Broadcasting large lookup table causes kryoserializer error - java

I have a large RDD containing objects that is about 10GB in size. I want to convert this to a lookup table to be used in spark with the command:
val lookupTable = sparkContext.broadcast(entitiesRDD.collect) but it fails with:
17/02/27 17:33:25 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0, d1): org.apache.spark.SparkException: Kryo serialization failed: Buffer overflow. Available: 0, required: 2. To avoid this, increase spark.kryoserializer.buffer.max value.
at org.apache.spark.serializer.KryoSerializerInstance.serialize(KryoSerializer.scala:299)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:240)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
I can not increase the spark.kryoserializer.buffer.max past 2048mb or I get the error:
Caused by: java.lang.IllegalArgumentException: spark.kryoserializer.buffer.max must be less than 2048 mb, got: + 2048 mb.
at org.apache.spark.serializer.KryoSerializer.<init>(KryoSerializer.scala:66)
How do other people make large lookup tables in spark?

Related

Spark ERROR executor: Exception in task 0.0 in stage 0.0 (tid 0) java.lang.ArithmeticException

I got the error bellow when I ran an application Java Web using Cassandra 3.11.9 and Spark 3.0.1.
My question is why did it happen only after deploy the application? In the development environment it did not occur.
2021-03-24 08:50:41.150 INFO 19613 --- [uler-event-loop]
org.apache.spark.scheduler.DAGScheduler : ShuffleMapStage 0
(collectAsList at FalhaService.java:60) failed in 7.513 s due to Job
aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most
recent failure: Lost task 0.0 in stage 0.0 (TID 0) (GDBHML08 executor
driver): java.lang.ArithmeticException: integer overflow at
java.lang.Math.toIntExact(Math.java:1011) at
org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:90)
at
org.apache.spark.sql.catalyst.CatalystTypeConverters$DateConverter$.toCatalystImpl(CatalystTypeConverters.scala:306)
at
org.apache.spark.sql.catalyst.CatalystTypeConverters$DateConverter$.toCatalystImpl(CatalystTypeConverters.scala:305)
at
org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:107)
at
org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:252)
at
org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:242)
at
org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:107)
at
org.apache.spark.sql.catalyst.CatalystTypeConverters$.$anonfun$createToCatalystConverter$2(CatalystTypeConverters.scala:426)
at
com.datastax.spark.connector.datasource.UnsafeRowReader.read(UnsafeRowReaderFactory.scala:34)
at
com.datastax.spark.connector.datasource.UnsafeRowReader.read(UnsafeRowReaderFactory.scala:21)
at
com.datastax.spark.connector.datasource.CassandraPartitionReaderBase.$anonfun$getIterator$2(CassandraScanPartitionReaderFactory.scala:110)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:461) at
scala.collection.Iterator$$anon$11.next(Iterator.scala:496) at
com.datastax.spark.connector.datasource.CassandraPartitionReaderBase.next(CassandraScanPartitionReaderFactory.scala:66)
at
org.apache.spark.sql.execution.datasources.v2.PartitionIterator.hasNext(DataSourceRDD.scala:79)
at
org.apache.spark.sql.execution.datasources.v2.MetricsIterator.hasNext(DataSourceRDD.scala:112)
at
org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460) at
org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.agg_doAggregateWithKeys_0$(Unknown
Source) at
org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown
Source) at
org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at
org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:755)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460) at
org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:132)
at
org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59)
at
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:52)
at org.apache.spark.scheduler.Task.run(Task.scala:131) at
org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:497)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439)
at
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:500)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace: 2021-03-24 08:50:41.189 INFO 19613 ---
[nio-8080-exec-2] org.apache.spark.scheduler.DAGScheduler : Job 0
failed: collectAsList at FalhaService.java:60, took 8.160348 s
The line's code that it is in this error:
List<Row> rows = dataset.collectAsList();
The code's block:
Dataset<Row> dataset = session.sql(sql.toString());
List<Row> rows = dataset.collectAsList();
ListIterator<Row> t = rows.listIterator();
while (t.hasNext()) {
Row row = t.next();
grafico = new EstGraficoRelEstTela();
grafico.setSuperficie(row.getLong(0));
grafico.setSubsea(row.getLong(1) + row.getLong(2));
grafico.setNomeTipoSensor(row.getString(3));
graficoLocalFalhas.add(grafico);
}
session.close();
Thanks,
It looks like that you have incorrect data in the database, some date field that is far into the future. If you look into the source code, you can see that it's converting first into milliseconds, and then converting into days, and this conversion overflows the integer. And this may explain why the code works in dev environment...
You may ask your administrator to check files for corrupted data, for example, using the nodetool scrub command.
P.S. are you sure that you're using Spark 3.0.1? The location of the function in the error is matching the Spark 3.1.1...

