Java - two threads with wait() and notify() - java

I am new to Java programming. i want to run two threads using wait() and notify(). But I cant use task flags for thread synchronization,sleep, yield or wait(parameter).I wrote it, but i had to use sleep. can someone help me to change it to without sleep.
This is my main class
public class mainClass{
public static void main(String args[]) throws InterruptedException {
final Processor processor = new Processor();
for(int i=0; i<100; i++){
final int z = i;
Thread trainer = new Thread(new Runnable(){
public void run(){
try{
processor.produce(z);
}catch(InterruptedException e){
e.printStackTrace();
}
}
});
Thread sportsman = new Thread(new Runnable(){
public void run(){
try{
processor.consume(z);
}catch(InterruptedException e){
e.printStackTrace();
}
}
});
trainer.start();
sportsman.start();
trainer.join();
sportsman.join();
}
System.out.println("100 Tasks are Finished.");
}
}
this is my second class.
public class Processor {
public void produce(int n) throws InterruptedException {
synchronized (this){
System.out.println("Trainer making " + (n+1) + " Task..." );
wait();
System.out.println("");
}
}
public void consume(int m) throws InterruptedException {
Thread.sleep(1);
//I want to run the code without using sleep and get same output
synchronized (this){
System.out.println("Sportman doing " + (m+1) + " Task...");
notify();
}
}
}
this is my output.
Trainer making 1 Task...
Sportman doing 1 Task...
Trainer making 2 Task...
Sportman doing 2 Task...
.
.
.
Trainer making 99 Task...
Sportman doing 99 Task...
Trainer making 100 Task...
Sportman doing 100 Task...
100 Tasks are Finished.
thank you. my english is bad. sorry for it.

Hints:
The correct use of wait involves waiting for something specific to happen. The correct implementation is something like this
synchronize (x) {
while (!x.itHasHappened()) {
x.wait(); // for it to happen
}
}
The loop is necessary since it is possible to get spurious notifies on a primitive lock.
In your specific example, ask yourself what must wait for what to happen. I think you've got it wrong. What is produce(N) actually waiting for, and why?

In mainClass you created 100 times two threads, I think you should create two threads only and in those two threads run the loop 100 times.
Probably you needed to do something like this...
The producer should create together 100 task (one at a time) and wait after each task for the consumer to be done.
The consumer should wait for a task and notify the producer when finished with the current task, them wait for the next task.
So your mainClass should look like this, loops should be in the producer() and consumer() methods.
public class mainClass {
public static void main(String args[]) throws InterruptedException {
final Processor processor = new Processor();
Thread trainer = new Thread(new Runnable() {
public void run() {
try {
processor.produce();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
Thread sportsman = new Thread(new Runnable() {
public void run() {
try {
processor.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
trainer.start();
sportsman.start();
trainer.join();
sportsman.join();
System.out.println("100 Tasks are Finished.");
}
}
And the Processor maybe something like this...
public class Processor {
private int taskNo = 0; // the number of the current task
// (0 = there is no task, but will be)
// (-1 = there won't be more task)
public void produce() throws InterruptedException {
synchronized (this) {
for (int i = 0; i < 100; i++) {
taskNo = i + 1; // making a task number (i+1)
System.out.println("Trainer making " + taskNo + " Task...");
notify(); // notifies the consumer that the task was made
wait(); // and waiting the consumer to finish... zzzz...
System.out.println("");
}
taskNo = -1; // there will be no more task
notify(); // notify the consumer about it
}
}
public void consume() throws InterruptedException {
synchronized (this) {
do {
if (taskNo == 0) {
wait(); // there is no task to do, waiting... zzzz...
}
if (taskNo != -1) {
System.out.println("Sportman doing " + taskNo + " Task...");
taskNo = 0; // sets the task to done
notify(); // notifies the producer that the task was done
}
} while (taskNo != -1);
}
}
}
Typically there is a queue instead of the taskNo variable, where the producer puts tasks and the consumer takes tasks from in. But in your case the queue can have only 1 task at a time, because the producer should wait for the consumer to finish. So you can use a simple variable (taskNo) instead of a queue.

