I'm trying to find a way to use a ThreadPoolExecutor in the following scenario:
I have a separate thread producing and submitting tasks on the thread pool
a task submission is synchronous and will block until the task can be started by the ThreadPoolExecutor
at any given time, only a fixed number of tasks can be executing in parallel. An unbounded number of tasks running at the same time may result in memory exhaustion.
before submitting a task, the producer thread always checks that some maximum build time has not been exceeded since the first submitted task. If it was exceeded, the thread shutdowns but any task currently running on the thread pool runs to completion before the application terminates.
when the producer thread terminates, there should be no unstarted task on the queue of the thread pool.
To give more context, I currently just submit all tasks at once and cancel all the futures returned by ExecutorService.submit after the max build time is expired. I ignore all resulting CancellationExceptions since they are expected. The problem is that the behaviour of Future.cancel(false) is odd and inadequate to my use-case:
it prevents any unstarted task to run (good)
it does not interrupt currently running tasks and let them run to completion (good)
however, it ignores any exception thrown by the currently running tasks and instead throws a CancellationException for which Exception.getCause() is null. Therefore, I can't distinguish a task which has been canceled before running from a task which has continued running after the max build time and failed with an exception ! That's unfortunate, because in this case I would like to propagate the exception and report it to some error handling mechanism.
I looked into the different blocking queues Java has to offer and found this: https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/SynchronousQueue.html. That seemed ideal at first, but then looking at https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html, it does not seem to play with ThreadPoolExecutor in the way I want it to:
Direct handoffs. A good default choice for a work queue is a
SynchronousQueue that hands off tasks to threads without otherwise
holding them. Here, an attempt to queue a task will fail if no threads
are immediately available to run it, so a new thread will be
constructed. This policy avoids lockups when handling sets of requests
that might have internal dependencies. Direct handoffs generally
require unbounded maximumPoolSizes to avoid rejection of new submitted
tasks. This in turn admits the possibility of unbounded thread growth
when commands continue to arrive on average faster than they can be
processed.
What would be ideal is that the consumer (= the pool) blocks on SynchronousQueue.poll and the producer (= task producer thread) blocks on SynchronousQueue.put.
Any idea how I can implement the scenario I described without writing any complex scheduling logic (what ThreadPoolExecutor should enclose for me) ?
I Believe that you're in the right path... all you have to do is use a SynchronousQueue in conjuction of a RejectedExecutionHandler, using the following constructor ... in that way you can define a fixed max size thread pool (limiting your resources usage) and define a fallback mechanism to re schedule those task that cannot be processed (because the pool was full)... Example:
public class Experiment {
public static final long HANDLER_SLEEP_TIME = 4000;
public static final int MAX_POOL_SIZE = 1;
public static void main(String[] args) throws InterruptedException {
SynchronousQueue<Runnable> queue;
RejectedExecutionHandler handler;
ThreadPoolExecutor pool;
Runnable runA, runB;
queue = new SynchronousQueue<>();
handler = new RejectedExecutionHandler() {
#Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
try {
System.out.println("Handler invoked! Thread: " + Thread.currentThread().getName());
Thread.sleep(HANDLER_SLEEP_TIME); // this let runnableA finish
executor.submit(r); // re schedule
} catch (InterruptedException ex) {
throw new RuntimeException("Handler Exception!", ex);
}
}
};
pool = new ThreadPoolExecutor(1, MAX_POOL_SIZE, 10, TimeUnit.SECONDS, queue, handler);
runA = new Runnable() {
#Override
public void run() {
try {
Thread.sleep(3000);
System.out.println("hello, I'm runnable A");
} catch (Exception ex) {
throw new RuntimeException("RunnableA", ex);
}
}
};
runB = new Runnable() {
#Override
public void run() {
System.out.println("hello, I'm runnable B");
}
};
pool.submit(runA);
pool.submit(runB);
pool.shutdown();
}
}
NOTE: the implementation of the RejectedExecutionHandler is up to you! I just only suggest a sleep as a blocking mechanism, but hrer you can do logic more complex as ask the threadpool is it has free threads or not. If not, then sleep; if yes, then submit task again...
