Edge detection using sobel operator - java

So I am trying to write a program that uses sobel operator to detect edges in an image. Below is my method.
/**
* Detects edges.
* #param url - filepath to the iamge.
*/
private void detect(String url) {
BufferedImage orgImage = readImage(url);
int width = orgImage.getWidth();
int height = orgImage.getHeight();
BufferedImage resImage = new BufferedImage(width, height, BufferedImage.TYPE_BYTE_BINARY);
WritableRaster inraster = orgImage.getRaster();
WritableRaster outraster = resImage.getRaster();
System.out.println("size: " + width + "X" + height);
// Loop through every pixel, ignores the edges as these will throw out of
//bounds.
for (int i = 1; i < width-2; i++) {
for (int j = 1; j < height-2; j++) {
// Compute filter result, loops over in a
// box pattern.
int sum = 0;
for (int x = -1; x <= 1; x++) {
for (int y = -1; y <= 1; y++) {
int sum1 = i+y;
int sum2 = j+x;
int p = inraster.getSample(sum1, sum2, 0);
sum = sum + p;
}
}
int q = (int) Math.round(sum / 9.0);
if(q<150){
q = 0;
}else{
q = 255;
}
outraster.setSample(i, j, 0, q);
}
}
writeImage(resImage, "jpg", "EdgeDetection " + url);
}
This mostly just gives me a black and white image:
Before
After
I am obviosly calculating the pixel value wrong somehow. I am also note sure what value to use when deciding if the pixel should be black or white.

Related

Calculating 'color distance' between 2 points in a 3-dimensional space

I have a homework task where I have to write a class responsible for contour detection. It is essentially an image processing operation, using the definition of euclidean distance between 2 points in the 3-dimensional space. Formula given to us to use is:
Math.sqrt(Math.pow(pix1.red - pix2.red,2) + Math.pow(pix1.green- pix2.green,2) + Math.pow(pix1.blue- pix2.blue,2));
We need to consider each entry of the two dimensional array storing the colors of the pixels of an image, and if some pixel, pix, the color distance between p and any of its neighbors is more than 70, change the color of the pixel to black, else change it to white.
We are given a seperate class as well responsible for choosing an image, and selecting an output, for which method operationContouring is applied to. Java syntax and convention is very new to me having started with python. Conceptually, I'm struggling to understand what the difference between pix1 and pix2 is, and how to define them. This is my code so far.
Given:
import java.awt.Color;
/* Interface for ensuring all image operations invoked in same manner */
public interface operationImage {
public Color[][] operationDo(Color[][] imageArray);
}
My code:
import java.awt.Color;
public class operationContouring implements operationImage {
public Color[][] operationDo(Color[][] imageArray) {
int numberOfRows = imageArray.length;
int numberOfColumns = imageArray[0].length;
Color[][] results = new Color[numberOfRows][numberOfColumns];
for (int i = 0; i < numberOfRows; i++)
for (int j = 0; j < numberOfColumns; j++) {
int red = imageArray[i][j].getRed();
int green = imageArray[i][j].getGreen();
int blue = imageArray[i][j].getBlue();
double DistanceColor = Math.sqrt(Math.pow(pix1.red - pix2.red,2) + Math.pow(pix1.green- pix2.green,2) + Math.pow(pix1.blue- pix2.blue,2));
int LIMIT = 70;
if (DistanceColor> LIMIT ) {
results[i][j] = new Color((red=0), (green=0), (blue=0));
}
else {
results[i][j] = new Color((red=255), (green=255), (blue=255));
}
}
return results;
}
}
This is a solution I wrote that uses BufferedImages. I tested it and it should work. Try changing it such that it uses your data format (Color[][]) and it should work for you too. Note that "pix1" is nothing more than a description of the color of some pixel, and "pix2" is the description of the color of the pixel you are comparing it to (determining whether the color distance > 70).
public static boolean tooDifferent(Color c1, Color c2) {
return Math.sqrt(Math.pow(c1.getRed() - c2.getRed(),2) + Math.pow(c1.getGreen()- c2.getGreen(),2) + Math.pow(c1.getBlue()- c2.getBlue(),2)) > 70;
}
public static Color getColor(int x, int y, BufferedImage img) {
return new Color(img.getRGB(x, y));
}
public static BufferedImage operationDo(BufferedImage img) {
int numberOfRows = img.getHeight();
int numberOfColumns = img.getWidth();
BufferedImage results = new BufferedImage(numberOfColumns, numberOfRows, BufferedImage.TYPE_INT_ARGB);
for (int y = 0; y < numberOfRows; y++) {
for (int x = 0; x < numberOfColumns; x++) {
Color color = new Color(img.getRGB(x, y));
boolean aboveExists = y > 0;
boolean belowExists = y < numberOfRows - 1;
boolean leftExists = x > 0;
boolean rightExists = x < numberOfColumns - 1;
if ((aboveExists && tooDifferent(color, getColor(x, y - 1, img))) ||
(belowExists && tooDifferent(color, getColor(x, y + 1, img))) ||
(leftExists && tooDifferent(color, getColor(x - 1, y, img))) ||
(rightExists && tooDifferent(color, getColor(x + 1, y, img)))) {
results.setRGB(x, y, Color.black.getRGB());
} else {
results.setRGB(x, y, Color.white.getRGB());
}
}
}
return results;
}

