JMeter message throughput too low - java

I am trying to use JMeter to test an ActiveMQ cluster. As per requirements, I need to get at least 2k messages per second as a test. The issue is that I can't get to the required number of messages.
I am trying to test it against a local queue before going into the cluster, and the results are not good. In a PC (quite beefy) with Windows 10 installed, the best I can do is a few hundred messages per second. In a Mac (Macbook Pro) with OSX 10, I can pump it up to around 1.5k.
I have tried different configurations in JMeter: varying the number of threads, size of messages, Request&Response mode vs Request only... But nothing does the trick.
When I run custom code, I can push around 10k messages into the queue in a second. Are there any particular configurations that I might be missing? I have been through the tutorials online, but I can't find anything that fixes the issue.

JMeter default configuration is good for tests development and debugging, but when it comes to conducting the high load you need to remember several important points:
Don't use GUI for tests execution, you are supposed to be running tests using non-GUI mode
Default JVM Heap allocation is 512 Mb only, you will definitely need to raise this setting in JMeter startup script. Same applies to stack size and garbage collector settings. See JVM Tuning: Heapsize, Stacksize and Garbage Collection Fundamental article to learn more about JVM internals.
Don't use Listeners during the load test, they cause huge overhead in terms of resources utilization and don't add any value.
Reduce usage of Pre/Post Processors and Assertions to the absolute minimum.
See 9 Easy Solutions for a JMeter Load Test “Out of Memory” Failure for above points explained and few more tips.
As a last resort in case you hit the hardware limits of a single load generator machine you can always consider running JMeter in distributed mode and add more JMeter engines.

I found the answer after fiddling with it for hours. Turns out there is a checkbox that is unticked by default which makes all messages persistent. When I ticked it, I got the throughput that I was looking for.

Related

Error in logs when ramp up period and/or number of threads is large

I am doing a performance test using JMeter and I have the following configuration:
Threads: 100
Loop Count:1
If my Ramp-Up period is 100, not all users are being logged in (the test script involves logging in and doing a transaction); that is, only 91 threads are successfully logged in. Also, error messages are being printed out in the logs such as NullPointerException. But if my Ramp-Up period is 500, all of them are successfully logged in. I'm just confused. What is the reason behind this?
Maybe an issue with Java Heap Space. check in jmeter.log file for OutOfMemoryError, which tells that JMeter does not have sufficient memory to perform its tasks.
Increase it, so that JMeter can accumulate more threads. (when you give more ramp-up time, number of threads running will be lower, so JMeter may not have any issue with dealing those threads.)
in jmeter.bat file:
default values:
set HEAP=-Xms512m -Xmx512m
increase heap space (to 1 GB or more based on available memory):
set HEAP=-Xms512m -Xmx1024m
Restart the JMeter and conduct the test.
if still, the issue persists, then It might be the reason that the server can not handle more than x number of parallel clients/threads at the same time, which is called the breaking point of the system.
Possible Reasons:
Improper configuration of the server (minThreads, connectTimeOut etc.)
lack of resources (CPU, Memory, Disk, Network etc). monitor server during the load test for these resources. Nmon tool for Unis based server & PerfMon for Windows based servers.
Possible Solutions:
Tweak the server configuration to match your needs.
Scale in or scale out to add additional resources.

What could cause global Tomcat/JVM slowdown?