Unable to load 25GB dataset in PySpark local mode with 56GB RAM free

I am having trouble loading and processing a 25GB Parquet dataset (of stackoverflow.com posts) on a single beefy machine in local mode with 12 cores/64GB of RAM.
I have more memory on my machine that is free and allocated to pyspark than the size of a Parquet dataset (let alone two columns of the dataset), and yet I am unable to run any operations on the DataFrame once I load it. This is confusing, and I can't figure out what to do.
Specifically, I have a Parquet dataset that is 25GB:
$ du -sh data/stackoverflow/parquet/Posts.df.parquet
25G data/stackoverflow/parquet/Posts.df.parquet
I have a machine with 56GB of free RAM:
$ free -h
total used free shared buff/cache
available
Mem: 62G 4.7G 56G 23M 1.7G
57G
Swap: 63G 0B 63G
I have configured PySpark to use 50GB of RAM (have tried adusting maxResultSize to no effect).
My configuration looks like this:
$ cat ~/spark/conf/spark-defaults.conf
spark.io.compression.codec org.apache.spark.io.SnappyCompressionCodec
spark.driver.memory 50g
spark.jars ...
spark.executor.cores 12
spark.driver.maxResultSize 20g
My environment looks like this:
$ cat ~/spark/conf/spark-env.sh
PYSPARK_PYTHON=python3
PYSPARK_DRIVER_PYTHON=python3
SPARK_WORKER_DIR=/nvm/spark/work
SPARK_LOCAL_DIRS=/nvm/spark/local
SPARK_WORKER_MEMORY=50g
SPARK_WORKER_CORES=12
I load the data like this:
$ pyspark
>>> posts = spark.read.parquet('data/stackoverflow/parquet/Posts.df.parquet')
It loads ok, but any operation - including if I run a limit(10) on the DataFrame first - results in an out of heap space error.
>>> posts.limit(10)\
.select('_ParentId','_Body')\
.filter(posts._ParentId == 9915705)\
.show()
[Stage 1:> (0 + 12) / 195]19/06/30 17:26:13 ERROR Executor: Exception in task 7.0 in stage 1.0 (TID 8)
java.lang.OutOfMemoryError: Java heap space
19/06/30 17:26:13 ERROR Executor: Exception in task 3.0 in stage 1.0 (TID 4)
java.lang.OutOfMemoryError: Java heap space
19/06/30 17:26:13 ERROR Executor: Exception in task 5.0 in stage 1.0 (TID 6)
java.lang.OutOfMemoryError: Java heap space
at java.nio.HeapByteBuffer.<init>(HeapByteBuffer.java:57)
at java.nio.ByteBuffer.allocate(ByteBuffer.java:335)
at org.apache.parquet.bytes.HeapByteBufferAllocator.allocate(HeapByteBufferAllocator.java:32)
at org.apache.parquet.hadoop.ParquetFileReader$ConsecutiveChunkList.readAll(ParquetFileReader.java:1166)
at org.apache.parquet.hadoop.ParquetFileReader.readNextRowGroup(ParquetFileReader.java:805)
at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.checkEndOfRowGroup(VectorizedParquetRecordReader.java:301)
at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:256)
at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:159)
at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:101)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:181)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:101)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.scan_nextBatch_0$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
19/06/30 17:26:13 ERROR Executor: Exception in task 10.0 in stage 1.0 (TID 11)
java.lang.OutOfMemoryError: Java heap space
at java.nio.HeapByteBuffer.<init>(HeapByteBuffer.java:57)
at java.nio.ByteBuffer.allocate(ByteBuffer.java:335)
at org.apache.parquet.bytes.HeapByteBufferAllocator.allocate(HeapByteBufferAllocator.java:32)
at org.apache.parquet.hadoop.ParquetFileReader$ConsecutiveChunkList.readAll(ParquetFileReader.java:1166)
at org.apache.parquet.hadoop.ParquetFileReader.readNextRowGroup(ParquetFileReader.java:805)
at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.checkEndOfRowGroup(VectorizedParquetRecordReader.java:301)
at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:256)
at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:159)
at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:101)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:181)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:101)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.scan_nextBatch_0$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
19/06/30 17:26:13 ERROR Executor: Exception in task 6.0 in stage 1.0 (TID 7)
java.lang.OutOfMemoryError: Java heap space
19/06/30 17:26:13 ERROR SparkUncaughtExceptionHandler: Uncaught exception in thread Thread[Executor task launch worker for task 7,5,main]
java.lang.OutOfMemoryError: Java heap space
19/06/30 17:26:13 ERROR SparkUncaughtExceptionHandler: Uncaught exception in thread Thread[Executor task launch worker for task 11,5,main]
java.lang.OutOfMemoryError: Java heap space
...
The following will run, suggesting the problem is the _Body field (obviously the largest):
>>> posts.limit(10).select('_Id').show()
+---+
|_Id|
+---+
| 4|
| 6|
| 7|
| 9|
| 11|
| 12|
| 13|
| 14|
| 16|
| 17|
+---+
What am I to do? I could use EMR, but I would like to be able to load this dataset locally and that seems an entirely reasonable thing to be able to do in this situation.
The default memory fraction for Spark's storage and computation is 0.6. Under your config it will be 0.6 * 50GB = 30GB. But the representation of data in memory may consume more space than the serialized disk version.
Please check the section of Memory Management to get more details.
You will need to set the spark memory config while running the pyspark command:
pyspark --conf spark.driver.memory=50g --conf spark.executor.pyspark.memory=50g
Check this doc for the config to set.
You might also need to figure out the number of executors you need based on your hardware.