Related

Producer-Consumer Problem with 2 processes in Java

I got task from my professor related to Producer-Consumer problem.
The task is implement Producer-Consumer process, but
first process should increase its value by 5 each time
second process should divide its value by 2 each time.
I found some examples of code, but nothing about multiple processes. Here is one of them.
--
// Java program to implement solution of producer
// consumer problem.
import java.util.LinkedList;
public class Threadexample {
public static void main(String[] args)
throws InterruptedException
{
// Object of a class that has both produce()
// and consume() methods
final PC pc = new PC();
// Create producer thread
Thread t1 = new Thread(new Runnable() {
#Override
public void run()
{
try {
pc.produce();
}
catch (InterruptedException e) {
e.printStackTrace();
}
}
});
// Create consumer thread
Thread t2 = new Thread(new Runnable() {
#Override
public void run()
{
try {
pc.consume();
}
catch (InterruptedException e) {
e.printStackTrace();
}
}
});
// Start both threads
t1.start();
t2.start();
// t1 finishes before t2
t1.join();
t2.join();
}
// This class has a list, producer (adds items to list
// and consumber (removes items).
public static class PC {
// Create a list shared by producer and consumer
// Size of list is 2.
LinkedList<Integer> list = new LinkedList<>();
int capacity = 2;
// Function called by producer thread
public void produce() throws InterruptedException
{
int value = 0;
while (true) {
synchronized (this)
{
// producer thread waits while list
// is full
while (list.size() == capacity)
wait();
System.out.println("Producer produced-"
+ value);
// to insert the jobs in the list
list.add(value++);
// notifies the consumer thread that
// now it can start consuming
notify();
// makes the working of program easier
// to understand
Thread.sleep(1000);
}
}
}
// Function called by consumer thread
public void consume() throws InterruptedException
{
while (true) {
synchronized (this)
{
// consumer thread waits while list
// is empty
while (list.size() == 0)
wait();
// to retrive the ifrst job in the list
int val = list.removeFirst();
System.out.println("Consumer consumed-"
+ val);
// Wake up producer thread
notify();
// and sleep
Thread.sleep(1000);
}
}
}
}
}
Output:
Producer produced-0
Producer produced-1
Consumer consumed-0
Consumer consumed-1
Producer produced-2
I am not sure if I understand my task completely. Is it possible to implement given task on this code? I want you to give me some suggestions or any sources, so I can understand what to do.
Thank you all in advance!
If I correctly understand your problem from your description, you should change the field's value from two threads. You would like to create a class-level field and two synchronized methods for changing his value after that create two threads and call from them both operations alternately. I think you can write that:
public class Solution0 {
private volatile int count;
public synchronized void increment() throws InterruptedException {
count = count + 5;
Thread.sleep(1000);
notifyAll();
wait();
}
public synchronized void divide() throws InterruptedException {
count = count / 2;
Thread.sleep(1000);
notifyAll();
wait();
}
public static void main(String[] args) {
Solution0 solution = new Solution0();
Thread t1 = new Thread(() -> {
try {
while (true){
solution.increment();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
});
Thread t2 = new Thread(() -> {
try {
while (true){
solution.divide();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
});
t1.start();
t2.start();
}
}
Also, you can change the type of field count from int to double, if you need a real number.