I'm experiencing a strange but severe problem running several (about 15) instances of a Java EE-ish web applications (Hibernate 4+Spring+Quartz+JSF+Facelets+Richfaces) on Tomcat 7/Java 7.
The system runs just fine, but after a greatly variyng amount of time all instances of the application at the same time suddenly suffer from rising response times. Basically the application still works, but the response times are about three times higher.
This are two diagrams displaying the response time of two certain short workflows/actions (log in, access list of seminars, ajax-refresh this list, log out; the lower line is just the request time for the ajax refresh) of two example instances of the application:
As you can see both instances of the application "explode" at the exact same time and stay slow. After restarting the server everything's back to normal. All the instances of the application "explode" simultaneously.
We're storing the session data to a database and use this for clustering. We checked session size and number and both are rather low (meaning that on other servers with other applications we sometimes have larger and more sessions). The other Tomcat in the cluster usually stays fast for some more hours and after this random-ish amount of time it also "dies". We checked the heap sizes with jconsole and the main heap stays between 2.5 and 1 GB size, db connection pool is basically full of free connections, as well as the thread pools. Max heap size is 5 GB, there's also plenty of perm gen space available. The load is not especially high; there's just about 5% load on the main CPU. The server does not swap. It's also no hardware issue as we additionally deployed the applications to a VM where the problems remain the same.
I don't know where to look anymore, I am out of ideas. Has someone an idea where to look?
2013-02-21 Update: New Data!
I added two more timing traces to the application. As for the measurement: the monitoring system calls a servlet that performs two tasks, measures execution time for each on the server and writes the time taken as response. These values are logged by the monitoring system.
I have several interesting new facts: a hot redeployment of the application causes this single instance on the current Tomcat to go nuts. This also seems to affect raw CPU calculation performance (see below). This individual-context-explosion is different from the overall-context-explosion that occurs randomly.
Now for some data:
First the individual lines:
Light blue is total execution time of a small workflow (details see above), measured on the client
Red is "part" of light blue and is the time taken to perform a special step of that workflow, measured on the client
Dark blue is measured in the application and consists of reading a list of entities from the DB through Hibernate and iterating over that list, fetching lazy collections and lazy entities.
Green is a small CPU benchmark using floating point and integer operations. As far as I see no object allocation, so no garbage.
Now for the individual stages of explosion: I marked each image with three black dots. The first one is a "small" explostion in more or less only one application instance - in Inst1 it jumps (especially visible in the red line), while Inst2 below more or less stays calm.
After this small explosion the "big bang" occurs and all application instances on that Tomcat explode (2nd dot). Note that this explosion affects all high level operations (request processing, DB access), but not the CPU benchmark. It stays low in both systems.
After that I hot-redeployed Inst1 by touching the context.xml file. As I said earlier this instance goes from exploded to completely devestated now (the light blue line is out of the chart - it is at about 18 secs). Note how a) this redeployment does not affect Inst2 at all and b) how the raw DB access of Inst1 is also not affected - but how the CPU suddenly seems to have become slower!. This is crazy, I say.
Update of update
The leak prevention listener of Tomcat does not whine about stale ThreadLocals or Threads when the application is undeployed. There obviously seems to be some cleanup problem (which is I assume not directly related to the Big Bang), but Tomcat doesn't have a hint for me.
2013-02-25 Update: Application Environment and Quartz Schedule
The application environment is not very sophisticated. Network components aside (I don't know enough about those) there's basically one application server (Linux) and two database servers (MySQL 5 and MSSQL 2008). The main load is on the MSSQL server, the other one merely serves as a place to store the sessions.
The application server runs an Apache as a load balancer between two Tomcats. So we have two JVMs running on the same hardware (two Tomcat instances). We use this configuration not to actually balance load as the application server is capable of running the application just fine (which it did for years now) but to enable small application updates without downtime. The web application in question is deployed as separate contexts for different customers, about 15 contexts per Tomcat. (I seemm to have mixed up "instances" and "contexts" in my posting - here in the office they're often used synonymously and we usually magically know what the colleague is talking about. My bad, I'm really sorry.)