how to get exception type in nested exception in Java?

I want to perform some action if my code gets an org.apache.kafka.clients.consumer.OffsetOutOfRangeException. I tried with this check
if(e.getCause().getCause() instanceof OffsetOutOfRangeException)
but am still getting a SparkException, not an OffsetOutOfRangeException.
ERROR Driver:86 - Error in executing stream
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 4 times, most recent failure: Lost task 0.3 in stage 3.0 (TID 11, localhost, executor 0): org.apache.kafka.clients.consumer.OffsetOutOfRangeException: Offsets out of range with no configured reset policy for partitions: {dns_data-0=23245772}
at org.apache.kafka.clients.consumer.internals.Fetcher.parseFetchedData(Fetcher.java:588)
at org.apache.kafka.clients.consumer.internals.Fetcher.fetchedRecords(Fetcher.java:354)
at org.apache.kafka.clients.consumer.KafkaConsumer.pollOnce(KafkaConsumer.java:1000)
at org.apache.kafka.clients.consumer.KafkaConsumer.poll(KafkaConsumer.java:938)
at org.apache.spark.streaming.kafka010.CachedKafkaConsumer.poll(CachedKafkaConsumer.scala:136)
at org.apache.spark.streaming.kafka010.CachedKafkaConsumer.get(CachedKafkaConsumer.scala:68)
at org.apache.spark.streaming.kafka010.KafkaRDDIterator.next(KafkaRDD.scala:271)
at org.apache.spark.streaming.kafka010.KafkaRDDIterator.next(KafkaRDD.scala:231)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:393)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)`
Caused by: org.apache.kafka.clients.consumer.OffsetOutOfRangeException: Offsets out of range with no configured reset policy for partitions: {dns_data-0=23245772}
at org.apache.kafka.clients.consumer.internals.Fetcher.parseFetchedData(Fetcher.java:588)
at org.apache.kafka.clients.consumer.internals.Fetcher.fetchedRecords(Fetcher.java:354)
at org.apache.kafka.clients.consumer.KafkaConsumer.pollOnce(KafkaConsumer.java:1000)
at org.apache.kafka.clients.consumer.KafkaConsumer.poll(KafkaConsumer.java:938)
at org.apache.spark.streaming.kafka010.CachedKafkaConsumer.poll(CachedKafkaConsumer.scala:136)
at org.apache.spark.streaming.kafka010.CachedKafkaConsumer.get(CachedKafkaConsumer.scala:68)
at org.apache.spark.streaming.kafka010.KafkaRDDIterator.next(KafkaRDD.scala:271)
at org.apache.spark.streaming.kafka010.KafkaRDDIterator.next(KafkaRDD.scala:231)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
try the below condition:
e.getCause().getClass().equals(OffsetOutOfRangeException.class)

