Run the Main.main() method seems like a deadlock has occurred.
I found out it can be fixed if replace notify() with notifyAll().
But why?
Shouldn't the worst case always be called Lazy Thread to another Lazy Thread?
public class Main {
public static void main(String[] args) {
Table table = new Table(3);
new MakerThread("MakerThread-1", table, 8931415L).start();
new MakerThread("MakerThread-2", table, 314144L).start();
new MakerThread("MakerThread-3", table, 42131415L).start();
new EaterThread("EaterThread-1", table, 6313L).start();
new EaterThread("EaterThread-2", table, 8536313L).start();
new EaterThread("EaterThread-3", table, 35256313L).start();
new LazyThread("LazyThread-1", table).start();
new LazyThread("LazyThread-2", table).start();
new LazyThread("LazyThread-3", table).start();
new LazyThread("LazyThread-4", table).start();
new LazyThread("LazyThread-5", table).start();
new LazyThread("LazyThread-6", table).start();
new LazyThread("LazyThread-7", table).start();
}
}
public class Table {
private final String[] buffer;
private int tail;
private int head;
private int count;
public Table(int count) {
this.buffer = new String[count];
this.tail = 0;
this.head = 0;
this.count = 0;
}
public synchronized void put(String cake) throws InterruptedException {
while (count >= buffer.length) {
wait();
}
System.out.println(Thread.currentThread().getName() + " puts " + cake);
buffer[tail] = cake;
tail = (tail + 1) % buffer.length;
count++;
notify();
}
public synchronized String take() throws InterruptedException {
while (count <= 0) {
wait();
}
String cake = buffer[head];
head = (head + 1) % buffer.length;
count--;
System.out.println(Thread.currentThread().getName() + " takes " + cake);
notify();
return cake;
}
}
public class EaterThread extends Thread {
private final Random random;
private final Table table;
public EaterThread(String name, Table table, long seed) {
super(name);
this.random = new Random(seed);
this.table = table;
}
#Override
public void run() {
try {
while (true) {
String cake = table.take();
Thread.sleep(random.nextInt(1000));
}
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}
public class MakerThread extends Thread {
private final Random random;
private final Table table;
private static int id = 0;
public MakerThread(String name, Table table, long seed) {
super(name);
this.random = new Random(seed);
this.table = table;
}
#Override
public void run() {
try {
while (true) {
Thread.sleep(random.nextInt(1000));
String cake = " Cake No." + nextId() + " by " + getName() + " ]";
table.put(cake);
}
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
private static synchronized int nextId() {
return ++id;
}
}
public class LazyThread extends Thread {
private final Table table;
public LazyThread(String name, Table table) {
super(name);
this.table = table;
}
#Override
public void run() {
while (true) {
try {
synchronized (table) {
table.wait();
}
System.out.println(getName() + " is notified");
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}
}
Console output
You need notifyAll instead of notify. Otherwise, the a maker's notify could wake up another maker and put the whole thing into deadlock. Ditto for the lazies.
A better way to do this would be to use one lock for the makers and one lock for the lazies (takers) then you can just use notify when things are added or removed
public synchronized void put(String cake) throws InterruptedException {
while (count >= buffer.length) {
wait();
}
System.out.println(Thread.currentThread().getName() + " puts " + cake);
buffer[tail] = cake;
tail = (tail + 1) % buffer.length;
count++;
notifyAll();
}
public synchronized String take() throws InterruptedException {
while (count <= 0) {
wait();
}
String cake = buffer[head];
head = (head + 1) % buffer.length;
count--;
System.out.println(Thread.currentThread().getName() + " takes " + cake);
notifyAll();
return cake;
}
As the doc says:
public final void notify()
... If any threads are waiting on this object, one of them is chosen
to be awakened. The choice is arbitrary and occurs at the discretion
of the implementation ...
...the awakened thread enjoys no reliable privilege or disadvantage in
being the next thread to lock this object. ...
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#notify()
You can absolutely implement this so that you notify() only one thread. It depends on when the locked object is released by the preceding thread. If one thread is notified but the resource is still bound to the notifying thread, the released thread goes back to the wait status and after that there is no thread being notified.