To clarify the situation with better wording: the diagrams I posted show response times of two different contexts of the same application on the same JVM. The Big Bang affects all contexts on one JVM but doesn't happen on the other one (the order in which the Tomcats explode is random btw). After hot-redeployment one context on one Tomcat instance goes nuts (with all the funny side effects, like seemingly slower CPU for that context).
The overall load on the system is rather low. It's an internal core business related software with about 30 active users simultaneously. Application specific requests (server touches) are currently at about 130 per minute. The number of single requests are low but the requests itself often require several hundred selects to the database, so they're rather expensive. But usually everything's perfectly acceptable. The application also does not create large infinite caches - some lookup data is cached, but only for a short amount of time.
Above I wrote that the servers where capable of running the application just fine for several years. I know that the best way to find the problem would be to find out exactly when things went wrong for the first time and see what has been changed in this timeframe (in the application itself, the associated libraries or infrastructure), however the problem is that we don't know when the problems first occured. Just let's call that suboptimal (in the sense of absent) application monitoring... :-/
We ruled out some aspects, but the application has been updated several times during the last months and thus we e.g. cannot simply deploy an older version. The largest update that wasn't feature change was a switch from JSP to Facelets. But still, "something" must be the cause of all the problems, yet I have no idea why Facelets for instance should influence pure DB query times.
Quartz
As for the Quartz schedule: there's a total of 8 jobs. Most of them run only once per day and have to do with large volume data synchronization (absolutely not "large" as in "big data large"; it's just more than the averate user sees through his usual daily work). However, those jobs of course run at night and the problems occur during daytime. I omit a detailled job listing here (if beneficial I can provide more details of course). The jobs' source code has not been altered during the last months. I already checked whether the explosions align with the jobs - yet the results are inconclusive at best. I'd actually say that they don't align, but as there are several jobs that run every minute I can't rule it out just yet. The acutal jobs that run every minute are pretty low-weight in my opinion, they usually check if data is available (in different sources, DB, external systems, email account) and if so write it to the DB or push it to another system.
However I'm currently enabling logging of indivdual job execution so that I can exactly see start and end timestamp of each single job execution. Perhaps this provides more insight.
2013-02-28 Update: JSF Phases and Timing
I manually added a JSF phae listener to the application. I executed a sample call (the ajax refresh) and this is what I've got (left: normal running Tomcat instance, right: Tomcat instance after Big Bang - the numbers have been taken almost simultaneously from both Tomcats and are in milliseconds):
RESTORE_VIEW: 17 vs 46
APPLY_REQUEST_VALUES: 170 vs 486
PROCESS_VALIDATIONS: 78 vs 321
UPDATE_MODEL_VALUES: 75 vs 307
RENDER_RESPONSE: 1059 vs 4162
The ajax refresh itself belongs to a search form and its search result. There's also another delay between the application's outmost request filter and web flow starts its work: there's a FlowExecutionListenerAdapter that measures time taken in certain phases of web flow. This listener reports 1405 ms for "Request submitted" (which is as far as I know the first web flow event) out of a total of 1632 ms for the complete request on an un-exploded Tomcat, thus I estimate about 200ms overhead.
But on the exploded Tomcat it reports 5332 ms for request submitted (meaning all JSF phases happen in those 5 seconds) out of a total request duration of 7105ms, thus we're up to almost 2 seconds overhead for everything outside of web flow's request submitted.
Below my measurement filter the filter chain contains a org.ajax4jsf.webapp.BaseFilter, then the Spring servlet is called.
2013-06-05 Update: All the stuff going on in the last weeks
A small and rather late update... the application performance still sucks after some time and the behaviour remains erratic. Profiling did not help much yet, it just generated an enormous amount of data that's hard to dissect. (Try poking around in performance data on or profile a production system... sigh) We conducted several tests (ripping out certain parts of the software, undeploying other applications etc.) and actually had some improvements that affect the whole application. The default flush mode of our EntityManager is AUTO and during view rendering lots of fetches and selects are issued, always including the check whether flushing is neccesary.