Java Threads: How to print alphabets and numbers using two threads one at a time

I am trying to work around with threads in java. Though I understand that threads output are unpredictable, However was wondering if there is a way to do that.
I have to implement two threads, one prints alphabets(a,b,c...z) and other prints numbers(1,2,3....26). Have to implement it in such a way that the output should be a,1,b,2,c,3,d,4......z,26. Below is my code but it doesn't give the desired output.
public class ThreadsExample {
public static void main(String[] args) {
Runnable r = new Runnable1();
Thread t = new Thread(r);
Runnable r2 = new Runnable2();
Thread t2 = new Thread(r2);
t.start();
t2.start();
}
}
class Runnable2 implements Runnable{
public void run(){
for(char i='a';i<='z';i++) {
System.out.print(i+",");
}
}
}
class Runnable1 implements Runnable{
public void run(){
for(int i=1;i<=26;i++) {
System.out.print(i+",");
}
}
}
What tweak should I make in the code to get the desired output? How does synchronization helps here? Or is it really possible when working with Threads at all?
PS: This is not an assignment or some exercise. Its self learning.
It is possible. You need to synchronize it well.
Approach Pseudocode
query some (synchronized) state
state will tell whether nums or chars are allowed
if state allows char and caller will put chars, do it now and change state and wake up waiting threads
if not, wait
if state allows numbers and caller will put numbers, do it now and change state and wake up waiting threads
if not, wait
Java code
public class ThreadsExample {
public static ThreadsExample output = new ThreadsExample ();
public static void main(String[] args) {
Runnable r = new Runnable1();
Thread t = new Thread(r);
Runnable r2 = new Runnable2();
Thread t2 = new Thread(r2);
t.start();
t2.start();
}
private Object syncher = new Object (); // we use an explicit synch Object, you could use annotation on methods, too. like ABHISHEK did.
// explicit allows to deal with more complex situations, especially you could have more the one locking Object
private int state = 0; // 0 allows chars, 1 allows ints
public void print (char pChar) {
synchronized (syncher) { // prevent the other print to access state
while (true) {
if (state == 0) { // char are allowed
System.out.print(pChar + ","); // print it
state = 1; // now allow ints
syncher.notify(); // wake up all waiting threads
return;
} else { // not allowed for now
try {
syncher.wait(); // wait on wake up
} catch (InterruptedException e) {
}
}
}
}
}
public void print (int pInt) {
synchronized (syncher) {
while (true) {
if (state == 1) {
System.out.print(pInt + ",");
state = 0;
syncher.notify();
return;
} else {
try {
syncher.wait();
} catch (InterruptedException e) {
}
}
}
}
}
}
class Runnable2 implements Runnable{
public void run(){
for(char i='a';i<='z';i++) {
ThreadsExample.output.print(i);
}
}
}
class Runnable1 implements Runnable{
public void run(){
for(int i=1;i<=26;i++) {
ThreadsExample.output.print(i);
}
}
}
Output
a,1,b,2,c,3,d,4,e,5,f,6,g,7,h,8,i,9,j,10,k,11,l,12,m,13,n,14,o,15,p,16,q,17,r,18,s,19,t,20,u,21,v,22,w,23,x,24,y,25,z,26,
The whole idea of threads: it represents a "stream of activity" that executes code independent of other threads.
In your case, you want that these two threads go in "lockstep". Thread A does one step, then Thread B, then A, then B.
In order to get there, the two threads need something "synchronize" on - in other words: A sends a signal to B when it has done its steps - and B has to wait for that signal. Then B does its thing, signals to A, ...
For starters, a simple boolean value would do. One thread sets it to true, the other to false (to indicate when it has made its step). Then the thread waits for the boolean to toggle again.
As you intend to learn things, I would just start experimenting from there. In case you want to take detours, look here for example. This might help as well.
HERE IS THE CODE::
You need to create 2 threads and implement wait and notify methods correctly you can also refer "Create two threads, one display odd & other even numbers" for your answer.
public class ThreadClass {
volatile int i = 1;
volatile Character c = 'a';
volatile boolean state = true;
synchronized public void printAlphabet() {
try {
while (!state) {
wait();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " " +c);
state = false;
c++;
notifyAll();
}
synchronized public void printNumbers() {
try {
while (state) {
wait();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " " + i);
state = true;
i++;
notifyAll();
}
public static void main(String[] args) {
ThreadClass threadClass = new ThreadClass();
Thread t1 = new Thread() {
int k = 0;
#Override
public void run() {
while (k < 26) {
threadClass.printAlphabet();
k++;
}
}
};
t1.setName("Thread1");
Thread t2 = new Thread() {
int j = 0;
#Override
public void run() {
while (j < 26) {
threadClass.printNumbers();
j++;
}
}
};
t2.setName("Thread2");
t1.start();
t2.start();
}
}
Your threads are running at the same time. But not the way you want it, as mentioned above. You will see blocks of data from thread 1 and then a block of data from thread 2; and this is because of thread scheduling. Thread 1 is just queuing its output before thread 2.
To test this theory, increase your output to a 1000 records for example as the alphabet and 26 numbers are not as large to see this.
By doing so, you will see these 'blocks' of data. There is a way to do what you mentioned, but it is not advisable as this is not demonstrating how threads actually work but rather you forcing it to work that way.
With less Code:
class MyRunnable implements Runnable {
private static int n = 1;
private static char c = 'a';
public void run() {
for (int i = 1; i <= 26; i++) {
synchronized (this) {
try {
notifyAll();
if (Thread.currentThread().getName().equals("A")) {
System.out.print(c + ",");
c++;
} else {
System.out.print(n + ",");
n++;
}
if (i != 26) {
wait();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}
public class PrintAlphabetNumberJob {
public static void main(String[] args) throws InterruptedException {
MyRunnable r = new MyRunnable();
Thread tAlphabet = new Thread(r, "A");
Thread tNumber = new Thread(r, "N");
tAlphabet.start();
Thread.sleep(100);
tNumber.start();
}
}