Perlin Noise is not Gaining Depth with More Octaves

I am new to Perlin noise and I have hit a roadblock. The perlin noise function I have translated from C++ seems to work correctly for one octave, however I have found that the lower octaves of noise aren't added to the original Perlin Noise. Here is my code:
public class Perlin {
float[][] generateWhiteNoise(int width, int height) {
Random random = new Random(0);
float[][] noise = new float[width][height];
for (int i = 0; i < noise.length; i++) {
for (int j = 0; j < noise[i].length; j++){
noise[i][j] = (float)random.nextDouble();
}
}
return noise;
}
float[][] generateSmoothNoise(float[][] baseNoise, int octave){
int width = baseNoise.length;
int height = baseNoise[0].length;
float[][] smoothNoise = baseNoise;
int samplePeriod = (int) Math.pow(2,octave); // calculates 2 ^ k
float sampleFrequency = 1.0f / samplePeriod;
for (int i = 0; i < width; i++) {
//calculate the horizontal sampling indices
int sample_i0 = (i / samplePeriod) * samplePeriod;
int sample_i1 = (sample_i0 + samplePeriod) % width; //wrap around
float horizontal_blend = (i - sample_i0) * sampleFrequency;
for (int j = 0; j < height; j++){
//calculate the vertical sampling indices
int sample_j0 = (j / samplePeriod) * samplePeriod;
int sample_j1 = (sample_j0 + samplePeriod) % height; //wrap around
float vertical_blend = (j - sample_j0) * sampleFrequency;
//blend the top two corners
float top = interpolate(baseNoise[sample_i0][sample_j0],
baseNoise[sample_i1][sample_j0], horizontal_blend);
//blend the bottom two corners
float bottom = interpolate(baseNoise[sample_i0][sample_j1],
baseNoise[sample_i1][sample_j1], horizontal_blend);
//final blend
smoothNoise[i][j] = interpolate(top, bottom, vertical_blend);
}
}
return smoothNoise;
}
float interpolate(float x0, float x1, float alpha){
return (float) ((float)(x0) * (float)(1 - alpha) + (float)(alpha * x1));
}
float[][] generatePerlinNoise(float[][] baseNoise, int octaveCount) {
int width = baseNoise.length;
int height = baseNoise[0].length;
float[][][] smoothNoise = new float[octaveCount][][]; //an array of 2D arrays containing
float persistance = .5f;
//generate smooth noise
for (int i = 0; i<octaveCount; i++) {
System.out.println("Generating Smooth Noise: " + i);
smoothNoise[i] = generateSmoothNoise(baseNoise, i);
}
float[][] perlinNoise = new float[width][height];
float amplitude = 1.0f;
float totalAmplitude = 0.0f;
//blend noise together
for (int octave = octaveCount - 1; octave >= 0; octave--) {
amplitude *= persistance;
totalAmplitude += amplitude;
System.out.println("Adding smooth noise for octave: " + octave + " at amplitude: " + amplitude);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
perlinNoise[i][j] += smoothNoise[octave][i][j] * amplitude;
}
}
}
//normalization
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
perlinNoise[i][j] /= totalAmplitude;
}
}
return perlinNoise;
}
public float[][] printVals(float[][] baseNoise){
baseNoise = generatePerlinNoise(generateWhiteNoise(800,800),6);
for(int i = 0; i<baseNoise.length; i++){
String row = "";
for(int j = 0; j<baseNoise[i].length;j++){
row+= (int)(baseNoise[i][j]*255) + " ";
}
System.out.println(row);
}
return baseNoise;
}
}
Here is the code in that I use to get values:
baseNoise = generatePerlinNoise(generateWhiteNoise(800,800),6);
Here are the outputs at octaves 1,2,3, and 4
Any help would be appreciated!
Edit:
Through trial and error, I have found that the most likely area for there to be problems is in the generatePerlinNoise() function. If I change the octaves, I get the desired noise level, which is what I want. That also means that the generateWhiteNoise() and generateSmoothNoise() works. So, somewhere within the generatePerlinNoise() blending there is a problem, but it seems like it should work.
I have found an answer. I had thought that the generateSmoothNoise() command was going to give me multi-octave perlin noise. However, I realized that I needed to build another command similar to what happens with the blending of the smooth noise to blend my different octaves of perlin noise.
public float[][] generateMultiOctavePerlinNoise(int octaves, double persistence, double dropoff, int width, int height){
float[][][]noise = new float[octaves][width][height];
for(int i = octaves - 1; i > 0;i--){
noise[i] = generatePerlinNoise(generateWhiteNoise(width,height),octaves - i);
}
float[][] multiOctave = new float[width][height];
for(int a= 0; a<noise.length; a++){
persistence*= dropoff;
for(int i = 0; i<multiOctave.length; i++){
for(int j = 0; j<multiOctave[i].length; j++){
multiOctave[i][j] += noise[a][i][j]*persistence;
}
}
}
return multiOctave;
}

