I was trying to make a method to do the prime factorization of a number, and it's probably not the most efficient, but I don't see why it shouldn't work.
public static ArrayList<Integer> primeFactorize(int num) {
ArrayList<Integer> primeFactors = new ArrayList<Integer>();
for (int i = 2; i < Math.sqrt((double) num); i++) {
if (isPrime(i) && factor(num).contains(i)) {
primeFactors.add(i);
num /= i;
if (isPrime(num)) {
primeFactors.add(num);
break;
}
i = 2;
}
}
return primeFactors;
}
It calls upon two other methods that I wrote named factor() and isPrime(), which do exactly what you would expect them to (returns an ArrayList of factors and either true or false depending on if the input is prime, respectively).
I went through the debugger with num being 12, and it worked fine for the first loop, where it added 2 to primeFactors. However, when it got to the top of the array again with num being 6 and i being 2, it exited the loop as if i < Math.sqrt((double) num) returned false.
But that wouldn't make sense, because the square root of 6 is a bit over 2. I also tried (double) i < Math.sqrt((double) num), but it just did the same exact thing.
Can anyone see what I'm missing? Thanks for any replies.
EDIT: Here is my code now, thanks for the help! I know for sure I could make it more efficient, so I might do that later, but for now this is perfect.
public static ArrayList<Integer> primeFactorize(int num) {
ArrayList<Integer> primeFactors = new ArrayList<Integer>();
int i = 2;
while (i < Math.sqrt((double) num)) {
if (isPrime(i) && num % i == 0) {
primeFactors.add(i);
num /= i;
if (isPrime(num)) {
primeFactors.add(num);
break;
}
i = 2;
}
else
i++;
}
return primeFactors;
}
In your for loop, the i++ section will get called at the end of every loop. So in your code, you set i equal to 2. Then, the loop ends, and adds 1 to i, making it be 3. Then the comparison happens, and 3 is more than sqrt(6), so the loop exits.
If you want i to be 2 in the next iteration, you need to set it to a value so that after the increment operation runs it will be 2, not before; in this case, you should set it to 1. A better solution would be to change your code structure so it's not necessary though. As pointed out by biziclop, a while loop will let you decide whether or not to increment, and will avoid this problem.
Since you already accepted an answer I assume your problem is solved. The thing I want to point out is that casting integers to doubles is generally a bad idea if there is another way. Therefore I want to show you the below implementation, which doesn't use floating-point arithmetic. Also I think it's a bad idea to check whether or not num is a prime number, because this slows down the algorithm. Moreover if num % i == 0 evaluates to true, i is always a prime number, thus the isPrime(i) check is superfluous and also slows down your algorithm.
List <Integer> primeFactors(int n) {
List<Integer> factors = new ArrayList<>();
for (int i = 2; i <= n / i; ++i) {
while (n % i == 0) {
factors.add(i);
n /= i ;
}
}
if (n > 1) {
factors.add(n);
}
return factors ;
}
Related
I am trying to write a Java method that checks whether a number is a perfect number or not.
A perfect number is a number that is equal to the sum of all its divisor (excluding itself).
For example, 6 is a perfect number because 1+2+3=6. Then, I have to write a Java program to use the method to display the first 5 perfect numbers.
I have no problem with this EXCEPT that it is taking forever to get the 5th perfect number which is 33550336.
I am aware that this is because of the for loop in my isPerfectNumber() method. However, I am very new to coding and I do not know how to come up with a better code.
public class Labreport2q1 {
public static void main(String[] args) {
//Display the 5 first perfect numbers
int counter = 0,
i = 0;
while (counter != 5) {
i++;
isPerfectNumber(i);
if (isPerfectNumber(i)) {
counter++;
System.out.println(i + " ");
}
}
}
public static boolean isPerfectNumber(int a) {
int divisor = 0;
int sum = 0;
for (int i = 1; i < a; i++) {
if (a % i == 0) {
divisor = i;
sum += divisor;
}
}
return sum == a;
}
}
This is the output that is missing the 5th perfect number
Let's check the properties of a perfect number. This Math Overflow question tells us two very interesting things:
A perfect number is never a perfect square.
