inconsistent results when finding Factorial Trailing Zero - java

Here are two versions of code I write to return the number of trailing zeroes in n!. The first version returns 452137080 for input 1808548329, the 2nd version returns 452137076 for input 1808548329. Wondering why there is a difference? The output from 2nd version is correct.
Source code in Java,
public class TrailingZero {
public static int trailingZeroes(int n) {
int result = 0;
int base = 5;
while (n/base > 0) {
result += n/base;
base *= 5;
}
return result;
}
public static int trailingZeroesV2(int n) {
return n == 0 ? 0 : n / 5 + trailingZeroesV2(n / 5);
}
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(trailingZeroes(1808548329));
System.out.println(trailingZeroesV2(1808548329));
}
}

This is due to integer overflow in the value of base.
Changing your code slightly to print n / base and base:
public class TrailingZero {
public static int trailingZeroes(int n) {
int result = 0;
int base = 5;
while (n/base > 0) {
System.out.println("n = " + n/base + " base = " + base);
result += n/base;
base *= 5;
}
return result;
}
public static int trailingZeroesV2(int n) {
return n == 0 ? 0 : n / 5 + trailingZeroesV2(n / 5);
}
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(trailingZeroes(1808548329));
System.out.println(trailingZeroesV2(1808548329));
}
}
Output:
n = 361709665 base = 5
n = 72341933 base = 25
n = 14468386 base = 125
n = 2893677 base = 625
n = 578735 base = 3125
n = 115747 base = 15625
n = 23149 base = 78125
n = 4629 base = 390625
n = 925 base = 1953125
n = 185 base = 9765625
n = 37 base = 48828125
n = 7 base = 244140625
n = 1 base = 1220703125
n = 1 base = 1808548329 <== OOPS 6103515625 overflows 32-bit integer
n = 3 base = 452807053
452137080
As you can see here, base increases to 1220703125, when n =1. Then the statement base *= 5 runs which makes it 6103515625 which is overshoots the maximum 32-bit unsigned int (2^32) by exactly 6103515625 - 2^32 = 1808548329, and that is what you see as the intermediate wrong value of b above (OOPS).
On the other hand, the recursive solution only uses the value of n which continuously decreases. Hence there is no overflow.
The simple solution is to declare base as long, i.e., long base = 5. That will return the right value of 452137076.
Another solution will be to modify the loop to only use n, similar to the recursive solution:
int base = 5;
while (n > 0) {
result += n/base;
n = n/base;
}
Note that in problems involving factorials, overflow is a given and you may want to consider higher precision arithmetic such as BigInteger.

Related

Java function multiplying itself while printing?

I'm new to Java and I have a problem. I created a class that calculates factorial of n:
public class factorial {
double result=1;
public double equation (int x){
for (int i=1;i<x+1;i=i+1) {
result = result*i;
}
return result;
}
}
I know I'm missing the case when x=0 but that's not the point Whenever I print it in other class it seems to multiply by itself
public class task1 {
factorial fa =new factorial();
void printit(){
System.out.println(fa.equation(3));
System.out.println(fa.equation(3));
System.out.println(fa.equation(3));
}
}
Main class:
public class Main {
public static void main(String[] args) {
task1 ta = new task1();
ta.printit();
}
}
Output:
6.0
36.0
216.0
How should I do it so it prints 6 three times instead of multiplying by itself
You have to declare result inside the method equation. This way, the variable result is fresh whenever you run the method equation.
public class factorial {
public double equation (int x){
double result = 1;
for (int i = 1; i < x + 1; i = i + 1) {
result = result * i;
}
return result;
}
}
If you don't do this, then the variable result stays the same with that instance of factorial. Also note that Java class names usually start with a capital letter, so instead of factorial, it would be Factorial.
Instead of i = i + 1, you can use i++ or i += 1. Similarly, instead of result = result * i, you can do result *= i.
Some examples:
i = i + 10 == i += 10
i = i - 10 == i -= 10
i = i * 10 == i *= 10
i = i / 10 == i /= 10
i = i % 10 == i %= 10
i = i + 1 == i += 1 == i++
i = i - 1 == i -= 1 == i--

How to reduce a given number in a two digit number without recursion method in Java?

This is the problem I'm trying to solve. Given a number like 6928:
difference between 6 and 9 is 3
difference between 9 and 2 is 7
difference between 2 and 8 is 6
So, the reduced form is 376. Since this is not a two-digit number, we repeat the process:
difference between 3 and 7 is 4
difference between 7 and 6 is 1
The result is 41, which is a two digit number, and the solution!