Finding pixel position

public static void sample(BufferedImage image) {
int width = image.getWidth();
int height = image.getHeight();
int value[][] = new int[width][height];
int valueR[][] = new int[width][height];
int valueG[][] = new int[width][height];
int valueB[][] = new int[width][height];
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
int pixel = image.getRGB(i, j);
value[i][j] = pixel;
Color c = new Color(pixel);
valueR[i][j]= c.getRed();
valueG[i][j] = c.getGreen();
valueB[i][j] = c.getBlue();
System.out.println("Red value = "+valueR[i][j]);
System.out.println("Green value ="+valueG[i][j]);
System.out.println("Blue value"+valueB[i][j]);
}
}
}
The above code is to store RGB values and pixel color values of an image in an array separately.
public static BigInteger modPow(BigInteger a1, BigInteger e, BigInteger n) {
BigInteger r = 1;
for (int i = e.bitLength() - 1; i >= 0; i--) {
r = (r.multiply(r)).mod(n);
if (e.testBit(i)) {
r = (r.multiply(a1)).mod(n);
}
}
System.out.println("C value = " + r);
int lng = 3;
BigInteger bi = BigInteger.valueOf(lng);
BigInteger a = r.divide(bi);
BigInteger b = r.mod(bi);
System.out.println("pixel position a = " + a);
System.out.println("modulus value b = " + b);
return r;
}
In the above code am finding pixel position where i need to embed the secret bit.so i need to go to that specific pixel to embed the message.But in the previous code am storing pixel color in array value[][].i need to search through the array value[][] to get the pixel position which i got in last code.
Note: a1 is the position of current bit of information file to embed
{e,n} is public key
My question is how to find the pixel positions?
To find the position of a pixel is a simple concept with a complex execution. I've written some code here that takes a BufferedImage and searches through it for a pixel of a specific color.
import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import javax.imageio.ImageIO;
import java.io.IOException;
public class pixelSearch {
public static void main(String[] args) {
//I don't know where you're getting your image but i'll get one from file
File image = new File("image.bmp");
try {
BufferedImage imageToSearch = ImageIO.read(image);
Color colorToFind = new Color(255,255,255); //define color to search for with RGB vals 255,255,255
//for more information on constructing colors look here: http://docs.oracle.com/javase/7/docs/api/java/awt/Color.html
int[] pixelCoordinates = pSearch( colorToFind, imageToSearch ); //search for the pixel
System.out.println("Found pixel at (" + pixelCoordinates[0] + "," + pixelCoordinates[1] + ")."); //display coordinates
} catch (IOException e) {
System.out.println(e.toString());
}
}
private static int[] pSearch ( Color c, BufferedImage pic ){
int cVal = c.getRGB(); //get integer value of color we are trying to find
int x1 = 0;
int y1 = 0;
int x2 = pic.getWidth();
int y2 = pic.getHeight();
int[] XArray = new int[x2-x1+1]; //create an array to hold all X coordinates in image
int iterator = 0;
while (iterator <= x2) {
XArray[iterator] = x1 + iterator;
iterator++;
}
int [] YArray = new int[y2-y1+1]; //create an array to hold all Y coordinates in image
iterator = 0;
while (iterator <= y2) {
YArray[iterator] = y1 + iterator;
iterator++;
}
//next we iterate throug all the possible coordinates to check each pixel
for (int yVal : YArray) {
for (int xVal : XArray) {
int color = pic.getRGB(xVal, yVal); //get the color of pixel at coords (xVal, yVal)
if (color == cVal) { //if the color is equal to the one we inputted to the function
int[] cPos = {xVal, yVal}; //store the coordinates
return cPos; //return the coordinates
}
}
}
int[] returnVal = {-1,-1}; //if we didn't find it return -1, -1
return returnVal;
}
}