I found another option than the one proposed by #Carlitos Way. It consists in directly adding tasks on the queue using BlockingQueue.offer. The only reason I did not manage to make it work at first and I had to post this question is that I did not know that the default behaviour of a ThreadPoolExecutor is to start without any thread. The threads will be created lazily using a thread factory and may be deleted/repopulated depending on the core and max sizes of the pool and the number of tasks being submitted concurrently.
Since the thread creation was lazy, my attempts to block on the call to offer failed because SynchronousQueue.offer immediately exits if nobody is waiting to get an element from the queue. Conversely, SynchronousQueue.put blocks until someone asks to take an item from the queue, which will never happen if the thread pool is empty.
Therefore, the workaround is to force the thread pool to create the core threads eagerly using ThreadPoolExecutor.prestartAllCoreThreads. My problem then becomes fairly trivial. I made a simplified version of my real use-case:
import java.util.Random;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.atomic.AtomicLong;
import static java.util.concurrent.TimeUnit.MILLISECONDS;
import static java.util.concurrent.TimeUnit.SECONDS;
public class SimplifiedBuildScheduler {
private static final int MAX_POOL_SIZE = 10;
private static final Random random = new Random();
private static final AtomicLong nextTaskId = new AtomicLong(0);
public static void main(String[] args) throws InterruptedException {
SynchronousQueue<Runnable> queue = new SynchronousQueue<>();
// this is a soft requirement in my system, not a real-time guarantee. See the complete semantics in my question.
long maxBuildTimeInMillis = 50;
// this timeout must be small compared to maxBuildTimeInMillis in order to accurately match the maximum build time
long taskSubmissionTimeoutInMillis = 1;
ThreadPoolExecutor pool = new ThreadPoolExecutor(MAX_POOL_SIZE, MAX_POOL_SIZE, 0, SECONDS, queue);
pool.prestartAllCoreThreads();
Runnable nextTask = makeTask(maxBuildTimeInMillis);
long millisAtStart = System.currentTimeMillis();
while (maxBuildTimeInMillis > System.currentTimeMillis() - millisAtStart) {
boolean submitted = queue.offer(nextTask, taskSubmissionTimeoutInMillis, MILLISECONDS);
if (submitted) {
nextTask = makeTask(maxBuildTimeInMillis);
} else {
System.out.println("Task " + nextTaskId.get() + " was not submitted. " + "It will be rescheduled unless " +
"the max build time has expired");
}
}
System.out.println("Max build time has expired. Stop submitting new tasks and running existing tasks to completion");
pool.shutdown();
pool.awaitTermination(9999999, SECONDS);
}
private static Runnable makeTask(long maxBuildTimeInMillis) {
long sleepTimeInMillis = randomSleepTime(maxBuildTimeInMillis);
long taskId = nextTaskId.getAndIncrement();
return () -> {
try {
System.out.println("Task " + taskId + " sleeping for " + sleepTimeInMillis + " ms");
Thread.sleep(sleepTimeInMillis);
System.out.println("Task " + taskId + " completed !");
} catch (InterruptedException ex) {
throw new RuntimeException(ex);
}
};
}
private static int randomSleepTime(long maxBuildTimeInMillis) {
// voluntarily make it possible that a task finishes after the max build time is expired
return 1 + random.nextInt(2 * Math.toIntExact(maxBuildTimeInMillis));
}
}
An example of output is the following:
Task 1 was not submitted. It will be rescheduled unless the max build time has expired
Task 0 sleeping for 23 ms
Task 1 sleeping for 26 ms
Task 2 sleeping for 6 ms
Task 3 sleeping for 9 ms
Task 4 sleeping for 75 ms
Task 5 sleeping for 35 ms
Task 6 sleeping for 81 ms
Task 8 was not submitted. It will be rescheduled unless the max build time has expired
Task 8 was not submitted. It will be rescheduled unless the max build time has expired
Task 7 sleeping for 86 ms
Task 8 sleeping for 47 ms
Task 9 sleeping for 40 ms
Task 11 was not submitted. It will be rescheduled unless the max build time has expired
Task 2 completed !
