Cannot get Random number - java

I have been working to get the headcount variable to be random but cannot figure this out
public class Coin
{
private final int HEADS = 0;
private final int TAILS = 1;
private int face;
private static int seed =0;
private Random r;
public Coin ()
{
r = new Random(seed);
flip();
seed++;
}
public void flip ()
{
face = r.nextInt(2);
}
public int getFace()
{
return face;
}
public void setFace(int newFace)
{
face = newFace;
}
public boolean isHeads ()
{
return (face == HEADS);
}
public String toString()
{
String faceName;
if (face == HEADS)
faceName = "Heads";
else
faceName = "Tails";
return faceName;
}
public static void main(String[] args)
{
Coin myCoin = new Coin();
double randnumber =Math.random();
int headCount=0;
for (int i =1; i<=100; i++)
{
myCoin.flip();
if(myCoin.isHeads())
{
headCount++;
}
}
System.out.println("If I flip my coin 100 times, I get " + headCount + " heads.");
headCount =0;
for (int i =1; i<=100; i++)
{
Coin yourCoin = new Coin();
yourCoin.flip();
if(yourCoin.isHeads())
{
headCount++;
}
}
System.out.println("If I flip 100 coins, I get " + headCount + " tails.");
}
}
Whenever I Compile it and Run the program I get the same output which is
If I flip my coin 100 times, I get 47 heads.
If I flip 100 coins, I get 50 tails.
I dont understand how to make the 47 and 50 to be new random numbers each time you run the program. I have looked int Math.Random and other random variables but am unsure how to implement it into this program.

What you want is:
r = new Random(System.currentTimeMillis());
BTW: Random Numbers generators always start with the same number, given a certain seed.
For example, supposed the "random number" generator added 2 to find the next random number.
seed = 9
r(9) = 11 ; r(11) = 13 ; r(13) = 15.
However, a different seed will lead to a different string of numbers.
seed = 4
r(4) = 6 ;

Random numbers in computer programming aren't really random. They depend on a seed value. If you give it the same seed each time, you'll get the same sequence of "random" values each time.
If, instead, you use the empty constructor for Random, it will create a seed for you that is based on the current system nano time. In this way, you will mitigate the chance that you start with the same seed.
So, as others have already mentioned, either call the empty Random constructor, or create a pseudo-random seed yourself before creating a Random that takes the seed argument.
With all that said, it's probably best to assume the JDK implementers have already thought about how best to generate a seed for you, so you should just use the empty constructor.
If you want to see the Java source for the Random class, you can search for
grepcode java.util.Random.java
and see how the JDK implementers create the seed.

Solve the seed issue by declaring Random in the class directly instead in a method.
private Random r = new Random();
public Coin()
{
int x = r.nextInt();
flip();
}

Related

How to add a seed to pseudorandom number generator?

I am currently working on an assignment with creating three heads in a row and I got it working but I am failing the tester assigned to me because it's saying my random number generator needs to take a seed parameter for this particular problem. My code for this is :
public static void threeHeads() {
Random r = new Random();
//int seed = r.nextInt();
int head =0;
while (head!=3) {
Boolean random = r.nextBoolean();
if(random==false) {
System.out.print("H");
head++;
}
else {
System.out.print("T");
head=0;
}
}
System.out.println("\nThree heads in a row!");
}
The random constructor is overloaded with a method: Random(long seed), which allows you to instantiate a random number generator with a preset seed.

Generate random numbers with the first one being zero

I know how to get a range of random numbers between 0 zero and any number.
But what I want to know is, since the random number generator is not truly random, and follows a specific algorithm, for example if you pass a seed of 20. then it will always generate the same sequence of numbers: 17, 292, 0, 9.
So I get that. Since it follows a specific algorithm, is there a way I can force the generator to always start at zero or any other number?
But specifically zero in my case.
No need to hack the Random class, just write your own:
public class RandomGenerator {
private int bound;
private Random random;
private boolean firstCall = true;
public RandomGenerator(int bound, long seed) {
this.bound = bound;
random = new Random(seed)
}
public int next() {
if (firstCall) {
firstCall = false;
return 0;
}
return random.nextInt(bound);
}
}
public static void main (String[] args) throws java.lang.Exception
{
int x = -1;
long seed = 0;
int xxx = 100;
while(x!=0){
Random s = new Random(seed++);
x = s.nextInt(xxx);
}
System.out.println("seed " + (seed-1) + " gives " + new Random(seed-1).nextInt(xxx));
}
This will find a seed that the next int will be zero for a given modulus. (Happens to be 18 for this example).