How to flip an image horizontally

HiI was wondering how to flip and image horizontally, for a practce task I was given a code that reads an image, inverting it to an image indicating it's brightness from 0-5, I had to flip an image.
This is my code of my reading an image and drawing it
public int[][] readImage(String url) throws IOException
{
// fetch the image
BufferedImage img = ImageIO.read(new URL(url));
// create the array to match the dimensions of the image
int width = img.getWidth();
int height = img.getHeight();
int[][] imageArray = new int[width][height];
// convert the pixels of the image into brightness values
for (int x = 0; x < width; x++)
{
for (int y = 0; y < height; y++)
{
// get the pixel at (x,y)
int rgb = img.getRGB(x,y);
Color c = new Color(rgb);
int red = c.getRed();
int green = c.getGreen();
int blue = c.getBlue();
// convert to greyscale
float[] hsb = Color.RGBtoHSB(red, green, blue, null);
int brightness = (int)Math.round(hsb[2] * (PIXEL_CHARS.length - 1));
imageArray[x][y] = brightness;
}
}
return imageArray;
}
public void draw() throws IOException
{
int[][] array = readImage("http://sfpl.org/images/graphics/chicklets/google-small.png");
for(int i=0; i<array.length; i++)
{
for(int pic=0; pic<array[i].length; pic++)
{
if(array[pic][i] == 0)
{
System.out.print("X");
}
else if(array[pic][i] == 1)
{
System.out.print("8");
}
else if(array[pic][i] == 2)
{
System.out.print("0");
}
else if(array[pic][i] == 3)
{
System.out.print(":");
}
else if(array[pic][i] == 4)
{
System.out.print(".");
}
else if (array[pic][i] == 5)
{
System.out.print(" ");
}
else
{
System.out.print("error");
break;
}
}
System.out.println();
}
}
and this is the code I tried to create to horizontally flip it,
void mirrorUpDown()
{
int[][] array = readImage("http://sfpl.org/images/graphics/chicklets/google-small.png");
int i = 0;
for (int x = 0; x < array.length; x++)
{
for (int y = 0; y < array[i].length; y++)
{{
int temp = array[x][y];
array[x][y]= array[-x][y];
array[array[i].length-x][y]=temp;
}
}
}
}
I get an error
unreported exception java.io.IException;
must be caught or declared to be thrown
I'd actually do it by this way...
BufferedImage flip(BufferedImage sprite){
BufferedImage img = new BufferedImage(sprite.getWidth(),sprite.getHeight(),BufferedImage.TYPE_INT_ARGB);
for(int xx = sprite.getWidth()-1;xx>0;xx--){
for(int yy = 0;yy < sprite.getHeight();yy++){
img.setRGB(sprite.getWidth()-xx, yy, sprite.getRGB(xx, yy));
}
}
return img;
}
Just a loop whose x starts at the end of the first image and places its rgba value on the flipped position of the second image. Clean, easy code :)