Spark saveAsNewAPIHadoopFile java.io.IOException: Could not find a serializer for the Value class

I'm trying to store a java pair RDD as a Hadoop sequence file as follows:
JavaPairRDD<ImmutableBytesWritable, Put> putRdd = ...
config.set("io.serializations","org.apache.hadoop.io.serializer.JavaSerialization,org.apache.hadoop.io.serializer.WritableSerialization");
putRdd.saveAsNewAPIHadoopFile(outputPath, ImmutableBytesWritable.class, Put.class, SequenceFileOutputFormat.class, config);
But I get the exception even if I'm setting the io.serializations:
2017-04-06 14:39:32,623 ERROR [Executor task launch worker-0] executor.Executor: Exception in task 0.0 in stage 0.0 (TID 0)
java.io.IOException: Could not find a serializer for the Value class: 'org.apache.hadoop.hbase.client.Put'. Please ensure that the configuration 'io.serializations' is properly configured, if you're usingcustom serialization.
at org.apache.hadoop.io.SequenceFile$Writer.init(SequenceFile.java:1192)
at org.apache.hadoop.io.SequenceFile$Writer.<init>(SequenceFile.java:1094)
at org.apache.hadoop.io.SequenceFile.createWriter(SequenceFile.java:273)
at org.apache.hadoop.io.SequenceFile.createWriter(SequenceFile.java:530)
at org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat.getSequenceWriter(SequenceFileOutputFormat.java:64)
at org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat.getRecordWriter(SequenceFileOutputFormat.java:75)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1030)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1014)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
2017-04-06 14:39:32,669 ERROR [task-result-getter-0] scheduler.TaskSetManager: Task 0 in stage 0.0 failed 1 times; aborting job
Any idea on how I can fix this??
I find the fix, apparently Put (and all HBase mutations) have a specific serialiser MutationSerialization.
The following line fixes the issue:
config.setStrings("io.serializations",
config.get("io.serializations"),
MutationSerialization.class.getName(),
ResultSerialization.class.getName());

Have I reached the maximum allowable HDFS block size

I am running Hadoop 0.21.0 in a single node cluster to process a single big > 200 GB file. For decreasing the execution time, I have tried different HDFS block sizes ( 128, 256, 512 MB, 1, 1.5, 1.75 GB ) respectively. However, I have got the following exception when using block size >= 2 GB.
Note: I am using java-8-oracle.
2015-08-05 12:02:12,524 WARN org.apache.hadoop.mapred.Child: Exception running child : java.lang.IndexOutOfBoundsException
at org.apache.hadoop.fs.FSInputChecker.read(FSInputChecker.java:186)
at org.apache.hadoop.hdfs.BlockReader.read(BlockReader.java:113)
at org.apache.hadoop.hdfs.DFSInputStream.readBuffer(DFSInputStream.java:466)
at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:517)
at java.io.DataInputStream.readFully(DataInputStream.java:195)
at java.io.DataInputStream.readFully(DataInputStream.java:169)
at org.apache.hadoop.io.SequenceFile$Reader.init(SequenceFile.java:1518)
at org.apache.hadoop.io.SequenceFile$Reader.<init>(SequenceFile.java:1483)
at org.apache.hadoop.io.SequenceFile$Reader.<init>(SequenceFile.java:1451)
at org.apache.hadoop.io.SequenceFile$Reader.<init>(SequenceFile.java:1432)
at org.apache.hadoop.mapreduce.lib.input.SequenceFileRecordReader.initialize(SequenceFileRecordReader.java:60)
at org.apache.hadoop.mapred.MapTask$NewTrackingRecordReader.initialize(MapTask.java:460)
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:651)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:328)
at org.apache.hadoop.mapred.Child$4.run(Child.java:217)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:742)
at org.apache.hadoop.mapred.Child.main(Child.java:211)
For the Hadoop version you are using(0.21.0) seems so.
The issue you have was fixed for the next version, see more here: https://issues.apache.org/jira/browse/HDFS-96

Categories