This is an attempt using the recursion method, but I am looking to do it in a non-recursive way:
public static int twodigit(int value) {
while (value > 99)
value = reduce(value);
return value;
}
private static int reduce(int value) {
return (value<=9? 0:reduce(value/10)*10 + Math.abs(value/10%10-value%10));
}
You can use a couple of nested loops and some math to add and select digits.
public static void main(String[] args) {
System.out.println(reduce(6928));
}
public static long reduce(long v) {
while(v > 9) {
System.out.println(v);
long y = 0, factor = 1;
// go through each digit from the bottom and calc the diff.
while(v > 9) {
y += factor * Math.abs(v % 10 - v / 10 % 10);
v /= 10;
// each digit is worth 10x the last.
factor *= 10;
}
v = y;
}
return v;
}
prints
6928
376
41
3
A tad more simple iterative method would be to convert the number into a string and pass it to below method
private static String calculateTwoDigitNumber(String number) {
while (number.length() > 2) {
String tmpNumber = "";
for (int i = 1; i < number.length(); i++) {
tmpNumber += Math
.abs(Integer.parseInt(number.charAt(i - 1) + "") - Integer.parseInt(number.charAt(i) + ""));
}
number = tmpNumber;
}
return number;
}
You can use StringBuilder instead of String if your input string is huge

Euler Project 2

So I am not very good at it yet at all (understatement). I am trying to solve problems in the Euler project, and I am already stuck on 2.
Each new term in the Fibonacci sequence is generated by adding the previous 2 terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
Here is my code which I have repeatedly tried to fix:
(I think there is something wrong with the for loop logic.)
public class tesy {
public static void main(String args[]) {
int fib = 0;
int tot = 0;
int total = 0;
for (fib = 0; tot < 4000000; fib++) {
tot = fib + (fib + 1);
if (tot % 2 == 0) {
total = tot + total;
}
}
System.out.println(total);
}
}
Your logic is erroneous in couple of ways,
tot = fib + (fib + 1); /** This will always be `(2*fib + 1)` and `fib` is getting
incremented by 1 each time. You have no reference to the previous two terms of the
sequence. **/
Try the below logic instead.
class Fibonacci
{
public static void main (String[] args)
{
int fiboFirst = 1;
int fiboSecond =2;
int fib = 0;
int sum = 0;
while(fiboSecond < 4000000)
{
// This will calculate the current term of the sequence
fib = fiboFirst + fiboSecond;
// Below two lines will update fib[i] and fib[i - 1] terms
// for the next loop iteration.
fiboFirst = fiboSecond; // fib[i]
fiboSecond = fib; // fib[i -1]
if (fib % 2 == 0)
{
sum = sum + fib;
}
}
System.out.println(sum+2);
}
}
Explanation
Here fiboFirst is equivalent to F[n] and fiboSecond is equivalent
to F[n - 1] in the Fibonacci sequence definition. In each iteration,
those two values should be replaced, in order to be used in the next
iteration. That is why I have these two lines,
fiboFirst = fiboSecond; // fib[i]
fiboSecond = fib; // fib[i -1]
HERE is the execution of the above program
You don't seem to be following the actual equation used to generate a fibonacci sequence, therefore there is no (obvious) way of fixing your code.
int fibA = 1, fibB = 2, total = 0;
while(fibB <= 4000000) {
// Add to the total, set fibA to fibB and get the next value in the sequence.
if(fibB % 2 == 0) total += fibB;
int temp = fibA;
fibA = fibB;
fibB = fibB + temp;
}
The above code should find the sum of all values less than or equal to 4000000
Here is a solution that uses BigInteger. Please verify the results.
public class Fibonacci{
public static void main(String[] args) {
BigInteger r = fibonacciEvenSum();
System.out.println(r);
}
public static BigInteger fibonacciEvenSum(){
int f = 1;
int s = 2;
int mn4 = 4000000;
BigInteger sum = BigInteger.valueOf(0);
while(s <= mn4){
if(s % 2 == 0){
sum = sum.add(BigInteger.valueOf(s));
}
f = f + s;
s = s + f;
}
return sum;
}
}
Before writing a program like this, you should first think of what's underlying this program. You should first understand how to generate a Fibonacci series before graduating on to doing something with the series. I'll give you my solution so that you can understand.
class euler2 {
public static void main(String[] args) {
int a = 0, b = 1; /* the first elements of Fibonacci series are generally
thought to be 0 and 1. Therefore the series is 0, 1, 1, 2, 3... .
I've initialized first and second elements such */
double sum = 0; // The initial sum is zero of course.
while (b < 4000000) /* since b is the second term, it will be our control variable.