Task 10 sleeping for 76 ms
Task 12 was not submitted. It will be rescheduled unless the max build time has expired
Task 3 completed !
Task 11 sleeping for 31 ms
Task 13 was not submitted. It will be rescheduled unless the max build time has expired
Task 13 was not submitted. It will be rescheduled unless the max build time has expired
Task 13 was not submitted. It will be rescheduled unless the max build time has expired
Task 13 was not submitted. It will be rescheduled unless the max build time has expired
Task 13 was not submitted. It will be rescheduled unless the max build time has expired
Task 13 was not submitted. It will be rescheduled unless the max build time has expired
Task 0 completed !
Task 12 sleeping for 7 ms
Task 14 was not submitted. It will be rescheduled unless the max build time has expired
Task 14 was not submitted. It will be rescheduled unless the max build time has expired
Task 1 completed !
Task 13 sleeping for 40 ms
Task 15 was not submitted. It will be rescheduled unless the max build time has expired
Task 12 completed !
Task 14 sleeping for 93 ms
Task 16 was not submitted. It will be rescheduled unless the max build time has expired
Task 16 was not submitted. It will be rescheduled unless the max build time has expired
Task 16 was not submitted. It will be rescheduled unless the max build time has expired
Task 5 completed !
Task 15 sleeping for 20 ms
Task 17 was not submitted. It will be rescheduled unless the max build time has expired
Task 17 was not submitted. It will be rescheduled unless the max build time has expired
Task 11 completed !
Task 16 sleeping for 27 ms
Task 18 was not submitted. It will be rescheduled unless the max build time has expired
Task 18 was not submitted. It will be rescheduled unless the max build time has expired
Task 9 completed !
Task 17 sleeping for 95 ms
Task 19 was not submitted. It will be rescheduled unless the max build time has expired
Max build time has expired. Stop submitting new tasks and running existing tasks to completion
Task 8 completed !
Task 15 completed !
Task 13 completed !
Task 16 completed !
Task 4 completed !
Task 6 completed !
Task 10 completed !
Task 7 completed !
Task 14 completed !
Task 17 completed !
You'll notice, for example, that task 19 was not rescheduled because the max build time expired before the scheduler can attempt to offer it to the queue a second time. You can also see than all the ongoing tasks that started before the max build time expired do run to completion.
Note: As noted in my comments in the code, the max build time is a soft requirement, which means that it might not be met exactly, and my solution indeed allows for a task to be submitted even after the max build time is expired. This can happen if the call to offer starts just before the max build time expires and finishes after. To reduce the odds of it happening, it is important that the timeout used in the call to offer is much smaller than the max build time. In the real system, the thread pool is usually busy with no idle thread, therefore the probability of this race condition to occur is extremely small, and it has no bad consequence on the system when it does happen, since the max build time is a best effort attempt to meet an overall running time, not an exact and rigid constraint.
Related
I have an application that I did thread configuration as follows,
corepoolsize = 10
maxpoolsize = 10
queuecapacity = 10
But when I do use Threads and functions that run on threads (asynchronous process)
I see it is increasing like the follows, But I don't see the threads are decreasing. Is that a indication of memory leak? Can anybody guide me?
Log prints like this,
2021-09-15 01:13:48.554 INFO 111 --- [Async-1]
2021-09-15 01:13:48.654 INFO 121 --- [Async-2]
2021-09-15 01:13:48.754 INFO 132 --- [Async-3]
2021-09-15 01:13:48.854 INFO 140 --- [Async-4]
2021-09-15 01:13:48.954 INFO 155 --- [Async-5]
2021-09-15 01:13:49.554 INFO 160 --- [Async-6]
But I don't see it is calling again [Async-1], [Async-2] like that. Is this a memory leak or a thread cache or after filling up corepoolsize then will it run [Async-1]?
Corepoolsize represents the worker thread that is always alive.
You can check ThreadPoolExecutor#runWorker, ThreadPoolExecutor#getTask method, these worker threads will always try to get tasks from the task queue and execute them. So if no new tasks are posted to the thread pool, then these worker threads will always live, usually blocked in the take method of workQueue, So you don't have to worry about the cpu idling.
