14 - Project Euler - Java - Incorrect Answer - Bug? - java

I cannot find the bug in this code. If it were not for Project Euler ruling my answer as incorrect, I would swear to the heavens that my code is right.
I could use another approach, but this problem is not all that complex, and yet I have been utterly defeated trying to find the bug.
The question is :
The following iterative sequence is defined for the set of positive integers:
n → n/2 (n is even)
n → 3n + 1 (n is odd)
Using the rule above and starting with 13, we generate the following sequence:
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
My code is :
public class CollatzSequence014 {
public static void main(String [] args){
long start = System.currentTimeMillis();
long maxTotal = 0;
long inputNum = 0;
for (long i = 3; i < 1000000 ; i++){
long total = generateSequence(i);
if (total > maxTotal){
inputNum = i;
maxTotal = total;
}
}
long end = System.currentTimeMillis();
System.out.println("The input number was : " + inputNum + " and the total was " + maxTotal);
System.out.println("Time taken : " + (end - start) + "ms");
}
public static long generateSequence(long n){
long counter = 0;
long currentDigit = n;
while (currentDigit > 1){
counter++;
if (n % 2 == 0){
currentDigit = currentDigit / 2;
}
else {
currentDigit = (3 * currentDigit) + 1;
}
}
return counter;
}
}

You have to check if the currentDigit is even, not n.
if(currentDigit % 2 == 0)

First, how you should look for the bug: try outputting the sequence (not just the length) for small n (e.g. 13, since the problem already gives you the correct sequence there). You'll see that you get 13, 40, 121... and that should already tell you where the bug is.