This wouldn't let us consider values above 4M. */
{
int ob = b; // to swap the values of a and b.
b = a + b; // generating next in the series.
a = ob; // a is now the older value of b since b is now a + b.
if (b % 2 == 0) // if b is even
sum += b; // we add it to the sum
}
System.out.println(sum); // and now we just print the sum
}
}
Hope this helped!

Find the largest palindrome made from the product of two 3-digit numbers

package testing.project;
public class PalindromeThreeDigits {
public static void main(String[] args) {
int value = 0;
for(int i = 100;i <=999;i++)
{
for(int j = i;j <=999;j++)
{
int value1 = i * j;
StringBuilder sb1 = new StringBuilder(""+value1);
String sb2 = ""+value1;
sb1.reverse();
if(sb2.equals(sb1.toString()) && value<value1) {
value = value1;
}
}
}
System.out.println(value);
}
}
This is the code that I wrote in Java... Is there any efficient way other than this.. And can we optimize this code more??
We suppose the largest such palindrome will have six digits rather than five, because 143*777 = 111111 is a palindrome.
As noted elsewhere, a 6-digit base-10 palindrome abccba is a multiple of 11. This is true because a*100001 + b*010010 + c*001100 is equal to 11*a*9091 + 11*b*910 + 11*c*100. So, in our inner loop we can decrease n by steps of 11 if m is not a multiple of 11.
We are trying to find the largest palindrome under a million that is a product of two 3-digit numbers. To find a large result, we try large divisors first:
We step m downwards from 999, by 1's;
Run n down from 999 by 1's (if 11 divides m, or 9% of the time) or from 990 by 11's (if 11 doesn't divide m, or 91% of the time).
We keep track of the largest palindrome found so far in variable q. Suppose q = r·s with r <= s. We usually have m < r <= s. We require m·n > q or n >= q/m. As larger palindromes are found, the range of n gets more restricted, for two reasons: q gets larger, m gets smaller.
The inner loop of attached program executes only 506 times, vs the ~ 810000 times the naive program used.
#include <stdlib.h>
#include <stdio.h>
int main(void) {
enum { A=100000, B=10000, C=1000, c=100, b=10, a=1, T=10 };
int m, n, p, q=111111, r=143, s=777;
int nDel, nLo, nHi, inner=0, n11=(999/11)*11;
for (m=999; m>99; --m) {
nHi = n11; nDel = 11;
if (m%11==0) {
nHi = 999; nDel = 1;
}
nLo = q/m-1;
if (nLo < m) nLo = m-1;
for (n=nHi; n>nLo; n -= nDel) {
++inner;
// Check if p = product is a palindrome
p = m * n;
if (p%T==p/A && (p/B)%T==(p/b)%T && (p/C)%T==(p/c)%T) {
q=p; r=m; s=n;
printf ("%d at %d * %d\n", q, r, s);
break; // We're done with this value of m
}
}
}
printf ("Final result: %d at %d * %d inner=%d\n", q, r, s, inner);
return 0;
}
Note, the program is in C but same techniques will work in Java.
What I would do:
Start at 999, working my way backwards to 998, 997, etc
Create the palindrome for my current number.
Determine the prime factorization of this number (not all that expensive if you have a pre-generated list of primes.
Work through this prime factorization list to determine if I can use a combination of the factors to make 2 3 digit numbers.
Some code:
int[] primes = new int[] {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,
73,79,83,89,97,101,103,107,109,113,,127,131,137,139,149,151,157,163,167,173,
179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,
283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,
419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,
547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,
661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,
811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,
947,953,967,971,977,983,991,997};
for(int i = 999; i >= 100; i--) {
String palstr = String.valueOf(i) + (new StringBuilder().append(i).reverse());
int pal = Integer.parseInt(pal);
int[] factors = new int[20]; // cannot have more than 20 factors
int remainder = pal;
int facpos = 0;
primeloop:
for(int p = 0; p < primes.length; i++) {
while(remainder % p == 0) {
factors[facpos++] = p;
remainder /= p;
if(remainder < p) break primeloop;
}
}
// now to do the combinations here
}
We can translate the task into the language of mathematics.
For a short start, we use characters as digits:
abc * xyz = n
abc is a 3-digit number, and we deconstruct it as 100*a+10*b+c
xyz is a 3-digit number, and we deconstruct it as 100*x+10*y+z
Now we have two mathematical expressions, and can define a,b,c,x,y,z as € of {0..9}.
It is more precise to define a and x as of element from {1..9}, not {0..9}, because 097 isn't really a 3-digit number, is it?
Ok.
If we want to produce a big number, we should try to reach a 9......-Number, and since it shall be palindromic, it has to be of the pattern 9....9. If the last digit is a 9, then from
(100*a + 10*b + c) * (100*x + 10*y + z)
follows that z*c has to lead to a number, ending in digit 9 - all other calculations don't infect the last digit.