Worker threads outside the number of corepoolsize will be recycled, still ThreadPoolExecutor#getTask method:
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
These threads to be recycled can survive at most keepAliveTime time.
The thread pool uses a Hash table to hold the thread's reference, so that the life cycle of the thread can be controlled by operations such as adding and removing references.(ThreadPoolExecutor#processWorkerExit method).
This is expected behaviour. The documentation for ThreadPoolExecutor explicitly states:
When a new task is submitted in method execute(Runnable), if fewer than corePoolSize threads are running, a new thread is created to handle the request, even if other worker threads are idle.
// this query returns 0.45 million records and stored in the list.
List<Employee> empList=result.getQuery(query);
Iterating employee list and setting property and finally calling service method to save employee object.
using sequential process method its taking lot of time because of the volume of records so I want to use threads .I am new to groovy and implemented only simple examples.
How to use threads for below logic using groovy?
for (Employee employee : empList) {
employee.setQuantity(8);
employeeService.save(employee);
}
There are frameworks to do this (gpars comes to mind) and also the java executors framework is a better abstraction than straight up threads, but if we want to keep things really primitive, you can split your list up in batches and run each batch on a separate thread by using something like:
def employeeService = new EmployeeService()
def empList = (1..400000).collect { new Employee() }
def batchSize = 10000
def workerThreads = empList.collate(batchSize).withIndex().collect { List<Employee> batch, int index ->
Thread.start("worker-thread-${index}") {
println "worker ${index} starting"
batch.each { Employee e ->
e.quantity = 8
employeeService.save(e)
}
println "worker ${index} completed"
}
}
println "main thread waiting for workers to finish"
workerThreads*.join()
println "workers finished, exiting..."
class Employee {
int quantity
}
class EmployeeService {
def save(Employee e) {
Thread.sleep(1)
}
}
which, when run, prints:
─➤ groovy solution.groovy
worker 7 starting
worker 11 starting
worker 5 starting
worker 13 starting
worker 17 starting
worker 16 starting
worker 2 starting
worker 18 starting
worker 6 starting
worker 15 starting
worker 12 starting
worker 14 starting
worker 1 starting
worker 4 starting
worker 10 starting
worker 8 starting
worker 9 starting
worker 3 starting
worker 0 starting
worker 20 starting
worker 21 starting
worker 19 starting
worker 22 starting
worker 24 starting
worker 23 starting
worker 25 starting
worker 26 starting
worker 27 starting
worker 28 starting
worker 29 starting
worker 30 starting
worker 31 starting
worker 32 starting
worker 33 starting
worker 34 starting
worker 35 starting
worker 36 starting
worker 37 starting
worker 38 starting
worker 39 starting
main thread waiting for workers to finish
worker 0 completed
worker 16 completed
worker 20 completed
worker 1 completed
worker 3 completed
worker 14 completed
worker 7 completed
worker 12 completed
worker 24 completed
worker 10 completed
worker 6 completed
worker 19 completed
worker 33 completed
worker 27 completed
worker 28 completed
worker 35 completed
worker 17 completed
worker 25 completed
worker 38 completed
worker 4 completed
worker 8 completed
worker 13 completed
worker 9 completed
worker 39 completed
worker 15 completed
worker 36 completed
worker 37 completed
worker 18 completed
worker 30 completed
worker 23 completed
worker 11 completed
worker 32 completed
worker 2 completed
worker 29 completed
worker 26 completed
worker 5 completed
worker 22 completed
worker 31 completed
worker 21 completed
worker 34 completed
workers finished, exiting...
List.collate splits the list of employees into chunks (List<Employee>) of size batchSize. withIndex is just there so that each batch also gets an index (i.e. just a number 0, 1, 2, 3...) for debuggability and tracing.
As we are starting threads, we need to wait for them to complete, the workerThreads*.join() is essentially doing the same thing as:
workerThreds.each { t -> t.join() }
but using a more concise syntax and Thread.join() is a java construct for waiting for a thread to complete.
Use the database, not Java
As commented by cfrick, in real work you would be using SQL to do a mass update of rows. In contrast, looping object by object in Java to update row by row in the database would be inordinately slow compared to a simple UPDATE… in SQL.