When you notifyall() waiting threads and when the first thread does not get the locked object (because still locked by the notifying thread) then the remaining awoken threads will try to catch it.
So, with many awoken threads there is a much higher possibility of the locked object being catched by one of them.
im trying to understand the barrier problem. im still really new to programming but was presented with this problem in class to solve.
"I have to solve the barrier problem using counting semaphores. You can assume that there is a shared variable N which indicates the number of concurrent threads in the system. When the first N −1 threads arrive at the barrier, they should block until the Nth thread arrives, at which point all threads might proceed.
The shared counter variable can be used to keep track of the number of threads that have arrived and the semaphores mutex and barrier can be used to solve the synchronization problem."
import java.util.concurrent.Semaphore;
public class BarrierSynchronization extends Thread {
int N;
int count;
Semaphore mutex;
Semaphore barrier;
public BarrierSynchronization ()
{
this.N = 5;
this.count = 0;
this.mutex = new Semaphore(1);
this.barrier = new Semaphore(0);
}
public void run()
{
try {
mutex.acquire();
count = count + 1;
System.out.println(Thread.currentThread().getName() + ": " + count);
mutex.release();
if (count == N)
{
barrier.release();
System.out.println("All " + count + " threads have reached the barrier. The barrier is now open" );
} // unblock one thread
barrier.acquire();
barrier.release();
System.out.println(Thread.currentThread().getName() + " has passed the barrier");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
i tried to implement the pseudo code from the little book of semaphores. i called on this thread in main class and ran it but it gives an error about mutex.wait() for some reason. when i remove that bit of the code it runs but shows nothing. what exactly am i supposed to do for this problem?
public class Main {
public static void main(String[] args) throws InterruptedException
{
BarrierSynchronization barrier = new BarrierSynchronization();
Thread bs1 = new Thread(barrier);
Thread bs2 = new Thread(barrier);
Thread bs3 = new Thread(barrier);
Thread bs4 = new Thread(barrier);
Thread bs5 = new Thread(barrier);
bs1.start();
bs2.start();
bs3.start();
bs4.start();
bs5.start();
}
why does it output the rare one before the barrier is unlocked for all the threads? i think im close enough to solving this problem. is a race condition or something?
CLICK TO SEE IMAGE
Might be a bit late, but here is an implementation with a driver code that works. You have to garante mutual exclusion and keep track of the number of threads that arrive at the barrier.
public class Barrier {
private int capacity;
private Semaphore s, exclusao, counter;
public Barrier(int capacity) {
this.capacity = capacity;
counter = new Semaphore(0);
s = new Semaphore(0);
exclusao = new Semaphore(1);
}
public void espera() throws InterruptedException {
exclusao.acquire();
if (counter.availablePermits() < capacity - 1) {
counter.release();
exclusao.release();
s.acquire();
} else {
exclusao.release();
System.out.println("RELEASE ALL");
for (int i = 0; i < capacity; i++) {
s.release();
}
}
}
}
class TesteThread extends Thread {
private Barrier b;
private long waitPeriod;
public TesteThread(long wait, Barrier b) {
this.b = b;
this.waitPeriod = wait;
System.out.println("Thread started" + this.getName());
}
public void espera() throws InterruptedException {
b.espera();
}
#Override
public void run() {
try {
System.out.println("Thread a dormir " + this.getName());
sleep(waitPeriod);
System.out.println("Thread a esperar " + this.getName());
espera();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
class BarrierExample {
public static void main(String[] args) throws InterruptedException {
Barrier BR = new Barrier(5);
TesteThread[] teste = new TesteThread[5];
for (int i = 0; i < teste.length; i++) {
teste[i] = new TesteThread((long) (Math.random() * 1000), BR);
teste[i].start();
}
for (int i = 0; i < teste.length; i++) {
teste[i].join();
}
}
}`package examesFSO.exame2020_normal;
import java.util.concurrent.Semaphore;
public class Barrier {
private int capacity;
private Semaphore s, exclusao, counter;
public Barrier(int capacity) {
this.capacity = capacity;
counter = new Semaphore(0);
s = new Semaphore(0);
exclusao = new Semaphore(1);
}
public void espera() throws InterruptedException {
exclusao.acquire();
if (counter.availablePermits() < capacity - 1) {
counter.release();
exclusao.release();
s.acquire();
} else {
System.out.println("RELEASE ALL");
for (int i = 0; i < capacity; i++) {
s.release();
}
}
exclusao.release();
}
}
class TesteThread extends Thread {
private Barrier b;
private long waitPeriod;
public TesteThread(long wait, Barrier b) {
this.b = b;
this.waitPeriod = wait;
System.out.println("Thread instanciada " + this.getName());
}
public void espera() throws InterruptedException {
b.espera();
}
#Override
public void run() {
try {
System.out.println("Thread a dormir " + this.getName());
sleep(waitPeriod);
System.out.println("Thread a esperar " + this.getName());
espera();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
class BarrierExample {
public static void main(String[] args) throws InterruptedException {
Barrier BR = new Barrier(5);
TesteThread[] teste = new TesteThread[5];
for (int i = 0; i < teste.length; i++) {
teste[i] = new TesteThread((long) (Math.random() * 1000), BR);
teste[i].start();
}
for (int i = 0; i < teste.length; i++) {
teste[i].join();
}
}
}
I am trying to write a producer consumer program in Java where producer inserts 3 numbers in a Queue and Consumer removes these numbers from the queue. I have implemented my own Queue based on my own Linkedlist implementation.