Need help randomizing numbers based on user input

public class numberCube {
public static int size;
public static int tosses;
public static int random;
public static int value;
public static int values;
public static void cubeSize(){
// Gets the range of numbers that are allowed to be randomized
String x = JOptionPane.showInputDialog
("How many numbers do you want on your cube?");
int size = Integer.parseInt(x);
}
public static void numTosses(){
// Gets the amount of times that a randomizer will loop
String y = JOptionPane.showInputDialog
("How many times do you want to toss the dice?");
int tosses = Integer.parseInt(y);
}
public static void randomizer(){
// creates the random numbers. Heres where the problem is. I need to be able //to allow the user to specify the range of numbers and how many times it will //be randomized
For example, for cubeSize() I could enter 3, and for numTosses() I could enter 5. A possible output would be: 1,1,3,2,3
}
}
}
You're duplicating the initialization of variables (ex: size,tosses,etc) here.
If want to manipulate a property of a specific class you need to use this keyword. So,
int size = Integer.parseInt(x); becomes this.size = Integer.parseInt(x);
int tosses = Integer.parseInt(y); becomes this.tosses = Integer.parseInt(y);
etc..
Then in your randomizer() method you could try something like :
Random random = new Random();
for (int i = 1; i <= this.tosses; i++) {
int value = 1 + random.nextInt(this.size);
System.out.println(value);
}
You mean something like this?
Random r = new Random();
for (int i = 0; i < numTosses; ++i) {
int rand = 1 + r.nextInt(cubeSize);
// use rand, which will be an integer from 1 to cubeSize (inclusive)
}

Random variables in Java

My professor asked us to generate random variables between 0 and 0.5. I wrote this code:
public class Random_Number_Generator {
double randomGenerator() {
Random generator = new Random();
double num = generator.nextDouble() * (0.5 - 0);
return num;
}
}
But my professor is saying this code is generating random numbers not random variables. What could this mean?
Apparently I misread the post; the following should be read with that in mind.
In that code, num and generators are local variables. A random number (a value) is assigned to the variable called num using the Random object named by the generator variable. Finally, the value stored in the variable num is returned from the method.
In any case, generator.nextDouble() returns a value between [0,1) so to get a value between [0,0.5), just scale it by half: divide it by two or, as done, multiply it by a half.
The - 0 in the above code is silly, but "okay" because (0.5 - 0) == 0.5.
(Also, it is good to get into the practice of to creating one Random instance and re-using it .. although this issue is more obvious in .NET.)
Now, actual random variable is, as far as I know, a function that maps values to their probability. I don't think you're supposed to return a function, so I've scratched this: the closest thing to what I guess you're supposed to do:
import java.util.*;
import java.lang.*;
class RandomVar
{
TreeMap<Double, Integer> variables;
public RandomVar()
{
variables = new TreeMap<Double, Integer>();
int count = Main.RandGen.nextInt(15);
double probabilityLeft = 1.0;
for (int i = 0 ; i < count - 1; i++)
{
int toPut = Main.RandGen.nextInt(100);
while (variables.containsValue(toPut)) toPut = Main.RandGen.nextInt(100);
double prob = probabilityLeft * Main.RandGen.nextDouble();
variables.put(prob, toPut);
}
int toPut = Main.RandGen.nextInt(100);
while (variables.containsValue(toPut)) toPut = Main.RandGen.nextInt(100);
double prob = probabilityLeft;
variables.put(prob, toPut);
}
public int getValue()
{
double rand = Main.RandGen.nextDouble();
double sum = 0;
for (double prob : variables.keySet()) //keySet() is sorted ascending
{
if (prob >= rand)
return variables.get(prob);
}
return variables.get(variables.lastKey());
}
//Shows probabilities of values
public void test()
{
for (double key : variables.keySet())
System.out.println(key + " :: " + variables.get(key));
}
}
class Main
{
public static Random RandGen = new Random();
public static void main (String[] args)
{
RandomVar rv = new RandomVar();
rv.test();
System.out.println("------------------------------");
for (int i = 0; i < 40 ; i++)
System.out.print(rv.getValue() + ", ");
}
}
This is very lousy solution, basically a class which allows you to return values with a set (random) probability. I still don't know if this is what you professor wants though...
Try this code:
public static void main(String[] arg) {
System.out.print(Random());
}
public static double Random() {
double START = 0;
double END = 0.5;
Random random = new Random();
double token = RandomNumber(START, END, random);
return token;
}
public static double RandomNumber(double aStart, double aEnd, Random aRandom) {
if (aStart > aEnd) {
throw new IllegalArgumentException("Start cannot exceed End.");
}
// get the range, casting to long to avoid overflow problems
double range = aEnd - aStart;
// compute a fraction of the range, 0 <= frac < range
double fraction = (range * aRandom.nextDouble());
double randomNumber = (fraction + aStart);
return randomNumber;
}