So c and z have to be from (1,3,7,9) because (1*9=9, 9*1=9, 3*3=9, 7*7=49).
Now some code (Scala):
val n = (0 to 9)
val m = n.tail // 1 to 9
val niners = Seq (1, 3, 7, 9)
val highs = for (a <- m;
b <- n;
c <- niners;
x <- m;
y <- n;
z <- niners) yield ((100*a + 10*b + c) * (100*x + 10*y + z))
Then I would sort them by size, and starting with the biggest one, test them for being palindromic. So I would omit to test small numbers for being palindromic, because that might not be so cheap.
For aesthetic reasons, I wouldn't take a (toString.reverse == toString) approach, but a recursive divide and modulo solution, but on todays machines, it doesn't make much difference, does it?
// Make a list of digits from a number:
def digitize (z: Int, nums : List[Int] = Nil) : List[Int] =
if (z == 0) nums else digitize (z/10, z%10 :: nums)
/* for 342243, test 3...==...3 and then 4224.
Fails early for 123329 */
def palindromic (nums : List[Int]) : Boolean = nums match {
case Nil => true
case x :: Nil => true
case x :: y :: Nil => x == y
case x :: xs => x == xs.last && palindromic (xs.init) }
def palindrom (z: Int) = palindromic (digitize (z))
For serious performance considerations, I would test it against a toString/reverse/equals approach. Maybe it is worse. It shall fail early, but division and modulo aren't known to be the fastest operations, and I use them to make a List from the Int. It would work for BigInt or Long with few redeclarations, and works nice with Java; could be implemented in Java but look different there.
Okay, putting the things together:
highs.filter (_ > 900000) .sortWith (_ > _) find (palindrom)
res45: Option[Int] = Some(906609)
There where 835 numbers left > 900000, and it returns pretty fast, but I guess even more brute forcing isn't much slower.
Maybe there is a much more clever way to construct the highest palindrom, instead of searching for it.
One problem is: I didn't knew before, that there is a solution > 900000.
A very different approach would be, to produce big palindromes, and deconstruct their factors.
public class Pin
{
public static boolean isPalin(int num)
{
char[] val = (""+num).toCharArray();
for(int i=0;i<val.length;i++)
{
if(val[i] != val[val.length - i - 1])
{
return false;
}
}
return true;
}
public static void main(String[] args)
{
for(int i=999;i>100;i--)
for(int j=999;j>100;j--)
{
int mul = j*i;
if(isPalin(mul))
{
System.out.printf("%d * %d = %d",i,j,mul);
return;
}
}
}
}
package ex;
public class Main {
public static void main(String[] args) {
int i = 0, j = 0, k = 0, l = 0, m = 0, n = 0, flag = 0;
for (i = 999; i >= 100; i--) {
for (j = i; j >= 100; j--) {
k = i * j;
// System.out.println(k);
m = 0;
n = k;
while (n > 0) {
l = n % 10;
m = m * 10 + l;
n = n / 10;
}
if (m == k) {
System.out.println("pal " + k + " of " + i + " and" + j);
flag = 1;
break;
}
}
if (flag == 1) {
// System.out.println(k);
break;
}
}
}
}
A slightly different approach that can easily calculate the largest palindromic number made from the product of up to two 6-digit numbers.
The first part is to create a generator of palindrome numbers. So there is no need to check if a number is palindromic, the second part is a simple loop.
#include <memory>
#include <iostream>
#include <cmath>
using namespace std;
template <int N>
class PalindromeGenerator {
unique_ptr <int []> m_data;
bool m_hasnext;
public :
PalindromeGenerator():m_data(new int[N])
{
for(auto i=0;i<N;i++)
m_data[i]=9;
m_hasnext=true;
}
bool hasNext() const {return m_hasnext;}
long long int getnext()
{
long long int v=0;
long long int b=1;
for(int i=0;i<N;i++){
v+=m_data[i]*b;
b*=10;
}
for(int i=N-1;i>=0;i--){
v+=m_data[i]*b;
b*=10;
}
auto i=N-1;
while (i>=0)
{
if(m_data[i]>=1) {
m_data[i]--;
return v;
}
else
{
m_data[i]=9;
i--;
}
}
m_hasnext=false;
return v;
}
};
template<int N>
void findmaxPalindrome()
{
PalindromeGenerator<N> gen;
decltype(gen.getnext()) minv=static_cast<decltype(gen.getnext())> (pow(10,N-1));
decltype(gen.getnext()) maxv=static_cast<decltype(gen.getnext())> (pow(10,N)-1);
decltype(gen.getnext()) start=11*(maxv/11);
while(gen.hasNext())
{
auto v=gen.getnext();
for (decltype(gen.getnext()) i=start;i>minv;i-=11)
{
if (v%i==0)
{
auto r=v/i;
if (r>minv && r<maxv ){
cout<<"done:"<<v<<" "<<i<< "," <<r <<endl;
return ;
}
}
}
}
return ;
}
int main(int argc, char* argv[])
{
findmaxPalindrome<6>();
return 0;
}
You can use the fact that 11 is a multiple of the palindrome to cut down on the search space. We can get this since we can assume the palindrome will be 6 digits and >= 111111.