So we built a JSF phase listener that sets the flush mode to COMMIT during RENDER_RESPONSE. This improved overall performance a lot and seems to have mitigated the problems somewhat.
Yet, our application monitoring keeps yielding completely insane results and performance on some contexts on some tomcat instances. Like an action that should finish in under a second (and that actually does it after deployment) and that now takes more than four seconds. (These numbers are supported by manual timing in the browsers, so it's not the monitoring that causes the problems).
See the following picture for example:
This diagram shows two tomcat instances running the same context (meaning same db, same configuration, same jar). Again the blue line is the amount of time taken by pure DB read operations (fetch a list of entities, iterate over them, lazily fetch collections and associated data). The turquoise-ish and red line are measured by rendering several views and doing an ajax refresh, respectively. The data rendered by two of the requests in turquoise-ish and red is mostly the same as is queried for the blue line.
Now around 0700 on instance 1 (right) there's this huge increase in pure DB time which seems to affect actual render response times as well, but only on tomcat 1. Tomcat 0 is largely unaffected by this, so it cannot be caused by the DB server or network with both tomcats running on the same physical hardware. It has to be a software problem in the Java domain.
During my last tests I found out something interesting: All responses contain the header "X-Powered-By: JSF/1.2, JSF/1.2". Some (the redirect responses produced by WebFlow) even have "JSF/1.2" three times in there.
I traced down the code parts that set those headers and the first time this header is set it's caused by this stack:
... at org.ajax4jsf.webapp.FilterServletResponseWrapper.addHeader(FilterServletResponseWrapper.java:384)
at com.sun.faces.context.ExternalContextImpl.<init>(ExternalContextImpl.java:131)
at com.sun.faces.context.FacesContextFactoryImpl.getFacesContext(FacesContextFactoryImpl.java:108)
at org.springframework.faces.webflow.FlowFacesContext.newInstance(FlowFacesContext.java:81)
at org.springframework.faces.webflow.FlowFacesContextLifecycleListener.requestSubmitted(FlowFacesContextLifecycleListener.java:37)
at org.springframework.webflow.engine.impl.FlowExecutionListeners.fireRequestSubmitted(FlowExecutionListeners.java:89)
at org.springframework.webflow.engine.impl.FlowExecutionImpl.resume(FlowExecutionImpl.java:255)
at org.springframework.webflow.executor.FlowExecutorImpl.resumeExecution(FlowExecutorImpl.java:169)
at org.springframework.webflow.mvc.servlet.FlowHandlerAdapter.handle(FlowHandlerAdapter.java:183)
at org.springframework.webflow.mvc.servlet.FlowController.handleRequest(FlowController.java:174)
at org.springframework.web.servlet.mvc.SimpleControllerHandlerAdapter.handle(SimpleControllerHandlerAdapter.java:48)
at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:925)
at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:856)
at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:920)
at org.springframework.web.servlet.FrameworkServlet.doPost(FrameworkServlet.java:827)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:641)
... several thousands ;) more
The second time this header is set by
at org.ajax4jsf.webapp.FilterServletResponseWrapper.addHeader(FilterServletResponseWrapper.java:384)
at com.sun.faces.context.ExternalContextImpl.<init>(ExternalContextImpl.java:131)
at com.sun.faces.context.FacesContextFactoryImpl.getFacesContext(FacesContextFactoryImpl.java:108)
at org.springframework.faces.webflow.FacesContextHelper.getFacesContext(FacesContextHelper.java:46)
at org.springframework.faces.richfaces.RichFacesAjaxHandler.isAjaxRequestInternal(RichFacesAjaxHandler.java:55)
at org.springframework.js.ajax.AbstractAjaxHandler.isAjaxRequest(AbstractAjaxHandler.java:19)
at org.springframework.webflow.mvc.servlet.FlowHandlerAdapter.createServletExternalContext(FlowHandlerAdapter.java:216)
at org.springframework.webflow.mvc.servlet.FlowHandlerAdapter.handle(FlowHandlerAdapter.java:182)
at org.springframework.webflow.mvc.servlet.FlowController.handleRequest(FlowController.java:174)
at org.springframework.web.servlet.mvc.SimpleControllerHandlerAdapter.handle(SimpleControllerHandlerAdapter.java:48)
at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:925)
at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:856)
at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:920)
at org.springframework.web.servlet.FrameworkServlet.doPost(FrameworkServlet.java:827)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:641)
I have no idea if this could indicate a problem, but I did not notice this with other applications that are running on any of our servers, so this might as well provide some hints. I really have no idea what that framework code is doing (admittedly I did not dive into it yet)... perhaps someone has an idea? Or am I running into a dead end?
Appendix
My CPU benchmark code consists of a loop that calculates Math.tan and uses the result value to modify some fields on the servlet instance (no volatile/synchronized there), and secondly performs several raw integer calcualations. This is not severly sophisticated, I know, but well... it seems to show something in the charts, however I am not sure what it shows. I do the field updates to prevent HotSpot from optimizing away all my precious code ;)