Generating Unique Random Numbers in Java

I'm trying to get random numbers between 0 and 100. But I want them to be unique, not repeated in a sequence. For example if I got 5 numbers, they should be 82,12,53,64,32 and not 82,12,53,12,32
I used this, but it generates same numbers in a sequence.
Random rand = new Random();
selected = rand.nextInt(100);
Add each number in the range sequentially in a list structure.
Shuffle it.
Take the first 'n'.
Here is a simple implementation. This will print 3 unique random numbers from the range 1-10.
import java.util.ArrayList;
import java.util.Collections;
public class UniqueRandomNumbers {
public static void main(String[] args) {
ArrayList<Integer> list = new ArrayList<Integer>();
for (int i=1; i<11; i++) list.add(i);
Collections.shuffle(list);
for (int i=0; i<3; i++) System.out.println(list.get(i));
}
}
The first part of the fix with the original approach, as Mark Byers pointed out in an answer now deleted, is to use only a single Random instance.
That is what is causing the numbers to be identical. A Random instance is seeded by the current time in milliseconds. For a particular seed value, the 'random' instance will return the exact same sequence of pseudo random numbers.
With Java 8+ you can use the ints method of Random to get an IntStream of random values then distinct and limit to reduce the stream to a number of unique random values.
ThreadLocalRandom.current().ints(0, 100).distinct().limit(5).forEach(System.out::println);
Random also has methods which create LongStreams and DoubleStreams if you need those instead.
If you want all (or a large amount) of the numbers in a range in a random order it might be more efficient to add all of the numbers to a list, shuffle it, and take the first n because the above example is currently implemented by generating random numbers in the range requested and passing them through a set (similarly to Rob Kielty's answer), which may require generating many more than the amount passed to limit because the probability of a generating a new unique number decreases with each one found. Here's an example of the other way:
List<Integer> range = IntStream.range(0, 100).boxed()
.collect(Collectors.toCollection(ArrayList::new));
Collections.shuffle(range);
range.subList(0, 99).forEach(System.out::println);
Create an array of 100 numbers, then randomize their order.
Devise a pseudo-random number generator that has a range of 100.
Create a boolean array of 100 elements, then set an element true when you pick that number. When you pick the next number check against the array and try again if the array element is set. (You can make an easy-to-clear boolean array with an array of long where you shift and mask to access individual bits.)
Use Collections.shuffle() on all 100 numbers and select the first five, as shown here and below.
Console:
59 9 68 24 82
Code:
private static final Random rnd = new Random();
private static final int N = 100;
private static final int K = 5;
private static final List<Integer> S = new ArrayList<>(N);
public static void main(String[] args) {
for (int i = 0; i < N; i++) {
S.add(i + 1);
}
Collections.shuffle(S, rnd);
for (int i = 0; i < K; i++) {
System.out.print(S.get(i) + " ");
}
System.out.println();
}
I feel like this method is worth mentioning.
private static final Random RANDOM = new Random();
/**
* Pick n numbers between 0 (inclusive) and k (inclusive)
* While there are very deterministic ways to do this,
* for large k and small n, this could be easier than creating
* an large array and sorting, i.e. k = 10,000
*/
public Set<Integer> pickRandom(int n, int k) {
final Set<Integer> picked = new HashSet<>();
while (picked.size() < n) {
picked.add(RANDOM.nextInt(k + 1));
}
return picked;
}
I re-factored Anand's answer to make use not only of the unique properties of a Set but also use the boolean false returned by the set.add() when an add to the set fails.