e.g. ( from projecteuler ;) )
P= xyzzyx = 100000x + 10000y + 1000z + 100z + 10y +x
P=100001x+10010y+1100z
P=11(9091x+910y+100z)
Check if i mod 11 != 0, then the j loop can be subtracted by 11 (starting at 990) since at least one of the two must be divisible by 11.
You can try the following which prints
999 * 979 * 989 = 967262769
largest palindrome= 967262769 took 0.015
public static void main(String... args) throws IOException, ParseException {
long start = System.nanoTime();
int largestPalindrome = 0;
for (int i = 999; i > 100; i--) {
LOOP:
for (int j = i; j > 100; j--) {
for (int k = j; k > 100; k++) {
int n = i * j * k;
if (n < largestPalindrome) continue LOOP;
if (isPalindrome(n)) {
System.out.println(i + " * " + j + " * " + k + " = " + n);
largestPalindrome = n;
}
}
}
}
long time = System.nanoTime() - start;
System.out.printf("largest palindrome= %d took %.3f seconds%n", largestPalindrome, time / 1e9);
}
private static boolean isPalindrome(int n) {
if (n >= 100 * 1000 * 1000) {
// 9 digits
return n % 10 == n / (100 * 1000 * 1000)
&& (n / 10 % 10) == (n / (10 * 1000 * 1000) % 10)
&& (n / 100 % 10) == (n / (1000 * 1000) % 10)
&& (n / 1000 % 10) == (n / (100 * 1000) % 10);
} else if (n >= 10 * 1000 * 1000) {
// 8 digits
return n % 10 == n / (10 * 1000 * 1000)
&& (n / 10 % 10) == (n / (1000 * 1000) % 10)
&& (n / 100 % 10) == (n / (100 * 1000) % 10)
&& (n / 1000 % 10) == (n / (10 * 1000) % 10);
} else if (n >= 1000 * 1000) {
// 7 digits
return n % 10 == n / (1000 * 1000)
&& (n / 10 % 10) == (n / (100 * 1000) % 10)
&& (n / 100 % 10) == (n / (10 * 1000) % 10);
} else throw new AssertionError();
}
i did this my way , but m not sure if this is the most efficient way of doing this .
package problems;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class P_4 {
/**
* #param args
* #throws IOException
*/
static int[] arry = new int[6];
static int[] arry2 = new int[6];
public static boolean chk()
{
for(int a=0;a<arry.length;a++)
if(arry[a]!=arry2[a])
return false;
return true;
}
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
InputStreamReader ir = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(ir);
int temp,z,i;
for(int x=999;x>100;x--)
for(int y=999;y>100;y--)
{
i=0;
z=x*y;
while(z>0)
{
temp=z%10;
z=z/10;
arry[i]=temp;
i++;
}
for(int k = arry.length;k>0;k--)
arry2[arry.length- k]=arry[k-1];
if(chk())
{
System.out.print("pelindrome = ");
for(int l=0;l<arry2.length;l++)
System.out.print(arry2[l]);
System.out.println(x);
System.out.println(y);
}
}
}
}
This is code in C, a little bit long, but gets the job done.:)
#include <stdio.h>
#include <stdlib.h>
/*
A palindromic number reads the same both ways. The largest palindrome made from the product of two
2-digit numbers is 9009 = 91 99.