Running the more than two threads in a particular order

I want the threads to run in a particular order. Suppose I have three thread T1, T2, T2 .
T1 prints 0
T2 prints 1
T3 prints 2
I want the output in the order 0 1 2, 0 1 2 for certain number of time.
If there are two threads T1 and T2. Printing 0 1, 0 1... can be done using Producer-Consumer Problem using synchronization.
Create a class UnitOfWork:
public class UnitOfWork implements Runnable
{
String text;
public UnitOfWork(String text){
this.text = text;
}
public void run(){
System.out.println(text);
}
}
And then create a single thread executor service:
ExecutorService executor = ExecutorService.newSingleThreadExecutor();
which you will use like this:
UnitOfWork uow0 = new UnitOfWork("0");
UnitOfWork uow1 = new UnitOfWork("1");
UnitOfWork uow2 = new UnitOfWork("2");
for(int i = 0; i < 5; i++){
executor.submit(uow0);
executor.submit(uow1);
executor.submit(uow2);
}
When you are unhappy with the single thread, you can start using multiple thread executor service, which will in fact run tasks concurrently.
Using the method join() in the thread class you can achieve this.
The join method allows one thread to wait for the completion of another. If t is a Thread object whose thread is currently executing,
t.join();
causes the current thread to pause execution until t's thread terminates. Overloads of join allow the programmer to specify a waiting period. However, as with sleep, join is dependent on the OS for timing, so you should not assume that join will wait exactly as long as you specify.
Like sleep, join responds to an interrupt by exiting with an InterruptedException.
Use Thread.join to ensure it terminates before the next thread starts.
public static void main(String[] args) throws InterruptedException {
final Thread th1 = new Thread(new Runnable() {
public void run() {
try {
Thread.sleep((long) (Math.random() * 1000));
System.out.println("Thread 1");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
Thread th2 = new Thread(new Runnable() {
public void run() {
try {
Thread.sleep((long) (Math.random() * 1000));
System.out.println("Thread 2");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
Thread th3 = new Thread(new Runnable() {
public void run() {
try {
Thread.sleep((long) (Math.random() * 1000));
System.out.println("Thread 3");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
th1.start();
th1.join();
th2.start();
th2.join();
th3.start();
}
This is a minimalist piece of code which does literally what you asked for. It relies on the wait-notify mechanism.
I stand by my assesment that you do not need any threads to meet your requirement. A simple loop which prints 0-1-2 is all you really need.
import static java.lang.Thread.currentThread;
public class A {
static int coordinator, timesPrinted;
static final int numThreads = 3, timesToPrint = 300;
public static void main(String[] args) {
for (int i = 0; i < numThreads; i++) {
final int myId = i;
new Thread(new Runnable() { public void run() {
while (true) synchronized (A.class) {
if (coordinator%numThreads == myId) {
System.out.println(myId+1);
coordinator++;
if (timesPrinted++ > timesToPrint) currentThread().interrupt();
A.class.notifyAll();
}
try {A.class.wait();} catch (InterruptedException e) {break;}
}
}}).start();
}
}
}