import java.util.HashSet;
import java.util.Random;
import java.util.Set;
public class randomUniqueNumberGenerator {
public static final int SET_SIZE_REQUIRED = 10;
public static final int NUMBER_RANGE = 100;
public static void main(String[] args) {
Random random = new Random();
Set set = new HashSet<Integer>(SET_SIZE_REQUIRED);
while(set.size()< SET_SIZE_REQUIRED) {
while (set.add(random.nextInt(NUMBER_RANGE)) != true)
;
}
assert set.size() == SET_SIZE_REQUIRED;
System.out.println(set);
}
}
I have made this like that.
Random random = new Random();
ArrayList<Integer> arrayList = new ArrayList<Integer>();
while (arrayList.size() < 6) { // how many numbers u need - it will 6
int a = random.nextInt(49)+1; // this will give numbers between 1 and 50.
if (!arrayList.contains(a)) {
arrayList.add(a);
}
}
This will work to generate unique random numbers................
import java.util.HashSet;
import java.util.Random;
public class RandomExample {
public static void main(String[] args) {
Random rand = new Random();
int e;
int i;
int g = 10;
HashSet<Integer> randomNumbers = new HashSet<Integer>();
for (i = 0; i < g; i++) {
e = rand.nextInt(20);
randomNumbers.add(e);
if (randomNumbers.size() <= 10) {
if (randomNumbers.size() == 10) {
g = 10;
}
g++;
randomNumbers.add(e);
}
}
System.out.println("Ten Unique random numbers from 1 to 20 are : " + randomNumbers);
}
}
One clever way to do this is to use exponents of a primitive element in modulus.
For example, 2 is a primitive root mod 101, meaning that the powers of 2 mod 101 give you a non-repeating sequence that sees every number from 1 to 100 inclusive:
2^0 mod 101 = 1
2^1 mod 101 = 2
2^2 mod 101 = 4
...
2^50 mod 101 = 100
2^51 mod 101 = 99
2^52 mod 101 = 97
...
2^100 mod 101 = 1
In Java code, you would write:
void randInts() {
int num=1;
for (int ii=0; ii<101; ii++) {
System.out.println(num);
num= (num*2) % 101;
}
}
Finding a primitive root for a specific modulus can be tricky, but Maple's "primroot" function will do this for you.
I have come here from another question, which has been duplicate of this question (Generating unique random number in java)
Store 1 to 100 numbers in an Array.
Generate random number between 1 to 100 as position and return array[position-1] to get the value
Once you use a number in array, mark the value as -1 ( No need to maintain another array to check if this number is already used)
If value in array is -1, get the random number again to fetch new location in array.
I have easy solution for this problem,
With this we can easily generate n number of unique random numbers,
Its just logic anyone can use it in any language.
for(int i=0;i<4;i++)
{
rn[i]= GenerateRandomNumber();
for (int j=0;j<i;j++)
{
if (rn[i] == rn[j])
{
i--;
}
}
}
Choose n unique random numbers from 0 to m-1.
int[] uniqueRand(int n, int m){
Random rand = new Random();
int[] r = new int[n];
int[] result = new int[n];
for(int i = 0; i < n; i++){
r[i] = rand.nextInt(m-i);
result[i] = r[i];
for(int j = i-1; j >= 0; j--){
if(result[i] >= r[j])
result[i]++;
}
}
return result;
}
Imagine a list containing numbers from 0 to m-1. To choose the first number, we simply use rand.nextInt(m). Then remove the number from the list. Now there remains m-1 numbers, so we call rand.nextInt(m-1). The number we get represents the position in the list. If it is less than the first number, then it is the second number, since the part of list prior to the first number wasn't changed by the removal of the first number. If the position is greater than or equal to the first number, the second number is position+1. Do some further derivation, you can get this algorithm.
Explanation
This algorithm has O(n^2) complexity. So it is good for generating small amount of unique numbers from a large set. While the shuffle based algorithm need at least O(m) to do the shuffle.