Find the largest palindrome made from the product of two 3-digit numbers.*/
int palndr(int b)
{
int *x,*y,i=0,j=0,br=0;
int n;
n=b;
while(b!=0)
{
br++;
b/=10;
}
x=(int *)malloc(br*sizeof(int));
y=(int *)malloc(br*sizeof(int));
int br1=br;
while(n!=0)
{
x[i++]=y[--br]=n%10;
n/=10;
}
int ind = 1;
for(i=0;i<br1;i++)
if(x[i]!=y[i])
ind=0;
free(x);
free(y);
return ind;
}
int main()
{
int i,cek,cekmax=1;
int j;
for(i=100;i<=999;i++)
{
for(j=i;j<=999;j++)
{
cek=i*j;
if(palndr(cek))
{
if(pp>cekmax)
cekmax=cek;
}
}
}
printf("The largest palindrome is: %d\n\a",cekmax);
}
You can actually do it with Python, it's easy just take a look:
actualProduct = 0
highestPalindrome = 0
# Setting the numbers. In case it's two digit 10 and 99, in case is three digit 100 and 999, etc.
num1 = 100
num2 = 999
def isPalindrome(number):
number = str(number)
reversed = number[::-1]
if number==reversed:
return True
else:
return False
a = 0
b = 0
for i in range(num1,num2+1):
for j in range(num1,num2+1):
actualProduct = i * j
if (isPalindrome(actualProduct) and (highestPalindrome < actualProduct)):
highestPalindrome = actualProduct
a = i
b = j
print "Largest palindrome made from the product of two %d-digit numbers is [ %d ] made of %d * %d" % (len(str(num1)), highestPalindrome, a, b)
Since we are not cycling down both iterators (num1 and num2) at the same time, the first palindrome number we find will be the largest. We don’t need to test to see if the palindrome we found is the largest. This significantly reduces the time it takes to calculate.
package testing.project;
public class PalindromeThreeDigits {
public static void main(String[] args) {
int limit = 99;
int max = 999;
int num1 = max, num2, prod;
while(num1 > limit)
{
num2 = num1;
while(num2 > limit)
{
total = num1 * num2;
StringBuilder sb1 = new StringBuilder(""+prod);
String sb2 = ""+prod;
sb1.reverse();
if( sb2.equals(sb1.toString()) ) { //optimized here
//print and exit
}
num2--;
}
num1--;
}
}//end of main
}//end of class PalindromeThreeDigits
I tried the solution by Tobin joy and vickyhacks and both of them produce the result 580085 which is wrong here is my solution, though very clumsy:
import java.util.*;
class ProjEu4
{
public static void main(String [] args) throws Exception
{
int n=997;
ArrayList<Integer> al=new ArrayList<Integer>();
outerloop:
while(n>100){
int k=reverse(n);
int fin=n*1000+k;
al=findfactors(fin);
if(al.size()>=2)
{
for(int i=0;i<al.size();i++)
{
if(al.contains(fin/al.get(i))){
System.out.println(fin+" factors are:"+al.get(i)+","+fin/al.get(i));
break outerloop;}
}
}
n--;
}
}
private static ArrayList<Integer> findfactors(int fin)
{
ArrayList<Integer> al=new ArrayList<Integer>();
for(int i=100;i<=999;i++)
{
if(fin%i==0)
al.add(i);
}
return al;
}
private static int reverse(int number)
{
int reverse = 0;
while(number != 0){
reverse = (reverse*10)+(number%10);
number = number/10;
}
return reverse;
}
}
Most probably it is replication of one of the other solution but it looks simple owing to pythonified code ,even it is a bit brute-force.
def largest_palindrome():
largest_palindrome = 0;
for i in reversed(range(1,1000,1)):
for j in reversed(range(1, i+1, 1)):
num = i*j
if check_palindrome(str(num)) and num > largest_palindrome :
largest_palindrome = num
print "largest palindrome ", largest_palindrome
def check_palindrome(term):
rev_term = term[::-1]
return rev_term == term
What about : in python
>>> for i in range((999*999),(100*100), -1):
... if str(i) == str(i)[::-1]:
... print i
... break
...
997799
>>>
I believe there is a simpler approach: Examine palindromes descending from the largest product of two three digit numbers, selecting the first palindrome with two three digit factors.
Here is the Ruby code:
require './palindrome_range'
require './prime'
def get_3_digit_factors(n)
prime_factors = Prime.factors(n)
rf = [prime_factors.pop]
rf << prime_factors.shift while rf.inject(:*) < 100 || prime_factors.inject(:*) > 999
lf = prime_factors.inject(:*)
rf = rf.inject(:*)
lf < 100 || lf > 999 || rf < 100 || rf > 999 ? [] : [lf, rf]
end
def has_3_digit_factors(n)
return !get_3_digit_factors(n).empty?