The function mirrorUpDown() , add a throws IOException there.
Also the function from which you are calling these methods, does that handle exception, does that code enclosed in a try catch block or the function is also set to throw IOException (one of either should be there)
How is your image supposed to know it should get it's data from imageArray ?
instead, you should access the raster of your image and modify the data in it.
void flip(BufferedImage image) {
WritableRaster raster = image.getRaster();
int h = raster.getHeight();
int w = raster.getWidth();
int x0 = raster.getMinX();
int y0 = raster.getMinY();
for (int x = x0; x < x0 + w; x++){
for (int y = y0; y < y0 + h / 2; y++){
int[] pix1 = new int[3];
pix1 = raster.getPixel(x, y, pix1);
int[] pix2 = new int[3];
pix2 = raster.getPixel(x, y0 + h - 1 - (y - y0), pix2);
raster.setPixel(x, y, pix2);
raster.setPixel(x, y0 + h - 1 - (y - y0), pix1);
}
}
return;
}
Sorry about posting this here over a year later but it should aid someone at a stage
try{
java.awt.image.BufferedImage bi = javax.imageio.ImageIO.read(getClass().getResource("Your image bro.jpg")) ;
int[] h = bi.getRGB(0, 0, bi.getWidth(), bi.getHeight(), null, 0, bi.getWidth());
int [] h1 = new int[h.length];
System.out.println(""+h.length);
for(int j = 0;500>j;j++){
for(int i = 500;i>0;i--){
h1[j*500+(500-i)] = h[(j*500)+(i-1)];
}
}
bi.setRGB(0, 0, bi.getWidth(), bi.getHeight(), h1, 0, bi.getWidth());
}
catch(Exception e){e.printStackTrace();}
Lets break the code down
java.awt.image.BufferedImage bi =javax.imageio.ImageIO.read(getClass().getResource("Your image bro.jpg"));
Tries to read the image and stores the read image into the BufferedImage variable bi
int[] h = bi.getRGB(0, 0, bi.getWidth(), bi.getHeight(), null, 0, bi.getWidth());
int [] h1 = new int[h.length];
instantiate two arrays, h is the original RGB Array and h1 will be the horizontally flipped RGB array.
for(int j = 0;500>j;j++){
for(int i = 500;i>0;i--){
h1[j*500+(500-i)] = h[(j*500)+(i-1)];
}
}
Lets look at something in particular more closely
h1[j*500+(500-i)] = h[(j*500)+(i-1)];
Images are scanned from position 0;0 to x.length;y.length
but it is scanned in a coninual array. Thus we use a psuedo-array to manipulate the flipping of the image. j*500 references the Y values and (500-i) references the x values.
bi.setRGB(0, 0, bi.getWidth(), bi.getHeight(), h1, 0, bi.getWidth());
Finally, the image gets stored back into the BufferedImage variable.
Note that the 500 constant is referencing your x resolution of the image. For example, 1920 x 1080 sized image uses a max value of 1920. The logic is yours to decide.