But for the sake of exploration, we will ignore this fact, and proceed with your Question.
Trying virtual threads with Project Loom
The correct Answer by Matias Bjarland inspired me to try similar code using the Project Loom technology coming to Java. Project Loom brings virtual threads (fibers) for faster concurrency with simpler coding.
Project Loom is still in the experimental stage, but is seeking feedback from the Java community. Special builds of early-access Java 16 with Project Loom technology built-in are available now for the Linux/Mac/Windows OSes.
My code here uses Java syntax, as I do not know Groovy.
I want to try similar code to the other Answer, creating a simple Employee with a a single member field quantity. And with an EmployeeService offering a save method that simulates writing to a database by merely sleeping a full second.
One major feature of Project Loom is that blocking a thread, and switching to work on another thread, now becomes very cheap. So many of the tricks and techniques used in writing Java code to avoid expensive blocking became unnecessary. So the batching seen in the other Answer should not be needed when using virtual threads. So the code below simply loops all half million Employee objects, and creates a new Runnable object for each one. As each of the new half-million Runnable objects are instantiated, they are submitted to an executor service.
We run this code twice, using either of two kinds of executor services. One is the conventional type using platform/kernel threads used for many years in Java before Project Loom, specifically, the executor service backed by a fixed thread pool. The other kind is the new executor service offered in Project Loom for virtual threads.
Executors.newFixedThreadPool( int countThreads )
Executors.newVirtualThreadExecutor()
Code
package work.basil.example;
import java.time.Duration;
import java.time.Instant;
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
public class HalfMillion
{
public static void main ( String[] args )
{
HalfMillion app = new HalfMillion();
app.demo();
}
private void demo ( )
{
System.out.println( "java.runtime.version " + System.getProperty( "java.runtime.version" ) );
System.out.println( "INFO - `demo` method starting. " + Instant.now() );
// Populate data.
List < Employee > employees = IntStream.rangeClosed( 1 , 500_000 ).mapToObj( i -> new Employee() ).collect( Collectors.toList() );
// Submit task (updating field in each object) to an executor service.
long start = System.nanoTime();
EmployeeService employeeService = new EmployeeService();
try (
//ExecutorService executorService = Executors.newFixedThreadPool( 5 ) ; // 5 of 6 real cores, no hyper-threading.
ExecutorService executorService = Executors.newVirtualThreadExecutor() ;
)
{
employees
.stream()
.forEach(
employee -> {
executorService.submit(
new Runnable()
{
#Override
public void run ( )
{
employee.quantity = 8;
employeeService.save( employee );
}
}
);
}
);
}
// With Project Loom, the code blocks here until all submitted tasks have finished.
Duration duration = Duration.ofNanos( System.nanoTime() - start );
// Report.
System.out.println( "INFO - Done running demo for " + employees.size() + " employees taking " + duration + " to finish at " + Instant.now() );
}
class Employee
{
int quantity;
#Override
public String toString ( )
{
return "Employee{ " +
"quantity=" + quantity +
" }";
}
}
class EmployeeService
{
public void save ( Employee employee )
{
//System.out.println( "TRACE - An `EmployeeService` is doing `save` on an employee." );
try {Thread.sleep( Duration.ofSeconds( 1 ) );} catch ( InterruptedException e ) {e.printStackTrace();}
}
}
}
Results
I ran that code on a Mac mini (2018) with 3 GHz Intel Core i5 processor having 6 real cores and no hyper-threading, with 32 GB 2667 MHz DDR4 memory, and running macOS Mojave 10.14.6.
Using the new virtual threads of Project Loom
Using Executors.newVirtualThreadExecutor() takes under 5 seconds.
java.runtime.version 16-loom+9-316
INFO - `demo` method starting. 2020-12-21T09:20:36.273351Z
INFO - Done running demo for 500000 employees taking PT4.517136095S to finish at 2020-12-21T09:20:40.885315Z
If I enabled the println line within the save method, it took 15 seconds.