A perfect number is of the form (2k-1)×(2k-1).
The 2nd point is very interesting because it reduces our search field to barely nothing. An int in Java is 32 bits. And here we see a direct correlation between powers and bit positions. Thanks to this, instead of making millions and millions of calls to isPerfectNumber, we will be making less than 32 to find the 5th perfect number.
So we can already change the search field, that's your main loop.
int count = 0;
for (int k = 1; count < 5; k++) {
// Compute candidates based on the formula.
int candidate = (1L << (k - 1)) * ((1L << k) - 1);
// Only test candidates, not all the numbers.
if (isPerfectNumber(candidate)) {
count++;
System.out.println(candidate);
}
}
This here is our big win. No other optimization will beat this: why test for 33 million numbers, when you can test less than 100?
But even though we have a tremendous improvement, your application as a whole can still be improved, namely your method isPerfectNumber(int).
Currently, you are still testing way too many numbers. A perfect number is the sum of all proper divisors. So if d divides n, n/d also divides n. And you can add both divisors at once. But the beauty is that you can stop at sqrt(n), because sqrt(n)*sqrt(n) = n, mathematically speaking. So instead of testing n divisors, you will only test sqrt(n) divisors.
Also, this means that you have to start thinking about corner cases. The corner cases are 1 and sqrt(n):
1 is a corner case because you if you divide n by 1, you get n but you don't add n to check if n is a perfect number. You only add 1. So we'll probably start our sum with 1 just to avoid too many ifs.
sqrt(n) is a corner case because we'd have to check whether sqrt(n) is an integer or not and it's tedious. BUT the Math Overflow question I referenced says that no perfect number is a perfect square, so that eases our loop condition.
Then, if at some point sum becomes greater than n, we can stop. The sum of proper divisors being greater than n indicates that n is abundant, and therefore not perfect. It's a small improvement, but a lot of candidates are actually abundant. So you'll probably save a few cycles if you keep it.
Finally, we have to take care of a slight issue: the number 1 as candidate. 1 is the first candidate, and will pass all our tests, so we have to make a special case for it. We'll add that test at the start of the method.
We can now write the method as follow:
static boolean isPerfectNumber(int n) {
// 1 would pass the rest because it has everything of a perfect number
// except that its only divisor is itself, and we need at least 2 divisors.
if (n < 2) return false;
// divisor 1 is such a corner case that it's very easy to handle:
// just start the sum with it already.
int sum = 1;
// We can stop the divisors at sqrt(n), but this is floored.
int sqrt = (int)Math.sqrt(n);
// A perfect number is never a square.
// It's useful to make this test here if we take the function
// without the context of the sparse candidates, because we
// might get some weird results if this method is simply
// copy-pasted and tested on all numbers.
// This condition can be removed in the final program because we
// know that no numbers of the form indicated above is a square.
if (sqrt * sqrt == n) {
return false;
}
// Since sqrt is floored, some values can still be interesting.
// For instance if you take n = 6, floor(sqrt(n)) = 2, and
// 2 is a proper divisor of 6, so we must keep it, we do it by
// using the <= operator.
// Also, sqrt * sqrt != n, so we can safely loop to sqrt
for (int div = 2; div <= sqrt; div++) {
if (n % div == 0) {
// Add both the divisor and n / divisor.
sum += div + n / div;
// Early fail if the number is abundant.
if (sum > n) return false;
}
}
return n == sum;
}
These are such optimizations that you can even find the 7th perfect number under a second, on the condition that you adapt the code for longs instead of ints. And you could still find the 8th within 30 seconds.