end
pr = PalindromeRange.new(0, 999 * 999)
n = pr.downto.find {|n| has_3_digit_factors(n)}
puts "Found #{n} - Factors #{get_3_digit_factors(n).inspect}, #{Prime.factors(n).inspect}"
prime.rb:
class Prime
class<<self
# Collect all prime factors
# -- Primes greater than 3 follow the form of (6n +/- 1)
# Being of the form 6n +/- 1 does not mean it is prime, but all primes have that form
# See http://primes.utm.edu/notes/faq/six.html
# -- The algorithm works because, while it will attempt non-prime values (e.g., (6 *4) + 1 == 25),
# they will fail since the earlier repeated division (e.g., by 5) means the non-prime will fail.
# Put another way, after repeatedly dividing by a known prime, the remainder is itself a prime
# factor or a multiple of a prime factor not yet tried (e.g., greater than 5).
def factors(n)
square_root = Math.sqrt(n).ceil
factors = []
while n % 2 == 0
factors << 2
n /= 2
end
while n % 3 == 0
factors << 3
n /= 3
end
i = 6
while i < square_root
[(i - 1), (i + 1)].each do |f|
while n % f == 0
factors << f
n /= f
end
end
i += 6
end
factors << n unless n == 1
factors
end
end
end
palindrome_range.rb:
class PalindromeRange
FIXNUM_MAX = (2**(0.size * 8 -2) -1)
def initialize(min = 0, max = FIXNUM_MAX)
#min = min
#max = max
end
def downto
return enum_for(:downto) unless block_given?
n = #max
while n >= #min
yield n if is_palindrome(n)
n -= 1
end
nil
end
def each
return upto
end
def upto
return enum_for(:downto) unless block_given?
n = #min
while n <= #max
yield n if is_palindrome(n)
n += 1
end
nil
end
private
def is_palindrome(n)
s = n.to_s
i = 0
j = s.length - 1
while i <= j
break if s[i] != s[j]
i += 1
j -= 1
end
i > j
end
end
public class ProjectEuler4 {
public static void main(String[] args) {
int x = 999; // largest 3-digit number
int largestProduct = 0;
for(int y=x; y>99; y--){
int product = x*y;
if(isPalindormic(x*y)){
if(product>largestProduct){
largestProduct = product;
System.out.println("3-digit numbers product palindormic number : " + x + " * " + y + " : " + product);
}
}
if(y==100 || product < largestProduct){y=x;x--;}
}
}
public static boolean isPalindormic(int n){
int palindormic = n;
int reverse = 0;
while(n>9){
reverse = (reverse*10) + n%10;
n=n/10;
}
reverse = (reverse*10) + n;
return (reverse == palindormic);
}
}

Counting trailing zeros of numbers resulted from factorial

I'm trying to count trailing zeros of numbers that are resulted from factorials (meaning that the numbers get quite large). Following code takes a number, compute the factorial of the number, and count the trailing zeros. However, when the number is about as large as 25!, numZeros don't work.
public static void main(String[] args) {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
double fact;
int answer;
try {
int number = Integer.parseInt(br.readLine());
fact = factorial(number);
answer = numZeros(fact);
}
catch (NumberFormatException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
public static double factorial (int num) {
double total = 1;
for (int i = 1; i <= num; i++) {
total *= i;
}
return total;
}
public static int numZeros (double num) {
int count = 0;
int last = 0;
while (last == 0) {
last = (int) (num % 10);
num = num / 10;
count++;
}
return count-1;
}
I am not worrying about the efficiency of this code, and I know that there are multiple ways to make the efficiency of this code BETTER. What I'm trying to figure out is why the counting trailing zeros of numbers that are greater than 25! is not working.
Any ideas?
Your task is not to compute the factorial but the number of zeroes. A good solution uses the formula from http://en.wikipedia.org/wiki/Trailing_zeros (which you can try to prove)
def zeroes(n):
i = 1
result = 0
while n >= i:
i *= 5
result += n/i # (taking floor, just like Python or Java does)
return result
Hope you can translate this to Java. This simply computes [n / 5] + [n / 25] + [n / 125] + [n / 625] + ... and stops when the divisor gets larger than n.
DON'T use BigIntegers. This is a bozosort. Such solutions require seconds of time for large numbers.
You only really need to know how many 2s and 5s there are in the product. If you're counting trailing zeroes, then you're actually counting "How many times does ten divide this number?". if you represent n! as q*(2^a)*(5^b) where q is not divisible by 2 or 5. Then just taking the minimum of a and b in the second expression will give you how many times 10 divides the number. Actually doing the multiplication is overkill.
Edit: Counting the twos is also overkill, so you only really need the fives.
And for some python, I think this should work:
def countFives(n):
fives = 0
m = 5
while m <= n:
fives = fives + (n/m)
m = m*5
return fives
The double type has limited precision, so if the numbers you are working with get too big the double will be only an approximation. To work around this you can use something like BigInteger to make it work for arbitrarily large integers.
You can use a DecimalFormat to format big numbers. If you format your number this way you get the number in scientific notation then every number will be like 1.4567E7 this will make your work much easier. Because the number after the E - the number of characters behind the . are the number of trailing zeros I think.