When I run my code my producer terminates but my consumer never terminates. I am not able to figure out why
public class ProdConMain {
public static void main(String[] args) throws InterruptedException {
MyQueue queue = new MyQueue();
queue.setLimit(3);
Thread producer = new Thread(new Producer(queue));
Thread consumer = new Thread(new Consumer(queue));
producer.start();
consumer.start();
try {
producer.join();
System.out.println("Producer: " + producer.getState());
consumer.join();
System.out.println("Consumer: " + consumer.getState());
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(queue.list.toString());
}
}
public class Producer implements Runnable {
MyQueue queue = new MyQueue();
Random random = new Random();
public Producer(MyQueue queue) {
this.queue = queue;
}
#Override
public void run() {
int i = 1;
while (i < 10) {
synchronized (queue) {
if (queue.getSize() < queue.getLimit()) {
int value = random.nextInt(500);
queue.enqueue(value);
System.out.println("Inserted: " + value);
queue.notify();
} else {
try {
queue.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
i++;
}
}
}
public class Consumer implements Runnable {
MyQueue queue = new MyQueue();
public Consumer(MyQueue queue) {
this.queue = queue;
}
#Override
public void run() {
while (true) {
synchronized (queue) {
if (queue.isEmpty()) {
{
try {
queue.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} else {
int value = queue.dequeue();
System.out.println("Removed: " + value);
queue.notify();
}
}
}
}
}
You need to add a stop condition to that while(true) loop in the consumer, otherwise it will never finish. You can do it in the while condition itself:
while(shouldConsume()) {
// consume ...
}
or by breaking the infinite loop if the condition is reached:
while(true) {
// consume ...
if (shouldStopConsume()) {
break;
}
}
And then you just have to implement those methods with the stop condition that fits your use case.
Java producer-consumer program using thread & synchronized queue, the program is separated into 3 classes but it couldn't be run.