So here's that program (test it online). I removed the comments as the explanations are here above.
public class Main {
public static void main(String[] args) {
int count = 0;
for (int k = 1; count < 8; k++) {
long candidate = (1L << (k - 1)) * ((1L << k) - 1);
if (isPerfectNumber(candidate)) {
count++;
System.out.println(candidate);
}
}
}
static boolean isPerfectNumber(long n) {
if (n < 2) return false;
long sum = 1;
long sqrt = (long)Math.sqrt(n);
for (long div = 2; div <= sqrt; div++) {
if (n % div == 0) {
sum += div + n / div;
if (sum > n) return false;
}
}
return n == sum;
}
}
The result of the above program is the list of the first 8 perfect numbers:
6
28
496
8128
33550336
8589869056
137438691328
2305843008139952128
You can find further optimization, notably in the search if you check whether 2k-1 is prime or not as Eran says in their answer, but given that we have less than 100 candidates for longs, I don't find it useful to potentially gain a few milliseconds because computing primes can also be expensive in this program. If you want to check for bigger perfect primes, it makes sense, but here? No: it adds complexity and I tried to keep these optimization rather simple and straight to the point.
There are some heuristics to break early from the loops, but finding the 5th perfect number still took me several minutes (I tried similar heuristics to those suggested in the other answers).
However, you can rely on Euler's proof that all even perfect numbers (and it is still unknown if there are any odd perfect numbers) are of the form:
2i-1(2i-1)
where both i and 2i-1 must be prime.
Therefore, you can write the following loop to find the first 5 perfect numbers very quickly:
int counter = 0,
i = 0;
while (counter != 5) {
i++;
if (isPrime (i)) {
if (isPrime ((int) (Math.pow (2, i) - 1))) {
System.out.println ((int) (Math.pow (2, i -1) * (Math.pow (2, i) - 1)));
counter++;
}
}
}
Output:
6
28
496
8128
33550336
You can read more about it here.
If you switch from int to long, you can use this loop to find the first 7 perfect numbers very quickly:
6
28
496
8128
33550336
8589869056
137438691328
The isPrime method I'm using is:
public static boolean isPrime (int a)
{
if (a == 1)
return false;
else if (a < 3)
return true;
else {
for (int i = 2; i * i <= a; i++) {
if (a % i == 0)
return false;
}
}
return true;
}
I've read several posts on this, I even did this during one of my exams, but was in vb.net. It worked fine, however eclipse is just running non-stop when I try to execute my program, or otherwise it gives me the wrong answer. Here is my fourth attempt at it. I need to add the sum of the first n prime numbers, hence I do a check for whether a number is prime or not. The loop does not stop for some reason. Any help would be appreciated. Thanks.
int count = 0;
int noMod0s = 0;
int total = 0;
//static boolean prime;
for (int y = 2;count<5;y++) {
for (int z = 1;z<y;z++) {
if (y % z == 0) {
noMod0s++;
}
}
if (noMod0s == 1) {
total = total + y;
count++;
noMod0s = 0;
}
}
System.out.println(total);
There are at least two issues with your code:
You are not resetting variable noMod0s for each separate primality test. You should do it before the second loop.
The second loop should start from 2 not 1 to be a valid primality test. Of course in this case you will be comparing noMod0s == 0. It works the same but it gives a clearer idea of what the code is doing.
I am writing a Java program that calculates the largest prime factor of a large number. But I have an issue with the program's complexity, I don't know what has caused the program to run forever for large numbers, it works fine with small numbers.
I have proceeded as follow :
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
public class Largest_prime_factor {
public static void main(String[] args)
{
//ArrayList primesArray = new ArrayList();
ArrayList factorArray = new ArrayList();
long largest = 1;
long number = 600851475143L ;
long i, j, k;
//the array list factorArray will have all factors of number
for (i = 2; i < number; i++)
{
if( number % i == 0)
{
factorArray.add(i);
}
}
Here, the Array List will have all the factors of the number.
So I'll need to get only the prime ones, for that, I used a method that checks if a number is prime or not, if it's not a prime number, I remove it from the list using the following method :
java.util.ArrayList.remove()
So the next part of the code is as follow :
for (i = 2; i < number; i++)
{
if (!isPrime(i))
{
factorArray.remove(i);
System.out.println(factorArray);
}
}
System.out.println(Collections.max(factorArray));
}
The last line prints the largest number of factorArray, which is what I am looking for.
public static boolean isPrime(long n)
{
if(n > 2 && (n & 1) == 0)
return false;
for(int i = 3; i * i <= n; i += 2)
if (n % i == 0)
return false;
return true;
}
}
The function above is what I used to determine if the number is a prime or not before removing it from the list.