A good small example to demonstrate wait() and notify() method in java

Can anybody please provide me a good small example demonstrate wait() and notify() functionality in java. I've tried with the below piece of code but it's not showing what i expected.
public class WaitDemo {
int i = 10;
int display() {
System.out.println("Lexmark");
i++;
return i;
}
}
public class ClassDemo1 extends Thread {
private WaitDemo wd = new WaitDemo();
public static void main(String[] args) {
ClassDemo1 cd1 = new ClassDemo1();
ClassDemo1 cd2 = new ClassDemo1();
cd1.setName("Europe");
cd2.setName("America");
cd1.start();
cd2.start();
}
synchronized void display() {
System.out.println("Hello");
notifyAll();
}
public void run() {
synchronized (this) {
try {
{
notify();
System.out.println("The thread is " + currentThread().getName());
wait();
System.out.println("The value is " + wd.display());
}
} catch (InterruptedException e) {
}
}
}
}
The issue is that the method in the class WaitDemo is not getting executed and as per my idea the SOP after wait() should execute. Please help me out on this.
You've got two levels of braces { in your try block. If you remove the inner set (which doesn't appear to do anything), does that fix the problem?
There are several examples around, all of which demonstrate the use. The last link is a set of results that can help you out. If you need more specific things, let me know what it is that your app is trying to do, and I can try to find examples that are more specific to your situation.
http://www.javamex.com/tutorials/wait_notify_how_to.shtml
http://www.java-samples.com/showtutorial.php?tutorialid=306
http://www.coderanch.com/t/234235/threads/java/Wait-Example
https://www.google.com/search?q=wait%28%29+example+java&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a
Below is an example of wait & notify in the Object class. The customer is trying to withdraw money of value 2000 but the account is having only 1000 so it has to wait for the deposit. Once the deposit is made, then the customer will be able to withdraw the amount. Until the deposit is made, the customer will be waiting.
class Cust {
private int totalAmount = 1000;
public synchronized void withdrawal(int amount) {
System.out.println("Total amount " + totalAmount + " withdrawing amount " + amount);
while (this.totalAmount < amount) {
System.out.println("not enough amount..waiting for deposit..");
try { wait(); } catch (Exception e) {}
}
this.totalAmount -= amount;
System.out.println("Withdrawal successful.. Remaining balance is "+totalAmount);
}
public synchronized void deposit(int amount){
System.out.println("Depositing amount "+amount);
this.totalAmount += amount;
System.out.println("deposit completed...and Now totalAmount is " + this.totalAmount);
notify();
}
}
class Depo implements Runnable {
Cust c; int depo;
Depo(Cust c, int depo){
this.c = c;
this.depo = depo;
}
#Override
public void run() {
c.deposit(depo);
}
}
class Withdrawal implements Runnable {
Cust c; int with;
Withdrawal(Cust c, int with){
this.c = c;
this.with = with;
}
#Override
public void run() {
c.withdrawal(with);
}
}
public class ObjectWaitExample {
public static void main(String[] args) {
Cust c = new Cust();
Thread w = new Thread(new Withdrawal(c, 2000));
Thread d1 = new Thread(new Depo(c, 50));
Thread d2 = new Thread(new Depo(c, 150));
Thread d3 = new Thread(new Depo(c, 900));
w.start();
d1.start();
d2.start();
d3.start();
}
}
I created two threads one for printing odd numbers (OddThread) and another for even numbers (EvenThread). Inside the run method of each of the threads I used the shared object of class Print to call printOdd() and printEven() for the Odd and EvenThread respectively. I made the shared object of Print static so that only one copy is made. Now synchronizing on the Print object I used a Boolean flag such that when the odd thread printed an odd number it will be sent into the waiting state and the at the same time notifying the even thread to execute. The logic is written in such a way that the odd thread will always print the odd number first no matter what, as the flag is set to false initially preventing the even thread to execute and sending it to a waiting state.
package com.amardeep.test;
public class ThreadDemo {
// Shared object
static Print print = new Print();
public static void main(String[] args) {
new Thread(new OddThread()).start();
new Thread(new EvenThread()).start();
}
}
class EvenThread implements Runnable {
#Override
public void run() {
ThreadDemo.print.printEven();
}
}
class OddThread implements Runnable {
#Override
public void run() {
ThreadDemo.print.printOdd();
}
}
class Print {
public volatile boolean flag = false;
public synchronized void printEven() {
for (int i = 1; i <= 10; i++) {
if (!flag) {
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
} else {
if (i % 2 == 0) {
System.out.println("from even " + i);
flag = false;
notifyAll();
}
}
}
}
public synchronized void printOdd() {
for (int i = 1; i <= 10; i++) {
if (flag) {
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
} else {
if (i % 2 != 0) {
System.out.println("from odd " + i);
flag = true;
notifyAll();
}
}
}
}
}
output:-
from odd 1
from even 2
from odd 3
from even 4
from odd 5
from even 6
from odd 7
from even 8
from odd 9
from even 10