Queue.java:
public class Queue {
static final int MAXQUEUE = 3;
int[] queue = new int[MAXQUEUE];
int front, rear;
public Queue(){ front = 0; rear = 0; }
public boolean isEmpty(){ return (front==rear); }
public boolean isFull(){
int index = rear+1 < MAXQUEUE ? rear+1 : 0;
return (index == front);
}
public void enqueue(int value) {
queue[rear] = value;
rear = rear+1 < MAXQUEUE ? rear+1 : 0;
}
public int dequeue(){
int data = queue[front];
front = front+1 < MAXQUEUE ? rear+1 : 0;
return data;
}
}
SynchronizedQueue.java:
import java.util.Queue;
public class SynchronizedQueue {
Queue queue;
public SynchronizedQueue() {queue = new Queue(); }
public synchronized void enqueue(int value) {
try {
while (queue.isFull()) {
System.out.println();
System.out.println("Queue is full, please wait....");
wait();
}
}
catch (InterruptedException e) { }
((SynchronizedQueue) queue).enqueue(value);
notify();
}
public synchronized int dequeue() {
try {
while (queue.isEmpty()) {
System.out.println();
System.out.println("Queue is empty, please wait....");
wait();
}
}
catch ( InterruptedException e ) { }
int data = ((SynchronizedQueue) queue).dequeue();
notify();
return data;
}
}
Main program Ch10_3.java:
class Producer extends Thread {
public int count = 0;
public void run() {
int value;
while ( Ch10_3.isRunning ) {
value = (int)(Math.random()*100);
Ch10_3.squeue.enqueue(value);
System.out.print(">" + value + "]");
count++;
try {
Thread.sleep((int)(Math.random()*100));
}
catch( InterruptedException e) { }
}
System.out.println("\n" + Thread.currentThread() + "Producer thread end.");
}
}
class Consumer extends Thread {
public int count = 0;
public void run() {
int data;
while (Ch10_3.isRunning) {
data = Ch10_3.squeue.dequeue();
System.out.println("[" + data + ">");
count++;
try {
Thread.sleep((int)(Math.random()*100));
}
catch( InterruptedException e) { }
}
System.out.println("\n" + Thread.currentThread() + "Consumer thread end.");
}
}
public class Ch10_3 {
static final int MAXITEMS = 10;
static SynchonizedQueue squeue = new SynchronizedQueue();
static boolean isRunning = true;
public static void main(String[] args) {
Producer producer = new Producer();
Consumer consumer = new Consumer();
producer.start(); consumer.start();
while (true)
if (producer.count >= MAXITEMS && producer.count == consumer.count)
{ isRunning = false; break; }
}
}
Error message:
Exception in thread "main" java.lang.Error: Unresolved compilation
problem: at Ch10_3.main(Ch10_3.java:41)
In the catch blocks from enqueue and dequeue methods form class SynchronizedQueue you are trying to cast the queue member attribute which is of type Queue, to SynchronizedQueue.
In SynchronizedQueue.enqueue() we have:
((SynchronizedQueue) queue).enqueue(value);
Since there is no relation between Queue and SynchronizedQueue the compiler gives a compilation error. You should remove the cast.
But the best solution is to just use a java.util.concurrent.BlockingQueue implementation available in JAVA SDK, which will handle all the synchronisation part for you.
Odd even number printing using thread.Create one thread class, two instance of the thread. One will print the odd number and the other will print the even number.
I did the following coding. But it comes to dead lock state. Can some one please explain what might be the reason for that?
public class NumberPrinter implements Runnable{
private String type;
private static boolean oddTurn=true;
public NumberPrinter(String type){
this.type=type;
}
public void run() {
int i=type.equals("odd")?1:2;
while(i<10){
if(type.equals("odd"))
printOdd(i);
if(type.equals("even"))
printEven(i);
i=i+2;
}
}
private synchronized void printOdd(int i){
while(!oddTurn){
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(type + i);
oddTurn=false;
notifyAll();
}
private synchronized void printEven(int i){
while(oddTurn){
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(type + i);
oddTurn=true;
notifyAll();
}
public static void main(String[] s){
Thread odd=new Thread(new NumberPrinter("odd"));
Thread even=new Thread(new NumberPrinter("even"));
odd.start();
even.start();
}
}
Out Put:
odd1
even2
then comes to deadlock!!!!!!
Thanks for your help.
You're waiting and notifying different objects (monitors).
The idea is that you can call obj.wait() to wait for someone to do obj.notify(), while you're doing objA.wait() and objB.notify().
Change your printOdd method to something like
private void printOdd(int i) {
synchronized (lock) { // <-------
while (!oddTurn) {
try {
lock.wait(); // <-------
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(type + i);
oddTurn = false;
lock.notifyAll(); // <-------
}
}
and the printEven method similarly.
Then provide the NumberPrinter with a lock object:
Object lock = new Object();
Thread odd = new Thread(new NumberPrinter("odd", lock));
Thread even = new Thread(new NumberPrinter("even", lock));
Output:
odd1
even2
odd3
even4
odd5
even6
odd7
even8
odd9
There are a lot of bugs in the code.
First of all, the synchronized statements have no effect whatsoever. You create two thread instances, and each calls only its own methods. synchronized is only useful if another thread can call a method.