long time2 = System.nanoTime();
for (int i = 0; i < 5000000; i++) {
double tan = Math.tan(i);
if (tan < 0) {
this.l1++;
} else {
this.l2++;
}
}
for (int i = 1; i < 7500; i++) {
int n = i;
while (n != 1) {
this.steps++;
if (n % 2 == 0) {
n /= 2;
} else {
n = n * 3 + 1;
}
}
}
// This execution time is written to the client.
time2 = System.nanoTime() - time2;
Solution
Increase the maximum size of the Code Cache:
-XX:ReservedCodeCacheSize=256m
Background
We are using ColdFusion 10 which runs on Tomcat 7 and Java 1.7.0_15. Our symptoms were similar to yours. Occasionally the response times and the CPU usage on the server would go up by a lot for no apparent reason. It seemed as if the CPU got slower. The only solution was to restart ColdFusion (and Tomcat).
Initial analysis
I started by looking at the memory usage and the garbage collector log. There was nothing there that could explain our problems.
My next step was to schedule a heap dump every hour and to regularly perform sampling using VisualVM. The goal was to get data from before and after a slowdown so that it could be compared. I managed to get accomplish that.
There was one function in the sampling that stood out: get() in coldfusion.runtime.ConcurrentReferenceHashMap. A lot of time was spent in it after the slowdown compared to very little before. I spent some time on understanding how the function worked and developed a theory that maybe there was a problem with the hash function resulting in some huge buckets. Using the heap dumps I was able to see that the largest buckets only contained 6 elements so I discarded that theory.
Code Cache
I finally got on the right track when I read "Java Performance: The Definitive Guide". It has a chapter on the JIT Compiler which talks about the Code Cache which I had not heard of before.
Compiler disabled
When monitoring the number of compilations performed (monitored with jstat) and the size of the Code Cache (monitored with Memory Pools plugin of VisualVM) I saw that the size increased up to the maximum size (which is 48 MB by default in our environment -- the default varies depending on Java version and Java compiler). When the Code Cache became full the JIT Compiler was turned off. I have read that "CodeCache is full. Compiler has been disabled." should be printed when that happens but I did not see that message; maybe the version we are using does not have that message. I know that the compiler was turned off because the number of compilations performed stopped increasing.
Deoptimization continues
The JIT Compiler can deoptimize previously compiled functions which will caues the function to be executed by the interpreter again (unless the function is replaced by an improved compilation). The deoptimized function can be garbage collected to free up space in the Code Cache.
For some reason functions continued to be deoptimized even though nothing was compiled to replace them. More and more memory would become available in the Code Cache but the JIT Compiler was not restarted.
I never had -XX:+PrintCompilation enabled when we experience a slowdown but I am quite sure that I would have seen either ConcurrentReferenceHashMap.get(), or a function that it depends on, be deoptimized at that time.
Result
We have not seen any slowdowns since we increased the maximum size of the Code Cache to 256 MB and we have also seen a general performance improvement. There is currently 110 MB in our Code Cache.
First, let me say that you have done an excellent job grabbing detailed facts about the problem; I really like how you make it clear what you know and what you are speculating - it really helps.
EDIT 1 Massive edit after the update on context vs. instance
We can rule out:
GCs (that would affect the CPU benchmark service thread and spike the main CPU)
Quartz jobs (that would either affect both Tomcats or the CPU benchmark)
The database (that would affect both Tomcats)
Network packet storms and similar (that would affect both Tomcats)
I believe that you are suffering from is an increase in latency somewhere in your JVM. Latency is where a thread is waiting (synchronously) for a response from somewhere - it's increased your servlet response time but at no cost to the CPU. Typical latencies are caused by:
Network calls, including
JDBC
EJB or RMI
JNDI
DNS
File shares
Disk reading and writing
Threading
Reading from (and sometimes writing to) queues
synchronized method or block
futures
Thread.join()
Object.wait()
Thread.sleep()
Confirming that the problem is latency
I suggest using a commercial profiling tool. I like [JProfiler](http://www.ej-technologies.com/products/jprofiler/overview.html, 15 day trial version available) but YourKit is also recommended by the StackOverflow community. In this discussion I will use JProfiler terminology.
Attach to the Tomcat process while it is performing fine and get a feel for how it looks under normal conditions. In particular, use the high-level JDBC, JPA, JNDI, JMS, servlet, socket and file probes to see how long the JDBC, JMS, etc operations take (screencast. Run this again when the server is exhibiting problems and compare. Hopefully you will see what precisely has been slowed down. In the product screenshot below, you can see the SQL timings using the JPA Probe:
(source: ej-technologies.com)
However it's possible that the probes did not isolate the issue - for example it might be some threading issue. Go to the Threads view for the application; this displays a running chart of the states of each thread, and whether it is executing on the CPU, in an Object.wait(), is waiting to enter a synchronized block or is waiting on network I/O . When you know which thread or threads is exhibiting the issue, go to the CPU views, select the thread and use the thread states selector to immediately drill down to the expensive methods and their call stacks. [Screencast]((screencast). You will be able to drill up into your application code.
This is a call stack for runnable time:
And this is the same one, but showing network latency:
When you know what is blocking, hopefully the path to resolution will be clearer.
We had the same problem, running on Java 1.7.0_u101 (one of Oracle's supported versions, since the latest public JDK/JRE 7 is 1.7.0_u79), running on G1 garbage collector. I cannot tell if the problem appears in other Java 7 versions or with other GCs.
Our process was Tomcat running Liferay Portal (I believe the exact version of Liferay is of no interest here).
This is the behavior we observed: using a -Xmx of 5GB, the inital Code Cache pool size right after startup ranged at about 40MB. After a while, it dropped to about 30MB (which is kind of normal, since there is a lot of code running during startup which will be never executed again, so it is expected to be evicted from the cache after some time). We observed that there was some JIT activity, so the JIT actually populated the cache (comparing to the sizes I am mentioning later, it seems that the small cache size relative to the overall heap size places stringent requirements on the JIT, and this makes the latter evict the cache rather nervously). However, after a while, no more compilations ever took place, and the JVM got painfully slow. We had to kill our Tomcats every now and then to get back adequate performance, and as we added more code to our portal, the problem got worse and worse (since the Code Cache got saturated more quickly, I guess).
It seems that there are several bugs in JDK 7 JVM that cause it to not restart the JIT (look at this blog post: https://blogs.oracle.com/poonam/entry/why_do_i_get_message), even in JDK 7, after an emergency flush (the blog mentions Java bugs 8006952, 8012547, 8020151 and 8029091).
This is why increasing manually the Code Cache to a level where an emergency flush is unlikely to ever occur "fixes" the issue (I guess this is the case with JDK 7).
In our case, instead of trying to adjust the Code Cache pool size, we chose to upgrade to Java 8. This seems to have fixed the issue. Also, the Code Cache now seems to be quite larger (startup size gets about 200MB, and cruising size gets to about 160MB). As it is expected, after some idling time, the cache pool size drops, to get up again if some user (or robot, or whatever) browses our site, causing more code to be executed.
I hope you find the above data helpful.
Forgot to say: I found the exposition, the supporting data, the infering logic and the conclusion of this post very, very helpful. Thank you, really!
Has someone an idea where to look?
Issue could be out of Tomcat/JVM- do you have some batch job which kicks in and stress the shared resource(s) like a common database?
Take a thread dump and see what the java processes are doing when application response time explodes?
If you are using Linux, use a tool like strace and check what is java process doing.
Have you checked JVM GC times? Some GC algorithms might 'pause' the application threads and increase the response time.
You can use jstat utility to monitor garbage collection statistics:
jstat -gcutil <pid of tomcat> 1000 100
Above command would print GC statistics on every 1 second for 100 times. Look at the FGC/YGC columns, if the number keeps raising, there is something wrong with your GC options.
You might want to switch to CMS GC if you want to keep response time low:
-XX:+UseConcMarkSweepGC
You can check more GC options here.
What happens after your app is performing slow for a while, does it get back to performing well?
If so then I would check if there is any activity that is not related to your app taking place at this time.
Something like an antivirus scan or a system/db backup.
If not then I would suggest running it with a profiler (JProfiler, yourkit, etc.) this tools can point you to your hotspots very easily.
You are using Quartz, which manages timed processes, and this seems to take place at particular times.
Post your Quartz schedule and let us know if that aligns, and if so, you can determine which internal application process may be kicking off to consume your resources.
Alternately, it is possible a portion of your application code has finally been activated and decides to load data to the memory cache. You're using Hibernate; check the calls to your database and see if anything coincides.