Also shuffle based algorithm need memory to store every possible outcome to do the shuffle, this algorithm doesn’t need.
Though it's an old thread, but adding another option might not harm. (JDK 1.8 lambda functions seem to make it easy);
The problem could be broken down into the following steps;
Get a minimum value for the provided list of integers (for which to generate unique random numbers)
Get a maximum value for the provided list of integers
Use ThreadLocalRandom class (from JDK 1.8) to generate random integer values against the previously found min and max integer values and then filter to ensure that the values are indeed contained by the originally provided list. Finally apply distinct to the intstream to ensure that generated numbers are unique.
Here is the function with some description:
/**
* Provided an unsequenced / sequenced list of integers, the function returns unique random IDs as defined by the parameter
* #param numberToGenerate
* #param idList
* #return List of unique random integer values from the provided list
*/
private List<Integer> getUniqueRandomInts(List<Integer> idList, Integer numberToGenerate) {
List<Integer> generatedUniqueIds = new ArrayList<>();
Integer minId = idList.stream().mapToInt (v->v).min().orElseThrow(NoSuchElementException::new);
Integer maxId = idList.stream().mapToInt (v->v).max().orElseThrow(NoSuchElementException::new);
ThreadLocalRandom.current().ints(minId,maxId)
.filter(e->idList.contains(e))
.distinct()
.limit(numberToGenerate)
.forEach(generatedUniqueIds:: add);
return generatedUniqueIds;
}
So that, to get 11 unique random numbers for 'allIntegers' list object, we'll call the function like;
List<Integer> ids = getUniqueRandomInts(allIntegers,11);
The function declares new arrayList 'generatedUniqueIds' and populates with each unique random integer up to the required number before returning.
P.S. ThreadLocalRandom class avoids common seed value in case of concurrent threads.
try this out
public class RandomValueGenerator {
/**
*
*/
private volatile List<Double> previousGenValues = new ArrayList<Double>();
public void init() {
previousGenValues.add(Double.valueOf(0));
}
public String getNextValue() {
Random random = new Random();
double nextValue=0;
while(previousGenValues.contains(Double.valueOf(nextValue))) {
nextValue = random.nextDouble();
}
previousGenValues.add(Double.valueOf(nextValue));
return String.valueOf(nextValue);
}
}
This isn't significantly different from other answers, but I wanted the array of integers in the end:
Integer[] indices = new Integer[n];
Arrays.setAll(indices, i -> i);
Collections.shuffle(Arrays.asList(indices));
return Arrays.stream(indices).mapToInt(Integer::intValue).toArray();
you can use boolean array to fill the true if value taken else set navigate through boolean array to get value as per given below
package study;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/*
Created By Sachin Rane on Jul 18, 2018
*/
public class UniqueRandomNumber {
static Boolean[] boolArray;
public static void main(String s[]){
List<Integer> integers = new ArrayList<>();
for (int i = 0; i < 10; i++) {
integers.add(i);
}
//get unique random numbers
boolArray = new Boolean[integers.size()+1];
Arrays.fill(boolArray, false);
for (int i = 0; i < 10; i++) {
System.out.print(getUniqueRandomNumber(integers) + " ");
}
}
private static int getUniqueRandomNumber(List<Integer> integers) {
int randNum =(int) (Math.random()*integers.size());
if(boolArray[randNum]){
while(boolArray[randNum]){
randNum++;
if(randNum>boolArray.length){
randNum=0;
}
}
boolArray[randNum]=true;
return randNum;
}else {
boolArray[randNum]=true;
return randNum;
}
}
}
This is the most simple method to generate unique random values in a range or from an array.