Then notifyAll() has no effect for the same reasons. odd.notifyAll() doesn't reach even hanging in the wait().
So what you need is another object which contains the state and which both threads can see and use. Use synchronized, wait() and notifyAll() on that third instance.
The same can be solved using Lock interface:
NaturalOrder.java
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class NaturalOrder {
public int currentNumber = 1;
public boolean evenOdd = false;
Lock lock = new ReentrantLock();
Condition condition = lock.newCondition();
public static void main(String[] args) {
NaturalOrder naturalOrder = new NaturalOrder();
Thread t1 = new Thread(new OddNumberLock(naturalOrder, naturalOrder.lock, naturalOrder.condition));
Thread t2 = new Thread(new EvenNumberLock(naturalOrder, naturalOrder.lock, naturalOrder.condition));
t1.start();
t2.start();
}
}
OddNumberLock.java
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
public class OddNumberLock implements Runnable {
NaturalOrder naturalOrder;
Lock lock;
Condition condition;
public OddNumberLock(NaturalOrder naturalOrder, Lock lock, Condition condition) {
this.naturalOrder = naturalOrder;
this.lock = lock;
this.condition = condition;
}
#Override
public void run() {
lock.lock();
while (naturalOrder.currentNumber < 20) {
while (naturalOrder.evenOdd != false) {
try {
condition.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
try {
Thread.sleep(ThreadLocalRandom.current().nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
if (naturalOrder.currentNumber % 2 != 0) {
System.out.println(naturalOrder.currentNumber);
}
naturalOrder.currentNumber++;
naturalOrder.evenOdd = true;
condition.signalAll();
}
lock.unlock();
}
}
EvenNumberLock.java
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
public class EvenNumberLock implements Runnable {
NaturalOrder naturalOrder;
Lock lock;
Condition condition;
public EvenNumberLock(NaturalOrder naturalOrder, Lock lock, Condition condition) {
this.naturalOrder = naturalOrder;
this.lock = lock;
this.condition = condition;
}
#Override
public void run() {
lock.lock();
while (naturalOrder.currentNumber < 20) {
while (naturalOrder.evenOdd != true) {
try {
condition.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
try {
Thread.sleep(ThreadLocalRandom.current().nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
if (naturalOrder.currentNumber % 2 == 0) {
System.out.println(naturalOrder.currentNumber);
}
naturalOrder.currentNumber++;
naturalOrder.evenOdd = false;
condition.signalAll();
}
lock.unlock();
}
}
I think the problem might be that printOdd and printEven synchronize on different lock (the Thread's object instance locks). Therefor you have not guaranteed that the change on the static variable oddTurn will be visible in the other thread. Try to make the oddTurn volatile for the start.
I did this way
public class OddEven{
public static void main(String[] args){
Print o=new Print();
Thread even=new Thread(new MyRunnable(2,o));
Thread odd=new Thread(new MyRunnable(1,o));
even.start();
odd.start();
}
}
class MyRunnable implements Runnable{
int start;
Print ob;
MyRunnable(int s,Print o){
start=s;
ob=o;
}
public void run(){
for(int i=start;i<=20;i+=2)
ob.display(i);
}
}
class Print{
int rem=0;
synchronized void display(int n){
while(n%2==rem)
try{
wait();
}
catch(Exception e){System.out.println("Display interrupted");}
System.out.print(n+" ");
rem=n%2;
notify();
}
}
You're missing volatile keyword within oddTurn variable. Without it there are no guarantees the threads see the actual value.
i Used a shared object to control the order of execution
class Counter implements Runnable {
int count;
static Class cl = Counter.class;
public synchronized void increment() {
String tname = Thread.currentThread().getName();
System.out.printf("%s: %d\n", tname, count++);
}
#Override
public void run() {
String tname = Thread.currentThread().getName();
while (true) {
increment();
synchronized (Counter.class) {
try {
cl.notify();
cl.wait();
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
}
public class WaitNotify {
public static void main(String[] args) {
Counter c = new Counter();
Thread t1 = new Thread(c, "thread1");
Thread t2 = new Thread(c, "thread2");
t1.start();
t2.start();
}
}
Here's my solution without any waits or notify.
wait() and notify()/notifyAll() ,
I dont see any reason to use them for this problem statement.