Your problem is that you are creating two instances of the Thread class. Thus when the wait() is called, it is on two different instances, neither of which has another thread that is in contention for your monitor, nor is there another thread to call notifyAll() to wake the thread from its wait state.
Thus each thread you have started will wait forever (or until interrupted for some other reason).
You want to have multiple threads accessing the same monitor, so start by trying to code something in which the code in question is not actually a thread, but is simply being used by a thread.
#normalocity has already provided links to multiple examples.
I just updated this answer to include an SCCE.
The workers call pauseIfNeeded on the WorkerPauseManager. If the manager is paused when the worker thread calls pauseIfNeeded(), we call wait(), which tells the calling thread to wait until a different thread calls notify() or notifyAll() on the object being waited on. This happens when the Swing Event Dispatch Thread calls play() on the manager, which in turn calls notifyAll().
Note that you must have a synchronized lock on the object you are calling wait() or notify() on. Since the methods in WorkerPauseManager are synchronized, all the synchronized methods are getting a synchronized lock on the WorkerPauseManager itself.
import javax.swing.*;
import java.awt.event.ActionEvent;
/**
* #author sbarnum
*/
public class WorkerPauseManagerTest {
public static void main(String[] args) {
final WorkerPauseManager pauseManager = new WorkerPauseManager();
new Worker("Worker 1", pauseManager).start();
new Worker("Worker 2", pauseManager).start();
SwingUtilities.invokeLater(new Runnable() {
public void run() {
JToggleButton playPauseButton = new JToggleButton(new AbstractAction("Pause") {
public void actionPerformed(final ActionEvent e) {
JToggleButton source = (JToggleButton) e.getSource();
if (source.isSelected()) {
pauseManager.start();
source.setText("Pause");
} else {
pauseManager.pause();
source.setText("Play");
}
}
});
playPauseButton.setSelected(true); // already running
JOptionPane.showMessageDialog(null, playPauseButton, "WorkerPauseManager Demo", JOptionPane.PLAIN_MESSAGE);
System.exit(0);
}
});
}
private static class Worker extends Thread {
final String name;
final WorkerPauseManager pauseManager;
public Worker(final String name, final WorkerPauseManager pauseManager) {
this.name = name;
this.pauseManager = pauseManager;
}
#Override
public void run() {
while (!Thread.interrupted()) {
try {
pauseManager.pauseIfNeeded();
System.out.println(name + " is running");
Thread.sleep(1000L);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}
}
public static final class WorkerPauseManager {
private boolean paused;
public synchronized void pauseIfNeeded() throws InterruptedException {
if (paused) wait();
}
public synchronized void pause() {
this.paused = true;
}
public synchronized void start() {
this.paused = false;
notifyAll();
}
}
}
What wait method does is , when some thread executed a synchronized block by locking some object (we call that object is "a") , then inside that synchronized block when the thread executed the wait method of object "a" like this
A a = new A (); // some class object call "a"
synchronized (a){
a.wait ();//exceptions must be handled
}
Then the a object will release and the thread has to go to the wait state until it has been release from that state.
and anothet thread now can use the a object beacause its a release object. so if another thread locked that object and it executed the notify method from that object like
a.notify ()
Then one of a thread of the threads that went to wait state by object "a" can be released from the wait state. Other wise when call the notifyAll then the all the thread objects will release from that state.
/*
* the below program is like
* tread t1 will first run , and it comes to "notify()" method
* there are no threds waiting bcoz this is the first thread.
* so it will not invoke any other threads. next step is "wait()" method
*will be called and the thread t1 in waiting state. next stament
* "System.out.println("The value is ..."+wd.display());" will not be executed
* because thread t1 is in waiting state.
*
* thread t2 will run ,and it comes to "notify()" method ,there is already
* thread t1 is in waiting state ,then it will be invoked.now thread t1 will
* continue execution and it prints the statement "System.out.println("The value is ..."+wd.display())"
* and thread t2 will be in waiting state now.
*
* if you uncomment "notifyAll()" method then, after t1 thread completes its execution
*then immediately "notifyAll()" method will be called,by that time thread t2 is
* already in waiting state , then thread t2 will be invoked and continues execution.
*or
* if any other threadds are in waiting state all those threads will be invoked.
*/
package threadsex;
/**
*
* #author MaheshM
*/
/**
* #param args the command line arguments
*/
public class WaitNotifyNotifyAllDemo implements Runnable {
WaitDemo wd = new WaitDemo();
public static void main(String[] args) {
WaitNotifyNotifyAllDemo cd1 = new WaitNotifyNotifyAllDemo();
Thread t1 = new Thread(cd1);
t1.setName("mahi1");
Thread t2 = new Thread(cd1);
t2.setName("mahi2");
t1.start();
t2.start();
}
#Override
public void run() {
synchronized (this) {
try {
System.out.println("The thread is=" +
Thread.currentThread().getName());
notify();
wait();
System.out.println("The value is ..." + wd.display());
// notifyAll();
} catch (Exception ex) {
ex.printStackTrace();
}
}
}
}