Using a fixed pool of 5 conventional platform/kernel threads
Using Executors.newFixedThreadPool( 5 ) takes … well, *much longer. Over a day instead of seconds: 27 hours.
java.runtime.version 16-loom+9-316
INFO - `demo` method starting. 2020-12-21T09:32:07.173561Z
INFO - Done running demo for 500000 employees taking PT27H58M18.930703698S to finish at 2020-12-22T13:30:28.813345Z
Conclusion
Well I’m not sure I can draw a conclusion here.
The results for the conventional thread pool make sense. Remember that each Java thread maps to a kernel thread in the host OS. If we are sleeping one second per employee object, as we saturate 5 cores there will mostly be 5 threads sleeping most of the time. This means the total duration should be at least a hundred thousand seconds.
The results for virtual threads on Project Loom are not believable. The command to sleep the current thread seems to ignored when using virtual threads. But I am not certain; perhaps my five physical cores on this Mac were able to be sleeping simultaneously about a hundred thousand threads each?
Please post criticisms if you find fault with my code or approach. I am not an expert on threading and concurrency.
I'm writing a scheduled task in Thorntail that will run for a long time (approx. 30 minutes). However, it appears that Thorntail limits the execution time to 30 seconds.
My code looks like this (I've removed code that I believe is irrelevant):
#Singleton
public class ReportJobProcessor {
#Schedule(hour = "*", minute = "*/30", persistent = false)
public void processJobs() {
// Acquire a list of jobs
jobs.forEach(this::processJob);
}
private void processJob(ReportJob job) {
// A long running process
}
}
After 30 seconds, I see the following in my logs:
2019-10-01 16:15:14,097 INFO [org.jboss.as.ejb3.timer] (EJB default - 2) WFLYEJB0021: Timer: [id=... timedObjectId=... auto-timer?:true persistent?:false timerService=org.jboss.as.ejb3.timerservice.TimerServiceImpl#42478b98 initialExpiration=null intervalDuration(in milli sec)=0 nextExpiration=Tue Oct 01 16:20:00 CEST 2019 timerState=IN_TIMEOUT info=null] will be retried
Another 30 seconds later, an exception is thrown because the job still didn't complete.
I have no idea how to increase the timeout, and googling my issue returns nothing helpful.
How can I increase the timeout beyond 30 seconds?
I suggest you take a bit different approach.
The scheduled task will distribute jobs to asynchronously running stateless session beans (SLSB) called ReportJobExecutor and finish immediately after job distribution without timing out. The number of simultaneously running SLSBs can be adjustable in project-defaults.yml, the default count is 16, IIRC. This is a very basic example but demonstrates Java EE executions with predefined bean pool that is invoked using EJB Timer. More complicated example would be manual pooling of executors that would allow you to control lifecycle of the executors (e.g. killing them after specified time).
#Singleton
public class ReportJobProcessor {
#Inject ReportJobExecutor reportJobExecutor;
#Schedule(hour = "*", minute = "*/30", persistent = false)
public void processJobs() {
// Acquire a list of jobs
jobs.forEach(job -> reportJobExecutor.run(job));
}
}
#Stateless
#Asynchronous
public class ReportJobExecutor {
public void run(ReportJob job) {
//do whatever with job
}
}
Idea #2:
Another approach would be using Java Batch Processing API (JSR 352), unfortunately, I am not familiar with this API.
I use spring thread pool to manage the threads in my project.
But there is some thing wrong when my code is running.
I get exceptions like:
org.springframework.core.task.TaskRejectedException: Executor [java.util.concurrent.ThreadPoolExecutor#4cfc01ab[Running, pool size = 200, active threads = 0, queued tasks = 40, completed tasks = 7990]] did not accept task: java.util.concurrent.FutureTask#6ba9fcd5
It throws TaskRejectedException when the pool "active threads" is zero.
I have read the documentation and the source code from Spring but have found nothing.
My TaskExecutor class:
#Bean
public ThreadPoolTaskExecutor taskExecutor() {
ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
taskExecutor.setKeepAliveSeconds(200);
taskExecutor.setCorePoolSize(200);
taskExecutor.setMaxPoolSize(200);
taskExecutor.setQueueCapacity(40);
taskExecutor.setRejectedExecutionHandler(new
ThreadPoolExecutor.AbortPolicy());
return taskExecutor;
}
active threads sometime is 0 sometime is 10 , never 200 , weird.