In this example, I will be using a predefined array but you can adapt this method to generate random numbers as well. First, we will create a sample array to retrieve our data from.
Generate a random number and add it to the new array.
Generate another random number and check if it is already stored in the new array.
If not then add it and continue
else reiterate the step.
ArrayList<Integer> sampleList = new ArrayList<>();
sampleList.add(1);
sampleList.add(2);
sampleList.add(3);
sampleList.add(4);
sampleList.add(5);
sampleList.add(6);
sampleList.add(7);
sampleList.add(8);
Now from the sampleList we will produce five random numbers that are unique.
int n;
randomList = new ArrayList<>();
for(int i=0;i<5;i++){
Random random = new Random();
n=random.nextInt(8); //Generate a random index between 0-7
if(!randomList.contains(sampleList.get(n)))
randomList.add(sampleList.get(n));
else
i--; //reiterating the step
}
This is conceptually very simple. If the random value generated already exists then we will reiterate the step. This will continue until all the values generated are unique.
If you found this answer useful then you can vote it up as it is much simple in concept as compared to the other answers.
Check this
public class RandomNumbers {
public static void main(String[] args) {
// TODO Auto-generated method stub
int n = 5;
int A[] = uniqueRandomArray(n);
for(int i = 0; i<n; i++){
System.out.println(A[i]);
}
}
public static int[] uniqueRandomArray(int n){
int [] A = new int[n];
for(int i = 0; i< A.length; ){
if(i == A.length){
break;
}
int b = (int)(Math.random() *n) + 1;
if(f(A,b) == false){
A[i++] = b;
}
}
return A;
}
public static boolean f(int[] A, int n){
for(int i=0; i<A.length; i++){
if(A[i] == n){
return true;
}
}
return false;
}
}
Below is a way I used to generate unique number always. Random function generates number and stores it in textfile then next time it checks it in file compares it and generate new unique number hence in this way there is always a new unique number.
public int GenerateRandomNo()
{
int _min = 0000;
int _max = 9999;
Random _rdm = new Random();
return _rdm.Next(_min, _max);
}
public int rand_num()
{
randnum = GenerateRandomNo();
string createText = randnum.ToString() + Environment.NewLine;
string file_path = System.IO.Path.GetDirectoryName(System.Windows.Forms.Application.ExecutablePath) + #"\Invoices\numbers.txt";
File.AppendAllText(file_path, createText);
int number = File.ReadLines(file_path).Count(); //count number of lines in file
System.IO.StreamReader file = new System.IO.StreamReader(file_path);
do
{
randnum = GenerateRandomNo();
}
while ((file.ReadLine()) == randnum.ToString());
file.Close();
return randnum;
}
You can use the Collections class.
A utility class called Collections offers different actions that can be performed on a collection like an ArrayList (e.g., search the elements, find the maximum or minimum element, reverse the order of elements, and so on). One of the actions it can perform is to shuffle the elements. The shuffle will randomly move each element to a different position in the list. It does this by using a Random object. This means it's deterministic randomness, but it will do in most situations.
To shuffle the ArrayList, add the Collections import to the top of the program and then use the Shuffle static method. It takes the ArrayList to be shuffled as a parameter:
import java.util.Collections;
import java.util.ArrayList;
public class Lottery {
public static void main(String[] args) {
//define ArrayList to hold Integer objects
ArrayList numbers = new ArrayList();
for(int i = 0; i < 100; i++)
{
numbers.add(i+1);
}
Collections.shuffle(numbers);
System.out.println(numbers);
}
}
You can generate n unique random number between 0 to n-1 in java
public static void RandomGenerate(int n)
{
Set<Integer> st=new HashSet<Integer>();
Random r=new Random();
while(st.size()<n)
{
st.add(r.nextInt(n));
}
}

Categories