java one thread slow

I have a J2EE java application which processes SOAP requests. In our production environment (HPUX,OC4J,Java 5) we have about 20 threads running for this process, and we sometimes see 1 thread pausing for ~15 seconds. Until now, I haven't succeeded replicating the problem in our preproduction environment, and I'm scared of breaking stuff and violating SLA's if I use jconsole and associated tools on our production server.
Who has any inspiration? I know about http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf but I miss the experience to dare using it straight in production (plus, the HPUX guys threw some of these tools out of the toolbox, replacing them with HPJMeter)
Also, although this suggests a GC problem to me, I don't yet know enough to prove or disprove this theory and I am open to other suggestions.
We connect jconsole (and other tools) straight to production regularly. There is no significant overhead for us, the instrumentation is already going on within the JVM so you'd just be connecting a remote process to read published values. I say go for it!
Either way, you really need to see what's going on on the box. Thread dumps might or do some internal instrumentation. By internal instrumentation, I mean recording key measures within the code and exposing those somehow. It's essentially what the JVM does (exposing them via JMX) but rolling your own gives you more specificity. For example, I'm frequently recording request/response or other critical path performance timings internally.
oh, and one more thing. You can setup your app to using an agent to provide even more information. Typically this would be to plug a profiler in (like jprofiler or yourkit) but this does usually add more overhead and isn't recommended for production.
It's also worth thinking about the cost of not getting the information you need out of the VM. For example, is the cost of not fixing the issue more or less than the cost of a small % drop of performance when monitoring?
More scientifically, this article has some comments. It's suggesting up to 7% overhead (contradicting my previous point), a previous article from 2006 suggests 3-4% but both are highly contextual results. For example, CPU intensive applications may or may not be affected more than IO bound ones.
So a more appropriate answer from me (rather than just "go for it") would be to understand the impact it would have for your application in your environment through measurement. Run representative tests on a similar environment to production with jconsole connected and disconnected and see for your self.
Also see this stackoverflow question.
There are a few things that you can do on HP-UX to get additional information from a running Java process. If you send the PROF signal to the JVM, it will toggle the generation of a GC log (as if you had used the -Xverbosegc command line option). Generating the GC log is very inexpensive, so you should be able to turn this on in production without affecting the performance.
If you send the USR2 signal to the JVM, it starts profiling (same as -Xeprof). If you send the signal a second time, it turns off the profiling. This will have a noticeable performance impact, though it is smaller that what you would see from an external, third party profiler.
You can analyze the resulting data files using HPjmeter. HPjmeter can also connect to a running JVM for real-time monitoring. With Java 5, you need to start the JVM with the -agentlib option. If you were using Java 6, you could attach to the running JVM without needing any extra command line options.

How do I improve jetty response times?

I'm trying to speed test jetty (to compare it with using apache) for serving dynamic content.
I'm testing this using three client threads requesting again as soon as a response comes back.
These are running on a local box (OSX 10.5.8 mac book pro). Apache is pretty much straight out of the box (XAMPP distribution) and I've tested Jetty 7.0.2 and 7.1.6
Apache is giving my spikey times : response times upto 2000ms, but an average of 50ms, and if you remove the spikes (about 2%) the average is 10ms per call. (This was to a PHP hello world page)
Jetty is giving me no spikes, but response times of about 200ms.
This was calling to the localhost:8080/hello/ that is distributed with jetty, and starting jetty with java -jar start.jar.
This seems slow to me, and I'm wondering if its just me doing something wrong.
Any sugestions on how to get better numbers out of Jetty would be appreciated.
Thanks
Well, since I am successfully running a site with some traffic on Jetty, I was pretty surprised by your observation.
So I just tried your test. With the same result.
So I decompiled the Hello Servlet which comes with Jetty. And I had to laugh - it really includes following line:
Thread.sleep(200L);
You can see for yourself.
My own experience with Jetty performance: I ran multi threaded load tests on my real-world app where I had a throughput of about 1000 requests per second on my dev workstation...
Note also that your speed test is really just a latency test, which is fine so long as you know what you are measuring. But Jetty does trade off latency for throughput, so often there are servers with lower latency, but also lower throughput as well.
Realistic traffic for a webserver is not 3 very busy connections - 1 browser will open 6 connections, so that represents half a user. More realistic traffic is many hundreds or thousands of connections, each of them mostly idle.
Have a read of my blogs on this subject:
https://webtide.com/truth-in-benchmarking/
and
https://webtide.com/lies-damned-lies-and-benchmarks-2/
You should definitely check it with profiler. Here are instructions how to setup remote profiling with Jetty:
http://sujitpal.sys-con.com/node/508048/mobile
Speedup or performance tune any application or server is really hard to get done in my experience. You'll need to benchmark several times with different work models to define what your peak load is. Once you define the peak load for the configuration/environment mixture you need to tune and benchmark, you might have to run 5+ iterations of your benchmark. Check the configuration of both apache/jetty in terms of number of working threads to process the request and get them to match if possible. Here are some recommendations:
Consider the differences of the two environments (GC in jetty, consider tuning you min and max memory threshold to the same size and later proceed to execute your test)
The load should come from another box. If you don't have a second box/PC/server take your CPU/core into count and setup your the test to a specific CPU, do the same for jetty/apache.
This is given that you cant get another machine to be the stress agent.
Run several workload model
Moving to modeling the test do the following 2 stages:
One Thread for each configuration for 30 minutes.
Start with 1 thread and going up to 5 with a 10 minutes interval to increase the count,
Base on the metrics Stage 2 define a number of threads for the test. and run that number of thread concurrent for 1 hour.
Correlate the metrics (response times) from your testing app to the server hosting the application resources (use sar, top and other unix commands to track cpu and memory), some other process might be impacting you app. (memory is relevant for apache jetty will be constraint to the JVM memory configuration so it should not change the memory usage once the server is up and running)
Be aware of the Hotspot Compiler.
Methods have to be called several times (1000 times ?), before the are compiled into native code.

