (maybe using Cython, Boost.Python, SWIG, SIP, …), Weave, etc.
For a simple case, where you just need to call one function, pass it a few strings, and get back a string, it's as trivial as this:
import subprocess
def my_function(*args):
return subprocess.check_output(['python',
'/path/to/worker/script.py'] + args)
(Note that there are a few bugs with subprocess in older versions of Jython, especially on OS X and Windows. If you run into a problem, 2.5.4 and 2.7.0, which are currently in RC and beta stages, respectively, have probably fixed it.)
If you need to make lots of calls one at a time throughout the life of your program, you'll probably want to keep the worker script running in the background, and use some form of RPC to talk to it. This blog post shows how to do it using the bjsonrpc library.
I know it's possible to do nice stuff with Reflection, such as invoking methods, or altering the values of fields. Is it possible to do heavier code modification, though, at runtime and programmatically?
For instance, if I have a method:
public void foo(){
this.bar = 100;
}
Can I write a program that modifies the innards of this method, notices that it assigns a constant to a field, and turns it into the following:
public int baz = 100;
public void foo(){
this.bar = baz;
}
Perhaps Java isn't really the language to do this kind of thing in - if not, I'm open to suggestions for languages that would allow me to basically reparse or inspect code in this way, and be able to alter it so precisely. I might be pipe dreaming here though, so please tell me if this is the case also.
Just adding a suggestion from a friend - Apache Commons' BCEL looks excellent:
http://commons.apache.org/bcel/manual.html
The Byte Code Engineering Library (Apache Commons BCEL™) is intended to
give users a convenient way to analyze, create, and manipulate (binary)
Java class files (those ending with .class). Classes are represented by
objects which contain all the symbolic information of the given class:
methods, fields and byte code instructions, in particular.
Such objects can be read from an existing file, be transformed by a
program (e.g. a class loader at run-time) and written to a file again.
An even more interesting application is the creation of classes from
scratch at run-time. The Byte Code Engineering Library (BCEL) may be
also useful if you want to learn about the Java Virtual Machine (JVM)
and the format of Java .class files.
You are looking for software that allows you to do bytecode manipulation, there are several frameworks to achieve this, but the two most known currently are:
ASM
javassist
When performing bytecode modifications at runtime in Java classes keep in mind the following:
If you change a class's bytecode after a class has been loaded by a classloader, you'll have to find a way to reload it's class definition (either through classloading tricks, or using hotswap functionalities)
If you change the classes interface (example add new methods or fields) you will be able only to reach them through reflection.
It's probably fair to say that Java wasn't designed with this purpose in mind, but you can do it potentially. How and when depends a little on the ultimate aim of the exercise. A couple of options:
At the source code level, you can use the Java Compiler API to
compile arbitrary code into a class file (which you can then load).
At the bytecode level, you can write an agent that installs a
ClassFileTransformer to arbitrarily alter a class "on the fly"
as it is loaded. In practice, if you do this, you will also probably
make use of a library such as BCEL (Bytecode Engineering
Library) to make manipulating the class easier.
You want to investigate program transformation systems (PTS), which provide general facilities for parsing and transforming languages at the source level. PTS provide rewrite rules that say in effect, "if you see this pattern, replace it by that pattern" using the surface syntax of the target language. This is done using full parsers so the rewrite rule really operates on language syntax and not text; such rewrite rules obviously won't attempt to modify code-like text in comments, unlike tools based on regexps.
Our DMS Software Reengineering Toolkit is one of these. It provides not only the usual parsing, AST building and prettyprinting (reproducing compilable source code complete with comments), but also supports symbol tables and control and data flow analysis. These are needed for almost any interesting transformations. DMS also has front ends for a variety of dialects of Java as well as many other languages.
Bytecode transformers exist because they are much easier to build; it is pretty easy to "parse" bytecode. Of course, you can't make permanent source changes with a bytecode transformer, so it is lot less useful.
You mean like this?
String script1 = "println(\"OK!\");";
eval( script1 );
script1 += "println(\"... well, maybe NOT OK after all\");";
eval( script2 );
Output:
OK!
OK!
... well, maybe NOT OK after all
... use a scripting extension to Java. Groovy and other things like that would probably allow you to do what you want. I've written a scripting extension which integrates with Java through reflection almost seamlessly myself; contact me if you're interested in the details.
I have a Python interface of a graph library written in C - igraph (the name of library). My need is to invoke the python modules pertaining to this graph library from Java code. It goes like this, the core of library is in c. This core has been imported into Python and interfaces to the functions embedded in core are available in Python. My project's rest of the code is in Java and hence I would like to call the graph functions by Java as well.
Jython - which lets you invoke python modules with in Java was an option.I went on trying Jython to discover that it will not work in my case as the core code is in C and Jython wont support anything that is imported as a c dll in python code.I also thought of opting for the approach of calling graph routines directly in c. That is without passing through Python code. I am assuming there must be something which lets you call c code from Java, how ever I am not good in C hence I did not go for it.
My last resort seems to execute Python interpreter from command line using Java. But that is a dirty and shameless. Also to deal with the results produced by Python code I will have to write the results in a file and read it back in java. Again dirty way.
Is there something that any one can suggest me? Thanks to every one giving time.
Thanks Igal for answering. I had a look at it. At first glance it appears as if it is simply calling the python script.
Jep jep = new Jep(false, SCRIPT_PATH, cl);
jep.set("query", query);
jep.runScript(SCRIPT_PATH + file);
jep.close();
Isnt it very similar to what we would do if called the python interpreter from command line through a Java code.
Runtime runtime = Runtime.getRuntime();
Process proc = runtime.exec("python test.py");
Concern is how do I use the results generated by Python script. The naive way is to write them to file and read it back in Java. I am searching for a smarter approach.Thanks for suggestion anyway.
Never tried it. But I recently stumbled on a project named Jepp that may be of interest to you.
Jepp embeds CPython in Java. It is safe to use in a heavily threaded environment, it is quite fast and its stability is a main feature and goal.
If you want to call C functions from Java, JNA (Java Native Access) is probably the way to go. JNA allows you to call functions in native libraries without having to write the C glue code (as you would have to when using JNI), and automatically maps between primitive data types in Java and C. A simple example might look like this:
import com.sun.jna.Native;
import com.sun.jna.Library;
public class PrintfWrapper {
public interface CLibrary extends Library {
CLibrary INSTANCE = (CLibrary)Native.loadLibrary("c", CLibrary.class);
void printf(String formatString, Object... args);
}
public static void main(String[] args) {
CLibrary.INSTANCE.printf("Hello, world\n");
}
}
However, things will get complicated with igraph because igraph uses many data structures that cannot be mapped directly into their Java counterparts. There is a project called JNAerator which should be able to generate the JNA source from igraph's header files, but I have never tried it and chances are that the results will still need some manual tweaking.
Also note that a Java interface for igraph is being developed slowly but steadily and it might become useful in a few months or so.
You can use jep.getValue() to retrieve a value from script's global dictionary.
There are caveats to that concerning scope levels in Python, so most people find it clearer to pass a Java class to python and set the return value in that instance in Python. After the script completes, the Java code will then have the result.
For example:
==> Java
class ReturnValueClass {
public int scriptResult;
};
ReturnValueClass value = new ReturnValueClass();
jep.set("retval", value);
==> Python
# do something
pass
# write the return value
retval.scriptResult = some_python_value
==> Java
System.out.println(value.scriptResult);
Hope that helps,
Mike (I wrote Jep)