Java: Threads, how to make them all do something

I am trying to implement nodes talking to each other in Java. I am doing this by creating a new thread for every node that wants to talk to the server.
When the given number of nodes, i.e. that many threads have been created, have connected to the server I want each thread to execute their next bit of code after adding to the "sharedCounter".
I think I need to use 'locks' on the shared variable, and something like signalAll() or notifyAll() to get all the threads going, but I can't seem to make clear sense of exactly how this works or to implement it.
Any help explaining these Java concepts would be greatly appreciated :D
Below is roughly the structure of my code:
import java.net.*;
import java.io.*;
public class Node {
public static void main(String[] args) {
...
// Chooses server or client launchers depend on parameters.
...
}
}
class sharedResource {
private int sharedCounter;
public sharedResource(int i) {
sharedCounter = i;
}
public synchronized void incSharedCounter() {
sharedCounter--;
if (sharedCounter == 0)
// Get all threads to do something
}
}
class Server {
...
for (int i = 0; i < numberOfThreads; i++) {
new serverThread(serverSocket.accept()).start();
}
...
sharedResource threadCount = new sharedResource(numberOfThreads);
...
}
class serverThread extends Thread {
...
//some code
Server.threadCount.incSharedCounter();
// Some more code to run when sharedCounte == 0
...
}
class Client {
...
}
     // Get all threads to do something
Threads (or rather Runnables, which you should implement rather than extending Thread) have a run method that contains the code they are expected to execute.
Once you call Thread#start (which in turn calls Runnable#run), the thread will start doing exactly that.
Since you seem to be new to multi-threading in Java, I recommend that you read an introduction to the Concurrency Utility package, that has been introduced in Java5 to make it easier to implement concurrent operations.
Specifically what you seem to be looking for is a way to "pause" the operation until a condition is met (in your case a counter having reached zero). For this, you should look at a CountDownLatch.
Indeed, the subject is broad, but I'll try to explain the basics. More details can be read from various blogs and articles. One of which is the Java trail.
It is best to see each thread as being runners (physical persons) that run alongside each other in a race. Each runner may perform any task while running. For example, take a cup of water from a table at a given moment in the race. Physically, they cannot both drink from the same cup at once, but in the virtual world, it is possible (this is where the line is drawn).
For example, take again two runners; each of them has to run back and forth a track, and push a button (shared by the runners) at each end for 1'000'000 times, the button is simply incrementing a counter by one each time. When they completed their run, what would be the value of the counter? In the physical world, it would be 2'000'000 because the runners cannot push the button at the same time, they would wait for the first one to leave first... that is unless they fight over it... Well, this is exactly what two threads would do. Consider this code :
public class ThreadTest extends Thread {
static public final int TOTAL_INC = 1000000;
static public int counter = 0;
#Override
public void run() {
for (int i=0; i<TOTAL_INC; i++) {
counter++;
}
System.out.println("Thread stopped incrementing counter " + TOTAL_INC + " times");
}
public static void main(String[] args) throws InterruptedException {
Thread t1 = new ThreadTest();
Thread t2 = new ThreadTest();
t1.start();
t2.start();
t1.join(); // wait for each thread to stop on their own...
t2.join(); //
System.out.println("Final counter is : " + counter + " which should be equal to " + TOTAL_INC * 2);
}
}
An output could be something like
Thread stopped incrementing counter 1000000 times
Thread stopped incrementing counter 1000000 times
Final counter is : 1143470 which should be equal to 2000000
Once in a while, the two thread would just increment the same value twice; this is called a race condition.
Synchronizing the run method will not work, and you'd have to use some locking mechanism to prevent this from happening. Consider the following changes in the run method :
static private Object lock = new Object();
#Override
public void run() {
for (int i=0; i<TOTAL_INC; i++) {
synchronized(lock) {
counter++;
}
}
System.out.println("Thread stopped incrementing counter " + TOTAL_INC + " times");
}
Now the expected output is
...
Final counter is : 2000000 which should be equal to 2000000