In the exception message it has "queued tasks = 40". Since in your setup you have setQueueCapacity(40), executing a thread when queued tasks is already at 40 will throw that exception.
If you are submitting tasks very quickly I would try increasing the queue capacity. Threads do not immediately move from the queue to active, especially when the JVM is busy.
As far as active thread count, it is only an approximation. Java doc of ThreadPoolExecutor.getActiveThreadCount:
/**
* Returns the approximate number of threads that are actively
* executing tasks.
*
* #return the number of threads
*/
public int getActiveCount() {
I just went through the source code of ThreadPoolExecutor found that it will interrupt all idle workers once the time is up to the set value of keepAliveTime and allowCoreThreadTimeOut is true.
It's a little strange to me it can only invoke the interrupt method when runState >= SHUTDOWN:
The code below is from the method getTask() of ThreadPoolExecutor.
Runnable getTask() {
...
if (workerCanExit()) {
if (runState >= SHUTDOWN) // Wake up others
interruptIdleWorkers();
return null;
}
}
Does that mean all the idle threads can only be interrupted when the runState >= SHUTDOWN (SHUTDOWN, STOP or TERMINATED)? That's to say they will be not interrupted when the state is RUNNING.
You are right. This getTask() method in the ThreadPoolExecutor is called on to gets the next task for a worker thread to run. This code block is only executed when the method call has not identified any Runnable task for execution. So, if nothing is found to execute, it must check for the shutdown state.
from java doc of workerCanExit()
Check whether a worker thread that fails to get a task can exit. We allow a worker thread to die if the pool is stopping, or the queue is empty, or there is at least one thread to handle possibly non-empty queue, even if core timeouts are allowed.
As an example, configure ThreadPoolExecutor as : corePoolSize=1, maxPoolSize=5, workQueueSize=1, keepAliveTime=60s, allowCoreThreadTimeOut=false.
When you offer 5 tasks(each task is time-consuming) concurrently, one of the 5 tasks will enter into workQueue, other 4 tasks will be handled immediately by 4 worker threads newly created almost at the same time.
At this time, the sum of worker threads is 4(workerThreadCount=4). Once one thread completes its task, it will be waiting on workQueue by invoking blocking method, workQueue.take() or workQueue.poll(keepAliveTime). As for which blocking method will be invoked is decided by the workerThreadCount.
For example(Hypothesis), at a time point, workerThread-0 is handling task-0; task-1 is staying in workQueue; workerThread-1 is handling task-2; workerThread-2 is handling task-3; workerThread-3 is handling task-4, and workerThreadCount==4.
workerThread-3 completes task-4, and this time [workerThreadCount==4] > [corePoolSize==1], it will get next task(task-1) from workQueue by workQueue.poll(keepAliveTime). Then, go on handling task-1, and this time workerThreadCount==4. The code segment of ThreadPoolExecutor.java as following:
while (task != null || (task = getTask()) != null) {
task.run();
}
private Runnable getTask() {
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take();
}
then workerThread-0 completes task-0, because of [workerThreadCount==4] > [corePoolSize==1], it still get next task from workQueue by workQueue.poll(keepAliveTime). But, this time workQueue is empty, so workerThread-0 will be blocked on it, and the state of workerThread-0 is TIMED_WAITING. Once keepAliveTime elapsed, workQueue.poll(keepAliveTime) will return null, next, workerThread-0 will return from Runnable.run(), and turn into TERMINATED. This time workerThreadCount==3.
then workerThread-1 completes task-2, it will return by the same way as workerThread-0. This time workerThreadCount==2.
then workerThread-3 completes task-1, it will return by the same way as workerThread-1. This time workerThreadCount==1.
then workerThread-2 completes task-3, but this time [workerThreadCount==1] not more than [corePoolSize==1], so it will be blocked when get the next task from workQueue by workQueue.take() until there is a available task in workQueue. And its state is WAITING.
NOTE : the source code comes from JDK8.
Exactly. A correct task(if interruptions are allowed) must checks itself for interrupted flag and terminate (i.e. return from run()).