Expanding textures in libGDX - java

I'm using libgdx to make simple tile based game and everything seemed to be fine, until I added a rectangle, which follows mouse position. I figure out, that whenever I jump, rectangle (and other blocks too) expands probably by 1 px, until I let the spacebar. When I hit the spacebar again, it gets to normal size. I tried printing out rectangle width and height, but they didn't change, so problem is with rendering.
Everything allright
On this picture you can see game before jump.
Wider textures
Here is game after jump. You can also clearly see it on players head.
A little more detail. I don't use block2d. Tiles sizes are 8x8 scaled to 20x20. Using texturepacker without padding (problem occurs with padding anyway). I don't know which code to post, because I have no idea where the problem could be, so here is just simple block class. Any help would be much appreciated, thanks.
public class Block extends Sprite {
private int[] id = { 0, 0 };
public Rectangle rect;
private int textureSize = 8;
public Block(PlayScreen play,String texture, int x, int y, int[] id) {
super(play.getAtlas().findRegion("terrain"));
this.id = id;
rect = new Rectangle(x, y, ID.tileSize, ID.tileSize);
setRegion(id[0] * textureSize, id[1] * textureSize + 32, textureSize, textureSize);
setBounds(rect.x, rect.y, rect.width, rect.height);
}
public void render(SpriteBatch batch) {
draw(batch);
}

Welcome to libGDX!
TL;DR- there isn't enough of your code there to tell what the exact problem is, but my guess is that somewhere in your code you are confusing pixel-space with game-space.
A Matter of Perspective
When you first create a libGDX game that is 2D, it's really tempting to think that you are just painting pixels onto the screen. After all, your screen is measured in pixels, your window is measured in pixels, and your texture is measured in pixels.
However, if you start looking closer at the API, you'll find weird little things such as your camera and sprite positions and sizes being measured as floating point values instead of integers (Why floats? You can't have a fraction of a pixel!).
The reason the dimensions of your game object are different than how big they are drawn. It's really easy to understand this in a 3D world- when I am close to something, it is drawn really big on the screen. When I am far away, it is drawn really small. The actual size of the object doesn't change based on my distance from it, but the perceived size did. This tells us that we can't safely measure things in our game just based on how they're drawn- we have to measure based on their true size.
As a side note, while you may be using an Orthographic camera (i.e. one without perspective) and drawing 2D sprites, libGDX is really drawing a flat 3D object (a plane) behind the scenes.
Game Units
So how do we measure the "true size" of something? The answer is that we can measure it using whatever type of unit we want! We can say something is 3.5 meters long, or 42 bananas- whatever you want! For the sake of this conversation, I'm going to call these units "Game Units" (GU).
For your game, you might consider making each block one GU high and one GU wide (essentially measuring your game world in blocks). Your character can move in fractions of a block, but you measure speed in terms of "blocks per second." I can almost guarantee it will make your game logic a lot simpler.
But our textures are in pixels!
As you probably already know, your game uses three things to render: A viewport (the patch of the screen where your game can be painted), A Camera (think of it like a real camera- you change the position and size of the lens to change how much of your world is 'in view'), and your game objects (the things you may or may not want to draw, depending on whether they're visible to the camera).
Now let's look at how they're measured:
Viewport: This is a chunk of your screen (set to be the size of your game window), and as such is measured in pixels.
Camera: The Camera is interesting, because its size and position are measured in Game Units, not pixels. Since the viewport uses the Camera to know what to paint on the screen, it does contain the mapping of GU to pixel.
Game Object: This is measured in Game Units. It may have a texture measured in pixels, but that different than the "true size" of the game object.
Now libGDX defaults all of these sizes such that 1 GU == 1 Pixel, which misleads a lot of folks into thinking that everything is measured by pixels. Once you realize that this isn't really the case, there are some really cool implications.
Really Cool Implications
The first implication is that even if my screen size changes, my camera size can stay the same. For example, if I have a small 800x600 pixel screen, I can set my camera size to 40x30. This maintains a nice aspect ratio, and allows me to draw 40x30 blocks on the screen.
If the screen size changes (say to 1440x900), my game will still show 40x30 blocks on the screen. They may look a little stretched if the aspect ratio changes, but libGDX has special viewports that will counteract this for you. This makes it much easier to support your game on other monitors, other devices, or even just handling screen resizes.
The second cool implication is that you stop caring about texture sizes to a large degree. If you start telling libGDX "Hey, go draw this 32x32px sprite on this 1x1 GU object" instead of "Hey, go draw this 32x32px sprite" (notice the difference?) it means that changing texture sizes doesn't change how big the things on your screen are drawn, it changes how detailed they are. If you want to change how big they are drawn, you can change your camera size to 'zoom in.'
The third cool implication is that this makes your game logic a lot cleaner. For example you start thinking of speeds in "Game Units per second", not "Pixels per second". This means that changes in drawing size won't affect how fast things are in the game, and will save you a ton of bug-hunting further down the road. You also avoid a lot of the weird "My jump behaves differently when I resize the screen" bugs.
Summary
I hope this is helpful and makes sense. It's difficult to get your mind around it at first, but it will make your life a lot easier and your game a lot better in the long run. If you'd like a better example with pictures, I recommend that you read this article by one of the libGDX developers.