We have synchronized our counter with a shared object. This is like putting a queue line before only one runner can access the button at once.
NOTE : this locking mechanism is called a mutex. If a resource can be accessed by n threads at once, you might consider using a semaphore.
Multithreading is also associated with deadlocking. A deadlock is when two threads mutually waits for the other to free some synchronized resource to continue. For example :
Thread 1 starts
Thread 2 starts
Thread 1 acquire synchronized object1
Thread 2 acquire synchronized object2
Thread 2 needs to acquire object2 for continuing (locked by Thread 1)
Thread 1 needs to acquire object1 for continuing (locked by Thread 2)
Program hangs in deadlock
While there are many ways to prevent this from happening (it depends on what your threads are doing, and how they are implemented...) You should read about that particularly.
NOTE : the methods wait, notify and notifyAll can only be called when an object is synchronized. For example :
static public final int TOTAL_INC = 10;
static private int counter = 0;
static private Object lock = new Object();
static class Thread1 extends Thread {
#Override
public void run() {
synchronized (lock) {
for (int i=0; i<TOTAL_INC; i++) {
try {
lock.wait();
counter++;
lock.notify();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}
static class Thread2 extends Thread {
#Override
public void run() {
synchronized (lock) {
for (int i=0; i<TOTAL_INC; i++) {
try {
lock.notify();
counter--;
lock.wait();
} catch (InterruptedException e) {
/* ignored */
}
}
}
}
}
Notice that both threads are running their for...loop blocks within the synchronized block. (The result of counter == 0 when both threads end.) This can be achieved because they "let each other" access the synchronized resource via the resource's wait and notify methods. Without using those two methods, both threads would simply run sequentially and not concurrently (or more precisely, alternately).
I hope this shed some light about threads (in Java).
** UPDATE **
Here is a little proof of concept of everything discussed above, using the CountDownLatch class suggested by Thilo earlier :
static class Server {
static public final int NODE_COUNT = 5;
private List<RunnableNode> nodes;
private CountDownLatch startSignal;
private Object lock = new Object();
public Server() {
nodes = Collections.synchronizedList(new ArrayList<RunnableNode>());
startSignal = new CountDownLatch(Server.NODE_COUNT);
}
public Object getLock() {
return lock;
}
public synchronized void connect(RunnableNode node) {
if (startSignal.getCount() > 0) {
startSignal.countDown();
nodes.add(node);
System.out.println("Received connection from node " + node.getId() + " (" + startSignal.getCount() + " remaining...)");
} else {
System.out.println("Client overflow! Refusing connection from node " + node.getId());
throw new IllegalStateException("Too many nodes connected");
}
}
public void shutdown() {
for (RunnableNode node : nodes) {
node.shutdown();
}
}
public void awaitAllConnections() {
try {
startSignal.await();
synchronized (lock) {
lock.notifyAll(); // awake all nodes
}
} catch (InterruptedException e) {
/* ignore */
shutdown(); // properly close any connected node now
}
}
}
static class RunnableNode implements Runnable {
private Server server;
private int id;
private boolean working;
public RunnableNode(int id, Server server) {
this.id = id;
this.server = server;
this.working = true;
}
public int getId() {
return id;
}
public void run() {
try {
Thread.sleep((long) (Math.random() * 5) * 1000); // just wait randomly from 0 to 5 seconds....
synchronized (server.getLock()) {
server.connect(this);
server.getLock().wait();
}
if (!Thread.currentThread().isAlive()) {
throw new InterruptedException();
} else {
System.out.println("Node " + id + " started successfully!");
while (working) {
Thread.yield();
}
}
} catch (InterruptedException e1) {
System.out.print("Ooop! ...");
} catch (IllegalStateException e2) {
System.out.print("Awwww! Too late! ...");
}
System.out.println("Node " + id + " is shutting down");
}
public void shutdown() {
working = false; // shutdown node here...
}
}
static public void main(String...args) throws InterruptedException {
Server server = new Server();
for (int i=0; i<Server.NODE_COUNT + 4; i++) { // create 4 more nodes than needed...
new Thread(new RunnableNode(i, server)).start();
}
server.awaitAllConnections();
System.out.println("All connection received! Server started!");
Thread.sleep(6000);
server.shutdown();
}
This is a broad topic. You might try reading through the official guides for concurrency (i.e. threading, more or less) in Java. This isn't something with cut-and-dried solutions; you have to design something.

Categories