Crop image to smallest size by removing transparent pixels in java

I have a sprite sheet which has each image centered in a 32x32 cell. The actual images are not 32x32, but slightly smaller. What I'd like to do is take a cell and crop the transparent pixels so the image is as small as it can be.
How would I do that in Java (JDK 6)?
Here is an example of how I'm currently breaking up the tile sheet into cells:
BufferedImage tilesheet = ImageIO.read(getClass().getResourceAsStream("/sheet.png");
for (int i = 0; i < 15; i++) {
Image img = tilesheet.getSubimage(i * 32, 0, 32, 32);
// crop here..
}
My current idea was to test each pixel from the center working my way out to see if it is transparent, but I was wondering if there would be a faster/cleaner way of doing this.
There's a trivial solution – to scan every pixel. The algorithm bellow has a constant performance of O(w•h).
private static BufferedImage trimImage(BufferedImage image) {
int width = image.getWidth();
int height = image.getHeight();
int top = height / 2;
int bottom = top;
int left = width / 2 ;
int right = left;
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
if (image.getRGB(x, y) != 0){
top = Math.min(top, y);
bottom = Math.max(bottom, y);
left = Math.min(left, x);
right = Math.max(right, x);
}
}
}
return image.getSubimage(left, top, right - left + 1, bottom - top + 1);
}
But this is much more effective:
private static BufferedImage trimImage(BufferedImage image) {
WritableRaster raster = image.getAlphaRaster();
int width = raster.getWidth();
int height = raster.getHeight();
int left = 0;
int top = 0;
int right = width - 1;
int bottom = height - 1;
int minRight = width - 1;
int minBottom = height - 1;
top:
for (;top <= bottom; top++){
for (int x = 0; x < width; x++){
if (raster.getSample(x, top, 0) != 0){
minRight = x;
minBottom = top;
break top;
}
}
}
left:
for (;left < minRight; left++){
for (int y = height - 1; y > top; y--){
if (raster.getSample(left, y, 0) != 0){
minBottom = y;
break left;
}
}
}
bottom:
for (;bottom > minBottom; bottom--){
for (int x = width - 1; x >= left; x--){
if (raster.getSample(x, bottom, 0) != 0){
minRight = x;
break bottom;
}
}
}
right:
for (;right > minRight; right--){
for (int y = bottom; y >= top; y--){
if (raster.getSample(right, y, 0) != 0){
break right;
}
}
}
return image.getSubimage(left, top, right - left + 1, bottom - top + 1);
}
This algorithm follows the idea from pepan's answer (see above) and is 2 to 4 times more effective. The difference is: it never scans any pixel twice and tries to contract search range on each stage.
The worst case of the method's performance is O(w•h–a•b)
This code works for me. The algorithm is simple, it iterates from left/top/right/bottom of the picture and finds the very first pixel in the column/row which is not transparent. It then remembers the new corner of the trimmed picture and finally it returns the sub image of the original image.
There are things which could be improved.
The algorithm expects, there is the alpha byte in the data. It will fail on an index out of array exception if there is not.
The algorithm expects, there is at least one non-transparent pixel in the picture. It will fail if the picture is completely transparent.
private static BufferedImage trimImage(BufferedImage img) {
final byte[] pixels = ((DataBufferByte) img.getRaster().getDataBuffer()).getData();
int width = img.getWidth();
int height = img.getHeight();
int x0, y0, x1, y1; // the new corners of the trimmed image
int i, j; // i - horizontal iterator; j - vertical iterator
leftLoop:
for (i = 0; i < width; i++) {
for (j = 0; j < height; j++) {
if (pixels[(j*width+i)*4] != 0) { // alpha is the very first byte and then every fourth one
break leftLoop;
}
}
}
x0 = i;
topLoop:
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
if (pixels[(j*width+i)*4] != 0) {
break topLoop;
}
}
}
y0 = j;
rightLoop:
for (i = width-1; i >= 0; i--) {
for (j = 0; j < height; j++) {