Related

How can I stop my textures from becoming low resolution in libGDX

I am using libGDX to make a small game, I made a little sprite (32x32) that is shown in the center of the screen. For some reason when I render the texture to the screen it loses its quality. Since the textures are so small I made the screen width and height 200 and 100 respectively. Any tips or answers would be much appreciated.
Your sprite (32x32) needs to be displayed on an area which is larger than 32x32, meaning that the image needs to be upscaled and interpolated (i.e. pixels between the 32 known ones need to be calculated). A common approach is smooth (often times linear) interpolation to fill in the additional pixels, which works well for photorealistic textures; it appears to have occurred here.
For pixel-art, you likely want "nearest-neighbor" interpolation instead. While the exact way to set it depends on the structure of your code, you may be able to do something like:
textureObject.setFilter(TextureFilter.Nearest, TextureFilter.Nearest);

Libgdx: Infinity world. How to?

I write simple game with libGdx. I have a hero, which always is in screen center and I must move my background sprite (or region?) to make move illusion. But my background sprite isn't infinity.
How can I create illusion of seamless infinity world?
Of course I can add several background sprites to try to cover all empty space of screen. But I must to draw out of the sceen a lot of all another objects: Houses, monsters, others heroes, etc. So I have a second question:
When I try to draw other object (a lot of objects!) out of the screen, how badly it affects memory? How to draw it correctly?
I know that OrthographicCamera in libgdx draw only viewportWidth-viewportHeight area. If it's right, then I must to move my camera and all my sprites too. I think it's not correctly.
How can I render infinity world in libgdx with OrthographicCamera?
How can I create illusion of seamless infinity world?
Create a tile background. Tile background means that if it was besides or top or bottom of itself, the edges of sticking line will not be visible to viewer.
To do this open your background image in photoshop and go to Filters > Other > Offset.
Set the offset filter to offset the background to center then try using photoshop tools to hide the edges (the + shape in image). Now again go to offset and return to 0, 0 and save your background.
When I try to draw other object (a lot of objects!) out of the screen,
how badly it affects memory? How to draw it correctly?
I have checked this and that was not much fps loosing on my test. So don't worry about it.
How can I render infinity world in libgdx with OrthographicCamera?
Move camera where-ever you want any x, y. Every time see where is camera and calculate needing tile backgrounds to draw (for example every time draw 3x3=9 backgrounds sticking together).

Change rectangle dimensions: Change vertices in FloatBuffer or use glScalef

So it goes like this. I have 40 rectangles of different heights. 20 placed at the top edge of the screen linearly one after the other and the other 20 placed at the bottom edge, also linearly.
The camera is moving to the right. As soon as a rectangle is outside the camera's view, it's height is changed and it is moved to the extreme right.
So to change the height, if I change the floats in the FloatBuffer, then I need to do it for just two rectangles in one frame but if I use glScalef I'll have to do it for all 40.
It seems to me that the first method is the more efficient way to go but then I remember reading somewhere that FloatBuffer.put() is expensive and also that scaling 100 times a frame isn't much of a big deal.
But since I'm a newbie I'm all confused about which should be the better thing to do in terms of performance.