I don't know if this is the exact pattern needed. You can see how to form the patterns here
DecimalFormat formater = new DecimalFormat("0.###E0");
My 2 cents: avoid to work with double since they are error-prone. A better datatype in this case is BigInteger, and here there is a small method that will help you:
public class CountTrailingZeroes {
public int countTrailingZeroes(double number) {
return countTrailingZeroes(String.format("%.0f", number));
}
public int countTrailingZeroes(String number) {
int c = 0;
int i = number.length() - 1;
while (number.charAt(i) == '0') {
i--;
c++;
}
return c;
}
#Test
public void $128() {
assertEquals(0, countTrailingZeroes("128"));
}
#Test
public void $120() {
assertEquals(1, countTrailingZeroes("120"));
}
#Test
public void $1200() {
assertEquals(2, countTrailingZeroes("1200"));
}
#Test
public void $12000() {
assertEquals(3, countTrailingZeroes("12000"));
}
#Test
public void $120000() {
assertEquals(4, countTrailingZeroes("120000"));
}
#Test
public void $102350000() {
assertEquals(4, countTrailingZeroes("102350000"));
}
#Test
public void $1023500000() {
assertEquals(5, countTrailingZeroes(1023500000.0));
}
}
This is how I made it, but with bigger > 25 factorial the long capacity is not enough and should be used the class Biginteger, with witch I am not familiar yet:)
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner in = new Scanner(System.in);
System.out.print("Please enter a number : ");
long number = in.nextLong();
long numFactorial = 1;
for(long i = 1; i <= number; i++) {
numFactorial *= i;
}
long result = 0;
int divider = 5;
for( divider =5; (numFactorial % divider) == 0; divider*=5) {
result += 1;
}
System.out.println("Factorial of n is: " + numFactorial);
System.out.println("The number contains " + result + " zeroes at its end.");
in.close();
}
}
The best with logarithmic time complexity is the following:
public int trailingZeroes(int n) {
if (n < 0)
return -1;
int count = 0;
for (long i = 5; n / i >= 1; i *= 5) {
count += n / i;
}
return count;
}
shamelessly copied from http://www.programcreek.com/2014/04/leetcode-factorial-trailing-zeroes-java/
I had the same issue to solve in Javascript, and I solved it like:
var number = 1000010000;
var str = (number + '').split(''); //convert to string
var i = str.length - 1; // start from the right side of the array
var count = 0; //var where to leave result
for (;i>0 && str[i] === '0';i--){
count++;
}
console.log(count) // console shows 4
This solution gives you the number of trailing zeros.
var number = 1000010000;
var str = (number + '').split(''); //convert to string
var i = str.length - 1; // start from the right side of the array
var count = 0; //var where to leave result
for (;i>0 && str[i] === '0';i--){
count++;
}
console.log(count)
Java's doubles max out at a bit over 9 * 10 ^ 18 where as 25! is 1.5 * 10 ^ 25. If you want to be able to have factorials that high you might want to use BigInteger (similar to BigDecimal but doesn't do decimals).
I wrote this up real quick, I think it solves your problem accurately. I used the BigInteger class to avoid that cast from double to integer, which could be causing you problems. I tested it on several large numbers over 25, such as 101, which accurately returned 24 zeros.
The idea behind the method is that if you take 25! then the first calculation is 25 * 24 = 600, so you can knock two zeros off immediately and then do 6 * 23 = 138. So it calculates the factorial removing zeros as it goes.
public static int count(int number) {
final BigInteger zero = new BigInteger("0");
final BigInteger ten = new BigInteger("10");
int zeroCount = 0;
BigInteger mult = new BigInteger("1");
while (number > 0) {
mult = mult.multiply(new BigInteger(Integer.toString(number)));
while (mult.mod(ten).compareTo(zero) == 0){
mult = mult.divide(ten);
zeroCount += 1;
}
number -= 1;
}
return zeroCount;
}
Since you said you don't care about run time at all (not that my first was particularly efficient, just slightly more so) this one just does the factorial and then counts the zeros, so it's cenceptually simpler:
public static BigInteger factorial(int number) {
BigInteger ans = new BigInteger("1");
while (number > 0) {
ans = ans.multiply(new BigInteger(Integer.toString(number)));
number -= 1;
}
return ans;
}
public static int countZeros(int number) {
final BigInteger zero = new BigInteger("0");
final BigInteger ten = new BigInteger("10");
BigInteger fact = factorial(number);
int zeroCount = 0;
while (fact.mod(ten).compareTo(zero) == 0){
fact = fact.divide(ten);
zeroCount += 1;
}
}

Categories