Running a standalone Hadoop application on multiple CPU cores

My team built a Java application using the Hadoop libraries to transform a bunch of input files into useful output.
Given the current load a single multicore server will do fine for the coming year or so. We do not (yet) have the need to go for a multiserver Hadoop cluster, yet we chose to start this project "being prepared".
When I run this app on the command-line (or in eclipse or netbeans) I have not yet been able to convince it to use more that one map and/or reduce thread at a time.
Given the fact that the tool is very CPU intensive this "single threadedness" is my current bottleneck.
When running it in the netbeans profiler I do see that the app starts several threads for various purposes, but only a single map/reduce is running at the same moment.
The input data consists of several input files so Hadoop should at least be able to run 1 thread per input file at the same time for the map phase.
What do I do to at least have 2 or even 4 active threads running (which should be possible for most of the processing time of this application)?
I'm expecting this to be something very silly that I've overlooked.
I just found this: https://issues.apache.org/jira/browse/MAPREDUCE-1367
This implements the feature I was looking for in Hadoop 0.21
It introduces the flag mapreduce.local.map.tasks.maximum to control it.
For now I've also found the solution described here in this question.
I'm not sure if I'm correct, but when you are running tasks in local mode, you can't have multiple mappers/reducers.
Anyway, to set maximum number of running mappers and reducers use configuration options mapred.tasktracker.map.tasks.maximum and mapred.tasktracker.reduce.tasks.maximum by default those options are set to 2, so I might be right.
Finally, if you want to be prepared for multinode cluster go straight with running this in fully-distributed way, but have all servers (namenode, datanode, tasktracker, jobtracker, ...) run on a single machine
Just for clarification...
If hadoop runs in local mode you don't have parallel execution on a task level (except you're running >= hadoop 0.21 (MAPREDUCE-1367)). Though you can submit multiple jobs at once and these getting executed in parallel then.
All those
mapred.tasktracker.{map|reduce}.tasks.maximum
properties do only apply to the hadoop running in distributed mode!
HTH
Joahnnes
According to this thread on the hadoop.core-user email list, you'll want to change the mapred.tasktracker.tasks.maximum setting to the max number of tasks you would like your machine to handle (which would be the number of cores).
This (and other properties you may want to configure) is also documented in the main documentation on how to setup your cluster/daemons.
What you want to do is run Hadoop in "pseudo-distributed" mode. One machine, but, running task trackers and name nodes as if it were a real cluster. Then it will (potentially) run several workers.
Note that if your input is small Hadoop will decide it's not worth parallelizing. You may have to coax it by changing its default split size.
In my experience, "typical" Hadoop jobs are I/O bound, sometimes memory-bound, way before they are CPU-bound. You may find it impossible to fully utilize all the cores on one machine for this reason.

Categories