error is here :
if (n % 2 == 0){
should be :
if (currentDigit % 2 == 0){

Related

Down to Zero II

This is the question:
You are given Q queries. Each query consists of a single number N . You can perform any of the operations on in each move:
If we take 2 integers a and b where N=a*b (a ,b cannot be equal to 1), then we can change N=max(a,b)
Decrease the value of N by 1 .
Determine the minimum number of moves required to reduce the value of to .
Input Format
The first line contains the integer Q.
The next Q lines each contain an integer,N .
Output Format
Output Q lines. Each line containing the minimum number of moves required > to reduce the value of N to 0.
I have written the following code. This code is giving some wrong answers and also giving time limit exceed error . Can you tell what are the the mistakes present in my code ? where or what I am doing wrong here?
My code:
public static int downToZero(int n) {
// Write your code here
int count1=0;
int prev_i=0;
int prev_j=0;
int next1=0;
int next2=Integer.MAX_VALUE;
if (n==0){
return 0;
}
while(n!=0){
if(n==1){
count1++;
break;
}
next1=n-1;
outerloop:
for (int i=1;i<=n;i++){
for (int j=1;j<=n;j++){
if (i*j==n){
if (prev_i ==j && prev_j==i){
break outerloop;
}
if (i !=j){
prev_i=i;
prev_j=j;
}
int max=Math.max(i,j);
if (max<next2){
next2=max;
}
}
}
}
n=Math.min(next1,next2);
count1++;
}
return count1;
}
This is part is coded for us:
public class Solution {
public static void main(String[] args) throws IOException {
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH")));
int q = Integer.parseInt(bufferedReader.readLine().trim());
for (int qItr = 0; qItr < q; qItr++) {
int n = Integer.parseInt(bufferedReader.readLine().trim());
int result = Result.downToZero(n);
bufferedWriter.write(String.valueOf(result));
bufferedWriter.newLine();
}
bufferedReader.close();
bufferedWriter.close();
}
}
Ex: it is not working for number 7176 ....
To explore all solution tree and find globally optimal solution, we must choose the best result both from all possible divisor pairs and from solution(n-1)
My weird translation to Java (ideone) uses bottom-up dynamic programming to make execution faster.
We calculate solutions for values i from 1 to n, they are written into table[i].
At first we set result into 1 + best result for previous value (table[i-1]).
Then we factor N into all pairs of divisors and check whether using already calculated result for larger divisor table[d] gives better result.
Finally we write result into the table.
Note that we can calculate table once and use it for all Q queries.
class Ideone
{
public static int makezeroDP(int n){
int[] table = new int[n+1];
table[1] = 1; table[2] = 2; table[3] = 3;
int res;
for (int i = 4; i <= n; i++) {
res = 1 + table[i-1];
int a = 2;
while (a * a <= i) {
if (i % a == 0)
res = Math.min(res, 1 + table[i / a]);
a += 1;
}
table[i] = res;
}
return table[n];
}
public static void main (String[] args) throws java.lang.Exception
{
int n = 145;//999999;
System.out.println(makezeroDP(n));
}
}
Old part
Simple implementation (sorry, in Python) gives answer 7 for 7176
def makezero(n):
if n <= 3:
return n
result = 1 + makezero(n - 1)
t = 2
while t * t <= n:
if n % t == 0:
result = min(result, 1 + makezero(n // t))
t += 1
return result
In Python it's needed to set recursion limit or change algorithm. Now use memoization, as I wrote in comments).
t = [-i for i in range(1000001)]
def makezeroMemo(n):
if t[n] > 0:
return t[n]
if t[n-1] < 0:
res = 1 + makezeroMemo(n-1)
else:
res = 1 + t[n-1]
a = 2
while a * a <= n:
if n % a == 0:
res = min(res, 1 + makezeroMemo(n // a))
a += 1
t[n] = res
return res
Bottom-up table dynamic programming. No recursion.
def makezeroDP(n):
table = [0,1,2,3] + [0]*(n-3)
for i in range(4, n+1):
res = 1 + table[i-1]
a = 2
while a * a <= i:
if i % a == 0:
res = min(res, 1 + table[i // a])
a += 1
table[i] = res
return table[n]
We can construct the directed acyclic graph quickly with a sieve and
then compute shortest paths. No trial division needed.
Time and space usage is Θ(N log N).
n_max = 1000000
successors = [[n - 1] for n in range(n_max + 1)]
for a in range(2, n_max + 1):
for b in range(a, n_max // a + 1):
successors[a * b].append(b)
table = [0]
for n in range(1, n_max + 1):
table.append(min(table[s] for s in successors[n]) + 1)
print(table[7176])
Results:
7
EDIT:
The algorithm uses Greedy approach and doesn't return optimal results, it just simplifies OP's approach. For 7176 given as example, below algorithm returns 10, I can see a shorter chain of 7176 -> 104 -> 52 -> 13 -> 12 -> 4 -> 2 -> 1 -> 0 with 8 steps, and expected answer is 7.
Let's review your problem in simple terms.
If we take 2 integers a and b where N=a*b (a ,b cannot be equal to 1), then we can change N=max(a,b)
and
Determine the minimum number of moves required to reduce the value of to .
You're looking for 2 factors of N, a and b and, if you want the minimum number of moves, this means that your maximum at each step should be minimum. We know for a fact that this minimum is reached when factors are closest to N. Let me give you an example:
36 = 1 * 36 = 2 * 18 = 3 * 12 = 4 * 9 = 6 * 6
We know that sqrt(36) = 6 and you can see that the minimum of 2 factors you can get at this step is max(6, 6) = 6. Sure, 36 is 6 squared, let me take a number without special properties, 96, with its square root rounded down to nearest integer 9.
96 = 2 * 48 = 3 * 32 = 4 * 24 = 6 * 16 = 8 * 12
You can see that your minimum value for max(a, b) is max(8, 12) = 12, which is, again, attained when factors are closest to square root.
Now let's look at the code:
for (int i=1;i<=n;i++){
for (int j=1;j<=n;j++){
if (i*j==n){
You can do this in one loop, knowing that n / i returns an integer, therefore you need to check if i * (n / i) == n. With the previous observation, we need to start at the square root, and go down, until we get to 1. If we got i and n / i as factors, we know that this pair is also the minimum you can get at this step. If no factors are found and you reach 1, which obviously is a factor of n, you have a prime number and you need to use the second instruction:
Decrease the value of N by 1 .
Note that if you go from sqrt(n) down to 1, looking for factors, if you find one, max(i, n / i) will be n / i.
Additionally, if n = 1, you take 1 step. If n = 2, you take 2 steps (2 -> 1). If n = 3, you take 3 steps (3 -> 2 -> 1). Therefore if n is 1, 2 or 3, you take n steps to go to 0. OK, less talking, more coding:
static int downToZero(int n) {
if (n == 1 || n == 2 || n == 3) return n;
int sqrt = (int) Math.sqrt(n);
for (int i = sqrt; i > 1; i--) {
if (n / i * i == n) {
return 1 + downToZero(n / i);
}
}
return 1 + downToZero(n - 1);
}
Notice that I'm stopping when i equals 2, I know that if I reach 1, it's a prime number and I need to go a step forward and look at n - 1.
However, I have tried to see the steps your algorithm and mine takes, so I've added a print statement each time n changes, and we both have the same succession: 7176, 92, 23, 22, 11, 10, 5, 4, 2, 1, which returns 10. Isn't that correct?
So, I found a solution which is working for all the test cases -
static final int LIMIT = 1_000_000;
static int[] solutions = buildSolutions();
public static int downToZero(int n) {
// Write your code here
return solutions[n];
}
static int[] buildSolutions() {
int[] solutions = new int[LIMIT + 1];
for (int i = 1; i < solutions.length; i++) {
solutions[i] = solutions[i - 1] + 1;
for (int j = 2; j * j <= i; j++) {
if (i % j == 0) {
solutions[i] = Math.min(solutions[i], solutions[i / j] + 1);
}
}
}
return solutions;
}
}