package threading;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class EvenOddPrinting {
int count=0;
boolean isOdd = false;
public static void main(String[] args) {
ExecutorService exec = Executors.newCachedThreadPool();
EvenOddPrinting obj = new EvenOddPrinting();
exec.submit(new EvenPrinter(obj));
exec.submit(new OddPrinter(obj));
exec.shutdown();
}
}
class EvenPrinter implements Runnable{
EvenOddPrinting obj;
public EvenPrinter(EvenOddPrinting obj) {
this.obj=obj;
}
#Override
public void run() {
while(obj.count < 100){
if(!obj.isOdd){
System.out.println("Even:"+obj.count);
obj.count++;
obj.isOdd = true;
}
}
}
}
class OddPrinter implements Runnable{
EvenOddPrinting obj;
public OddPrinter(EvenOddPrinting obj) {
this.obj = obj;
}
#Override
public void run() {
while(obj.count < 100){
if(obj.isOdd){
System.out.println("Odd:"+obj.count);
obj.count++;
obj.isOdd = false;
}
}
}
}
Your code corrected with using Lock interface:
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class NumberPrinter implements Runnable {
private Lock lock;
private Condition condition;
private String type;
private static boolean oddTurn = true;
public NumberPrinter(String type, Lock lock, Condition condition) {
this.type = type;
this.lock = lock;
this.condition = condition;
}
public void run() {
int i = type.equals("odd") ? 1 : 2;
while (i <= 10) {
if (type.equals("odd"))
printOdd(i);
if (type.equals("even"))
printEven(i);
i = i + 2;
}
}
private void printOdd(int i) {
// synchronized (lock) {
lock.lock();
while (!oddTurn) {
try {
// lock.wait();
condition.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(type + " " + i);
oddTurn = false;
// lock.notifyAll();
condition.signalAll();
lock.unlock();
}
// }
private void printEven(int i) {
// synchronized (lock) {
lock.lock();
while (oddTurn) {
try {
// lock.wait();
condition.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(type + " " + i);
oddTurn = true;
// lock.notifyAll();
condition.signalAll();
lock.unlock();
}
// }
public static void main(String[] args) {
Lock lock = new ReentrantLock();
Condition condition = lock.newCondition();
Thread odd = new Thread(new NumberPrinter("odd", lock, condition));
Thread even = new Thread(new NumberPrinter("even", lock, condition));
odd.start();
even.start();
}
}
public class Number_Thread extends Thread {
String thread;
int limit;
public Number_Thread(String thread,int limit){
this.thread=thread;
this.limit=limit;
}
Object lock=new Object();
public void run()
{
synchronized (lock)
{
//------------------- "print even"--------------------//
if(thread.equals("even"))
{
for (int i = 2; i <=limit; i+=2)
{
System.out.println(thread+" thread "+i);
try {
lock.wait(1000);
continue;
}
catch (InterruptedException e) {}
}
lock.notifyAll();
}
//------------------- "print odd"--------------------//
if(thread.equals("odd"))
{
for (int i = 1; i <=limit; i+=2)
{
System.out.println(thread+" thread "+i);
try {
lock.wait(1000);
continue;
}
catch (InterruptedException e) {}
}
lock.notifyAll();
}
}
}
}
//------------------thread creater class------------------//
import java.util.Scanner;
public class Main_Thread {
private static Scanner s;
public static void main(String[] args) throws InterruptedException {
System.out.print("enter limit:\t ");
s=new Scanner(System.in);
int n=s.nextInt();
s.close();
Thread t1=new Number_Thread("even",n);
Thread t2=new Number_Thread("odd",n);
t2.start();
Thread.sleep(100);
t1.start();
}
}
output for limit 5:
enter limit: 5
odd thread 1
even thread 2
odd thread 3
even thread 4
odd thread 5
I have implemented in such a way, based on the argument, no of threads will be spawned and will the respective no in round robin manner.
i.e., If thread count is 3, thread 1 will print 1,4 ...; thread 2 will print 2,5,... and thread 3 will print 3,6...
public class ThreadSynchronizer
{
public static void main(String[] args)
{
// BASED ON THE ARGUMENT MULTIPLE THREADS WILL BE CREATED AND EACH WILL PRINT ITS RESPECTIVE NO
// IE, IF THREAD COUNT IS 3, THREAD 1 WILL PRINT 1,4 ..., THREAD2 WILL PRINT 2,5,... AND THREAD3 WILL PRINT 3,6...