This program works perfectly for small numbers, but it takes forever to give an output for large numbers, although the last function is pretty fast.
At first, I used to check if a number is prime or not inside of the first loop, but it was even slower.
You are looping over 600851475143 numbers.
long number = 600851475143L ;
for (i = 2; i < number; i++)
Even if we assume that each iteration takes very very small time (as small as 1 microsecond), it'll still take days before the loop finishes.
You need to optimise your prime-finding logic in order for this program to run faster.
One way to reduce the iterations to reasonable number is to loop until square root of number.
for (i = 2; i < Math.sqrt(number); i++)
or
for (i = 2; i*i < number; i++)
The calculation of the prime factors of 600851475143L should take less than a milli-second (with a not totally inefficient algorithm). The main parts your code is currently missing:
The border should be sqrt(number) and not number.
The current value should be checked in a while-loop (to prevent that non-prime-factors are added to the list, reduces range to check).
The max. value should be decreased (as well as the border) to number/factor after finding a factor.
Further improvements are possible, e.g. to iterate only over non-even numbers (or only iterate over numbers that are neither a multiple of 2 and 3) etc.
An example implementation for the same question on codereview (link):
public static long largestPrimeFactor(
final long input) {
////
if (input < 2)
throw new IllegalArgumentException();
long n = input;
long last = 0;
for (; (n & 1) == 0; n >>= 1)
last = 2;
for (; n % 3 == 0; n /= 3)
last = 3;
for (long v = 5, add = 2, border = (long) Math.sqrt(n); v <= border; v += add, add ^= 6)
while (n % v == 0)
border = (long) Math.sqrt(n /= last = v);
return n == 1 ? last : n;
}
for (i = 2; i < number; i++)
{
if( number % i == 0)
{
factorArray.add(i);
}
}
For an large input size, you will be visiting up to the value of the number. Same for the loop of removing factors.
long number = 600851475143L ;
this is a huge number, and you're looping through this twice. Try putting in a count for every 10,000 or 100,000 (if i%10000 print(i)) and you'll get an idea of how fast it's moving.
One of the possible solutions is to only test if the the prime numbers smaller than the large number divide it.
So I checked
for (i=2; i < number; i++)
{
if(isPrime(i))
{
if( number % i == 0)
{
factorArray.add(i);
}
}
}
So here I'll only be dividing by prime numbers instead of dividing by all numbers smaller than 600851475143.
But this is still not fast, a complete modification of the algorithm is necessary to obtain an optimal one.
#Balkrishna Rawool suggestion is the right way to go. For that I would suggest to change the iteration like this: for (i = 3; i < Math.sqrt(number); i+=2) and handle the 2 manually. That will decrease your looping because none of the even numbers except 2 are prime.
I'm working on a prime factorization program in Java one that displays all prime factors of a number even if they are repeated. And I have this:
public static void factors(int a)
{
int c=1;
for(int i = 1; i <= a;i++)
{
if(a%i == 0)
{
for(int k = 2; k < i; k++)
{
if(i%k == 0)
{
c = 1;
break;
}
else
{
c = 0;
}
}
if(c == 0 || i == 2)
{
System.out.print(i+ ", ");
}
}
}
}
I need to account for repeated factors (as in 2, 2, 2 for 8). How could I do that without completely restructuring?
I think you should start over, and build an algorithm from this simple description:
Prepare a List<Integer> of prime numbers that are less than or equal to 2^16
Run through this list from low to high, trying each prime in turn as a candidate divisor
Every time you run into a working divisor, continually divide it out until you can no longer divide the number by it; then continue to the next prime
Once you reach the end of the list of primes, your remaining number should be printed as well, unless it is equal to 1.