Error while attempting to solve project euler assignment

I'm working on solving the 14th project euler assignment.
This is the assignment:
The following iterative sequence is defined for the set of positive integers:
n → n/2 (n is even)
n → 3n + 1 (n is odd)
Using the rule above and starting with 13, we generate the following sequence:
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
NOTE: Once the chain starts the terms are allowed to go above one million.
This is my code:
package collatzSequence;
public class CollatzSeq {
public static void main(String[] args) {
int count = 0;
int largestCount = 0;
for (int i = 13; i < 1000000; i++) {
// System.out.println(i);
int Number = i;
while (Number > 1) {
count = 0;
if (Number % 2 == 0) {
Number = i / 2;
System.out.println("Even: " + Number);
} else {
Number = (Number * 3) + 1;
System.out.println("Uneven: " + Number);
}
count+=1;
if (count > largestCount) {
largestCount = count;
System.out.println("New largest found");
}
}
}
}
}
Now, here's my problem. Everytime I run the program, it prints "Even: 6" over and over again. And its supposed to divide it by half if its even.
Does anyone recognize any problem with my code?
It's becuase of the following if condition in the while loop:
if (Number % 2 == 0) {
Number = i / 2;
System.out.println("Even: " + Number);
}
Here, number is assigne i/2 value, resulting in 6 and then, it never changes, resulting in an infinite loop.
Changing Number = i / 2; to Number = Number / 2; should do.
Your problem is here:
Number = i / 2;
Should be:
Number = Number / 2;
You want to halve the current number, not set Number equal to the starting number divided by 2.

How to calculate number of swaps in permutations?

I have this code below, I would like to know how to calculate the number of swaps. I used a count variable to figure it out, but I was getting different number than the computer. I figure the number of swaps would be 2 * (n - 1)(n - 2)...(n - n + 1). For n == 4, the computer got 128, and I got 48. What am I doing wrong?
public void permute(int n) {
if (n == 1) {
printOutPut();
}
for (int i = 1; i <= n; i++){
swap(i, n);
permute1(n-1);
swap(i, n);
}
}
The code defines a recursion:
num_swaps(0) = 0
num_swaps(i) = i * (num_swaps(i - 1) + 2)
or with more math-like symbols:
s_{n+1} = (n + 1) (s_n + 2)
s_0 = 0
s_1 = 2
s_2 = 8
s_3 = 30
s_4 = 128
You can probably solve that recursion for a general n using techniques from maths, but this verifies that the computer is right
Edit: I was trying to find a solution for general n, ended up on wolfram alpha and the solution presented had incomplete gamma functions and stuff. So, don't expect the calculation to be easy!