if (pixels[(j*width+i)*4] != 0) {
break rightLoop;
}
}
}
x1 = i+1;
bottomLoop:
for (j = height-1; j >= 0; j--) {
for (i = 0; i < width; i++) {
if (pixels[(j*width+i)*4] != 0) {
break bottomLoop;
}
}
}
y1 = j+1;
return img.getSubimage(x0, y0, x1-x0, y1-y0);
}
I think this is exactly what you should do, loop through the array of pixels, check for alpha and then discard. Although when you for example would have a star shape it will not resize the image to be smaller be aware of this.
A simple fix for code above. I used the median for RGB and fixed the min() function of x and y:
private static BufferedImage trim(BufferedImage img) {
int width = img.getWidth();
int height = img.getHeight();
int top = height / 2;
int bottom = top;
int left = width / 2 ;
int right = left;
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
if (isFg(img.getRGB(x, y))){
top = Math.min(top, y);
bottom = Math.max(bottom, y);
left = Math.min(left, x);
right = Math.max(right, x);
}
}
}
return img.getSubimage(left, top, right - left, bottom - top);
}
private static boolean isFg(int v) {
Color c = new Color(v);
return(isColor((c.getRed() + c.getGreen() + c.getBlue())/2));
}
private static boolean isColor(int c) {
return c > 0 && c < 255;
}
[Hi I tried the following. In the images file idle1.png is the image with a big transparent box while testing.png is the same image with minimum bounding box
'BufferedImage tempImg = (ImageIO.read(new File(fileNPath)));
WritableRaster tempRaster = tempImg.getAlphaRaster();
int x1 = getX1(tempRaster);
int y1 = getY1(tempRaster);
int x2 = getX2(tempRaster);
int y2 = getY2(tempRaster);
System.out.println("x1:"+x1+" y1:"+y1+" x2:"+x2+" y2:"+y2);
BufferedImage temp = tempImg.getSubimage(x1, y1, x2 - x1, y2 - y1);
//for idle1.png
String filePath = fileChooser.getCurrentDirectory() + "\\"+"testing.png";
System.out.println("filePath:"+filePath);
ImageIO.write(temp,"png",new File(filePath));
where the get functions are
public int getY1(WritableRaster raster) {
//top of character
for (int y = 0; y < raster.getHeight(); y++) {
for (int x = 0; x < raster.getWidth(); x++) {
if (raster.getSample(x, y,0) != 0) {
if(y>0) {
return y - 1;
}else{
return y;
}
}
}
}
return 0;
}
public int getY2(WritableRaster raster) {
//ground plane of character
for (int y = raster.getHeight()-1; y > 0; y--) {
for (int x = 0; x < raster.getWidth(); x++) {
if (raster.getSample(x, y,0) != 0) {
return y + 1;
}
}
}
return 0;
}
public int getX1(WritableRaster raster) {
//left side of character
for (int x = 0; x < raster.getWidth(); x++) {
for (int y = 0; y < raster.getHeight(); y++) {
if (raster.getSample(x, y,0) != 0) {
if(x > 0){
return x - 1;
}else{
return x;
}
}
}
}
return 0;
}
public int getX2(WritableRaster raster) {
//right side of character
for (int x = raster.getWidth()-1; x > 0; x--) {
for (int y = 0; y < raster.getHeight(); y++) {
if (raster.getSample(x, y,0) != 0) {
return x + 1;
}
}
}
return 0;
}'[Look at Idle1.png and the minimum bounding box idle = testing.png][1]
Thank you for your help regards Michael.Look at Idle1.png and the minimum bounding box idle = testing.png]images here
If your sheet already has transparent pixels, the BufferedImage returned by getSubimage() will, too. The default Graphics2D composite rule is AlphaComposite.SRC_OVER, which should suffice for drawImage().
If the sub-images have a distinct background color, use a LookupOp with a four-component LookupTable that sets the alpha component to zero for colors that match the background.
I'd traverse the pixel raster only as a last resort.
Addendum: Extra transparent pixels may interfere with collision detection, etc. Cropping them will require working with a WritableRaster directly. Rather than working from the center out, I'd start with the borders, using a pair of getPixels()/setPixels() methods that can modify a row or column at a time. If a whole row or column has zero alpha, mark it for elimination when you later get a sub-image.

Categories