Generating Very Large Images at Runtime with OpenGL and libgdx

I am generating very large hex grids (up to 120k total hexes at 32px wide hexes results in over 12k wide images) and I'm trying to find an efficient way to bind these to OpenGL textures in libgdx. I was thinking of using multiple FBOs and breaking the grid up as necessary into tiles, but I'm not sure how to ensure continuity between the FBOs. I can't start with one massive FBO, because that is backed up by a texture so it would fail from trying to load it to video memory. I can't use a standard bitmap on the heap because I need the drawing functionality of an OpenGL surface.
So what I was thinking was I would need to overdraw on the FBOs and somehow pick up on the next FBO exactly where the previous left off. However I'm not sure how to go about this. I'm drawing the hex grid with a series of hexagonal meshes, FYI.
Of course, there's probably some other much simpler and more efficient way to do this that I'm not even thinking of, which is why I pose this question to you fine people!
You have to draw it in pieces. You need to be able to draw your hex grid from an arbitrary position. This means being able to compute which hexes to draw based on a rectangle overlaid over the map. This isn't a hard problem, and I wouldn't worry too much about drawing extra stuff off-screen. You should master this ability to view the hexmap from any position before moving on.
Once you've mastered that, it's really simple.
Draw the top-left corner and store the pixel data. Then move the area you're drawing over exactly one image width. Draw and store that. Move the area over one image width. Draw and store it. Keep doing that until you've covered the entire width.
Move down one image height and repeat the process. Once you've run out of width and height, you're done. Save your mega-huge image.
You don't need FBOs for this. You could draw it to the screen if you wanted. Though if you want maximum performance, I would suggest using FBOs, double buffering them, and using glReadPixels though a pixel buffer object. That should cut down a lot on latency.

Using a canvas much larger than the screen

I'm trying to draw a 2D contour plot of some data on Android and I'm wondering what the best approach would be to draw those. The whole datasets can be relatively large (2k * 2k points) and zooming and moving inside the plot should be very fast. Most of the time only a small part of the data will be drawn as the user has zoomed in on the data.
My idea now would be to draw the whole plot onto a large canvas, but clip it to the portion visible on the screen, so that only that part would be really drawn in the end. I find the 2D drawing API of Android somewhat confusing and I'm not sure if this is really a feasible approach and how I would then go about executing it.
So my questions are:
Is it a good idea to draw onto a canvas much larger than the screen and use clipping to display only the relevant part?
How would I create a larger canvas and how would I select which parts should be drawn?
You should start the other way around. Instead of creating a huge canvas you should detect what part of your plot you need to draw and draw only that.
So basically you need some navigation/scrolling and you need to keep the offset from the starting point in memory to calculate where you are. Using the offset you can easily zoom in and out because you just need to scale the plot to the screen.
Is it a good idea to draw onto a
canvas much larger than the screen and
use clipping to display only the
relevant part?
A better question might be, do you have any other options. Some might argue that this is a bad idea since your going to keep memory in use when it isn't relevant to whats happening on the UI. However, from my experiences with the Canvas, I think you'll find this should work out just fine. Now, if you are trying to keep "5 square miles" of canvas in memory your definitely going to have to find a better way to manage it.
How would I create a larger canvas and
how would I select which parts should
be drawn?
I would expect that you will be creating your own "scrolling" method when the user touches the screen via overriding the onTouchEvent method. Basically your going to need to keep track of a starting point X and Y and just track that value as you move the Canvas on screen. In order to move the Canvas there are a number of built in's like translate and scale that you can use to both move the Canvas in X and Y as well as scale it when the user zooms in or out.
I don't think that is a good idea to draw your 2D contour plot on a big bitmap because you need a vector type graphics to zoom in and out in order to keep it sharp. Only pictures are good to scale down but graphs will lose thin lines or come out deformed when scaled down in bitmaps.
The proper way is to do it all mathematically and to calculate which part of the graph should be drawn for required position and zoom. Using anti_alias paint for lines and text, the graph would always come out sharp and good...
When the user zooms out, some items should not be drawn as they could not fit into the screen or would clutter it. So the graph would be always optimised for the zoom level...

Categories