Java - Using recursion to sum a number with the difference of that number and multiples of 3

I am doing exercises with algebraic formulas to practice the use of recursion in Java.
I am trying to write a method that returns the result of n + (n - 3) + (n - 6) + (n - 9) ... + 0.
For example, when n = 7, the result should be 12.
When n = 10, the result should be 22.
So far, this is what I have:
public static int sumDownBy3(int n)
{
if(triSum <= 0)
{
return sum;
}
sum = n;
triVar += 3;
triSum = (n - triVar);
return sumDownBy3(n + triSum);
}
However, when I compile and run it, it does not return the expected result.
How may I fix this method to correctly apply the formula I am trying to emulate?
So, here are a few tips to hopefully get you going considering the comments by childofsoong and Jonny Henly.
What you are looking for is simply:
f(n) = n + f(n-3) for n > 0.
Your recursive function should just check if n is <= 0. If it is, return 0. Else return the variable n + another call to your function with n-3.
Hope this helps without giving too much away.
Since this isn't an assignment, just practice, then here is a working solution based off the information given in your question. This solution works for all n, however n <= 0 will always return 0.
public static int sumDownBy3(int n) {
if (n <= 0) {
return 0;
}
return n + sumDownBy3(n - 3);
}
Instead of having an extra parameter or global/class variables keeping track of the sum, this example just uses the stack to keep track of the sum. One downside to this approach is that for a very, very large number the stack could overflow and/or the program could lock up.
Output:
sumDownBy3(7) = 12
sumDownBy3(10) = 22
sumDownBy3(9) = 18
Breakdown for sumDownBy3(10):
sumDownBy3(10): 10 !<= 0 -> return 10 + sumDownBy3(10 - 3)
sumDownBy3( 7): 7 !<= 0 -> return 7 + sumDownBy3( 7 - 3)
sumDownBy3( 4): 4 !<= 0 -> return 4 + sumDownBy3( 4 - 3)
sumDownBy3( 1): 1 !<= 0 -> return 1 + sumDownBy3( 1 - 3)
sumDownBy3(-2): -2 <= 0 -> return 0
So 0 + 1 + 4 + 7 + 10 ='s 22

Difference between Modulo in Java and VBScript

Is there a difference between the way that the Modulo operates calculates values in Java vs the way that it does in VBScript?
Both of these are returning a digit that I am using as part of a larger number later in the code but I believe the issue is between the way VBScript and Java are handling the Mod operator. I may be wrong though.
I am trying to work through reasons why I am seeing different outputs from when I run the below VBscript code block vs my replicated version in Java, sorry for the delay in updating the post.
The function takes in a String and then works to determine a return digit based upon the logic in the loop. The missing code just has to do with initializing the variables used, and determining the length of the string to loop over.
Any help would be greatly appreciated! Thank you
VBScript:
For i=1 to Length
CurrentNumber = Mid(CCNumber,i,1)
CurrentNumber = Int(CurrentNumber)
If (i mod 2) <> 0 then
ModNumber = CurrentNumber * 2
If ModNumber > 9 then
Total = Total + 1 + (ModNumber mod 10)
Else
Total = Total + ModNumber
End If
Else
Total = Total + CurrentNumber
End If
Next
cd = ((Int(Total/10) + 1) * 10) - Total
if cd = 10 then cd = 0
CheckDigit = cd
Java:
for (i=0; i<length; i++)
{
String currentNumberString = CCNumber.substring(i,i+1);
currentNumber = Integer.valueOf(currentNumberString);
if (i % 2 != 0)
{
Integer ModNumber = currentNumber * 2;
if (ModNumber > 9)
{
total = total + 1 + (ModNumber % 10);
}
else
{
total = total + ModNumber;
}
}
else
{
total = total + currentNumber;
}
}
int cd = ((Integer.valueOf(total/10) + 1) * 10) - total;
if (cd == 10)
{
cd = 0;
}
return cd;
}
One difference: The Mod operator in VBScript always returns an integer. Java's % operator can return a fractional value. So 5.2 Mod 2 evaluates to 1 in VBScript, but 5.2 % 2 evaluates to 1.2 in Java.
Edit: Based on your edit, this appears to be the Luhn algorithm. The only real problem with the Java code is a typo; nothing to do with the mod operator. Here you assign a variable currrentNumber (with a triple R):
currrentNumber = Integer.valueOf(currentNumberString);
Then you use a different variable (double R):
Integer ModNumber = currentNumber * 2;
Edit: Another difference is that because VBScript string indices start at 1, and Java string indices start at 0, the code is using different alternate digits. Either If (i mod 2) <> 0 should be If (i mod 2) = 0, or if (i % 2 != 0) should be if (i % 2 == 0), I'm not sure which.

Categories