// LIMITED THE DISPLAY TO 1000 NOS
int threadCnt = Integer.parseInt(args[0]);
ReentrantLock lckArray[] = new ReentrantLock[threadCnt + 1];
for (int i = 0; i < threadCnt + 1; i++)
{
ReentrantLock lck = new ReentrantLock();
lck.lock();
lckArray[i] = lck;
}
for (int i = 0; i < threadCnt; i++)
{
Thread th = new Thread(new Printer(lckArray, i + 1));
th.start();
}
for (int i = 1; i < threadCnt + 1; i++)
{
lckArray[i].unlock();
while (!lckArray[i].isLocked())
{
}
}
lckArray[0].unlock();
}
}
class Printer implements Runnable
{
private ReentrantLock[] lckArray;
private int index;
Printer(ReentrantLock[] lckArray, int startValue)
{
this.lckArray = lckArray;
this.index = startValue;
}
#Override public void run()
{
ReentrantLock prevLock = null;
int printCounter = index;
for (int counter = 0; printCounter <= 1000; counter++)
{
int remCounter = counter % lckArray.length;
int incCounter = lckArray.length - remCounter;
int indexPostion = index + incCounter;
int curElementIndex = indexPostion % lckArray.length;
lckArray[curElementIndex].lock();
if (prevLock != null)
prevLock.unlock();
prevLock = lckArray[curElementIndex];
if (curElementIndex == 0)
{
System.out.println("Printed by Thread " + index + " " + printCounter);
printCounter = printCounter + lckArray.length - 1;
}
}
if (prevLock != null)
{
if (prevLock.isHeldByCurrentThread())
prevLock.unlock();
}
}
}
Program for Two Threads Alternatively Print Odd and Even Numbers.
#Implemented Using "Object Lock" Concept.
class Increment{
private int count;
public void increment(){
count++;
System.out.println(Thread.currentThread().getName()+"::::::::::::::::::"+count);
}
}
class SimpleThread extends Thread{
Increment obj = null;
SimpleThread(Increment obj){
this.obj=obj;
}
public void run(){
try {
Thread.sleep(100);
while(true){
synchronized(obj){
obj.increment();
Thread.sleep(1000);
obj.notify();
obj.wait();
}
}
} catch(InterruptedException ie) {
ie.printStackTrace();
}
}
}
public class Main
{
public static void main(String[] args) {
Increment increment = new Increment();
SimpleThread t1 = new SimpleThread(increment);
SimpleThread t2 = new SimpleThread(increment);
t1.start();
t2.start();
System.out.println(Thread.currentThread().getName()+"::::::::::::::"+"Hello World");
System.out.println(Runtime.getRuntime().availableProcessors()+"::::::::::::::"+"CORE SIZE");
}
}
I implemented it in a very simple way, from 1 to 40>
public class EvenOddProblem {
public static void main(String[] args) {
Printer p = new Printer();
EvenThread enenThread = new EvenThread(p);
OddThread oddThread = new OddThread(p);
new Thread(enenThread).start();
new Thread(oddThread).start();
}
}
class EvenThread implements Runnable {
private Printer printer;
public EvenThread(Printer p) {
printer = p;
}
#Override
public void run() {
try {
int i = 0;
while (true) {
if (i == 20)
break;
i++;
printer.evenPrintEven();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
class OddThread implements Runnable {
private Printer printer;
public OddThread(Printer p) {
printer = p;
}
#Override
public void run() {
int i = 0;
try {
while (true) {
if (i == 20)
break;
i++;
printer.evenPrintOdd();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
class Printer {
private static volatile Integer i = 1;
public synchronized void evenPrintOdd() throws InterruptedException {
while (i % 2 == 0) {
wait();
}
System.out.println(i);
i++;
notifyAll();
}
public synchronized void evenPrintEven() throws InterruptedException {
while (!(i % 2 == 0)) {
wait();
}
System.out.println(i);
i++;
notifyAll();
}
}