Finding a list of primes is a fun problem in itself. Dijkstra wrote a fascinating chapter on it back in 1972. This article has a C++ implementation and a very nice discussion.
You can have another collection that maintains the factors and their count and can finally account for repeated factors. A map with counts would be my choice.
(1) if(c == 0 || i == 2) is wrong, it will print 2 for a == 5 as well.
(2) In order to do what you are asking without changing the code (*) - you should count how many times each prime factor is diviseable by the number. It can be done by simply adding a new loop before your print statement [pseudo code]:
boolean b = true;
int k = 1;
while (b) {
if (a % (int) Math.pow(i, k+1) == 0) k++;
else b = false;
}
at the end of this loop, k denotes how many times i is a prime factor of a.
(*) Note: Though this approach should work, I'd still go with #KerrekSB suggestion to a redesign.
I am doing an excercise in the book "Java how to program". The excercise wants me to write a method that determines if a number is "prime". (A "Prime number" is a positiv integer which is only dividable with itself and 1). Then I am supposed to implement the method in an application that displays all integers up to 10 000.
I use "double-values" to test whether the remainder is 0 or not, to test dividability.
Anyway, I just don´t get the program to work, it displays all numbers fro 3, with an increement on how many times each number is displayed (3 44 555 etc). Can anyone please tell me what I´m doing wrong?
The code is the following:
public class Oppgave625
{
public static void main(String[] args)
{
for(double a = 2; a <= 10000; a++)
{
for(double b = 1; b < a; b++)
{
if (prime(a, b) !=0)
{
System.out.printf("%.0f ", prime(a, b));
}
}
}
}
static double prime(double x, double y)
{
if (x % y != 0)
{
return x;
}
else
{
return 0;
}
}
}
Use int instead. double is not good for this purpose
you might want to read this article to understand the use of the % Operator for floating point numbers.
Actually, there were many individual errors in here. I shortened the prime() function to the point where it was only a modulo op, so I was able to inline it. Second, I inverted the test so it checked for numbers that do not have a remainder, and continues to the next number as soon as it finds a divisor. Third, I changed b = 1 so that we do not check for numbers divisible by 1, because this would result to all numbers. Finally, I only print out the numbers for which we do not discover a divisor. The final result:
public static void main(String[] args) {
outer:
for (int a = 2; a <= 1000; a++) {
for (int b = 2; b < a; b++) {
if (a % b == 0) {
continue outer;
}
}
System.out.println(a);
}
}
Edit: I forgot to mention, I also changed the types from floats to ints, since I'm sure that's what you meant.
It's great that you posted sample code for this, but there are several things that are wrong:
you should not use a floating point type for this, but an int or a long. Floating point types should never be used for precise values.
you are making two calls to your prime function, effectively doubling the required steps
your prime function only tells you whether two numbers divide themselves evenly, it does not tell you whether one is a prime or not
for prime numbers, you should use a more efficient algorithm instead of calculating the same values over and over for each number. Look up Sieve of Eratosthenes.
You are approaching the problem like this: The number A is NOT prime, whenever i can find a number B that can divide A without a remainder.
Bur right now, you print out A whenever it is not dividable by B.
Instead you could say: whenever A not divisible by B, increase B. When i found a B to divide A, quit the inner loop, print nothing.
When i found no B, print A and quit loop.
Furthermore, you only have to test for divisibility of A until (a/2)-1.
A prime number is a number that is only divisible by one and itself. That is: one number. Your code is comparing two numbers as in the Euclidean algorithm for testing coprime-ness. This is very different than testing if a number is prime.
Your code should look something like this:
for i = 2 to 10,000 {
if( isPrime(i) ){
print i
}
}
function isPrime( int n ){
for i = 2 to n {
next if i == n
if( n % i == 0 ){
return 0;
}
}
return 1;
}
boolean isPrime = true;
for (int i = 2; i<=100; i++){
for(int j = 2; j<=i/2; j++){
isPrime = true;
if (i%j==0){
isPrime = false;
break;
}
}
if (isPrime){
Log.d("PrimeNumber",""+i);
}
}