RotateLeft operation on a 32 bit Integer - java

I have been working on different projects for my Computer Organization class and we have been working on BitWise operations. Our current task is writing a homemade 'rotateLeft' method for java.
While java already has on, by using Integer.rotateLeft, my current task is writing one to work with this program.
Note: The int variables equal these bit strings
x1 = 3 = 00000000000000000000000000000011
x2 = -11= 1111111111111111111111111111110101
My current program is:
public class Demo
{
public static void main(String[]args)
{
int x1=3, x2=-11;
System.out.print("x1: ");
BitWise.printbit(x1);
System.out.print("rotateLeft(x1,2): ");
BitWise.printbit(rotateLeft(x1,2));
System.out.print("x2: ");
BitWise.printbit(x2);
System.out.print("rotateLeft(x2,2): ");
BitWise.printbit(rotateLeft(x2,2));
}
public static int rotateLeft(int i, int distance)
{
int mask= i>>distance;
return mask;
}
}
This operation works for the x1 bit pattern, however, it merely shifts the bits, not actually rotates them.
Any suggestions?

this works for me:
public static void main(String[] args) {
int x1 = 3;
int x2 = -11;
int x1IntegerRotated = Integer.rotateLeft(x1, 2);
int x1SelfRotated = rotateLeft(x1, 2);
System.out.printf("x1 = %d(%s)%n", x1, printIntBitwise(x1));
System.out.printf("x1IntegerRotated = %d(%s)%n", x1IntegerRotated, printIntBitwise(x1IntegerRotated));
System.out.printf("x1SelfRotated = %d(%s)%n", x1SelfRotated, printIntBitwise(x1SelfRotated));
System.out.println();
int x2IntegerRotated = Integer.rotateLeft(x2, 2);
int x2SelfRotated = rotateLeft(x2, 2);
System.out.printf("x2 = %d(%s)%n", x2, printIntBitwise(x2));
System.out.printf("x2IntegerRotated = %d(%s)%n", x2IntegerRotated, printIntBitwise(x2IntegerRotated));
System.out.printf("x2SelfRotated = %d(%s)%n", x2SelfRotated, printIntBitwise(x2SelfRotated));
}
private static int rotateLeft(int value, int distance) {
int mask = (1 << distance) - 1;
int leftPart = (value << distance) & (~mask);
int rightPart = (value >> (32 - distance)) & (mask);
int result = leftPart | rightPart;
return result;
}
private static String printIntBitwise(int a) {
StringBuilder sb = new StringBuilder();
for(int i = 1; i <= 32; i++) {
sb.append(Math.abs((a & (1 << (32 - i))) >> (32 - i)));
}
return sb.toString();
}

Ok, I have figured out a way of doing this:
//This is a helper function; it returns an int where the leftmost num bits are 1 and the rest are 0
static int get1s(int num) {
int buf = 0;
for (int i = 31; i>31-num;i--) {
buf += 1 << i;
}
return buf;
}
static int rotateLeft(int i, int distance) {
int end = i & get1s(distance);
int mov = end >>> 32 - distance;
int shift = i << distance;
return shift + mov;
}
Basically, the way that this works, line by line, is as follows:
Set end equal to just the leftmost distance bits, without actually shifting it.
Set mov equal to end shifted enough to make it the rightmost distance bits.
Set shift equal to the shifted value.
Return shift plus mov, thereby placing what were once the leftmost bits at the right.
If you want to see how this works in more detail, you can print the results after each step:
static int rotateLeftWithPrint(int i, int distance) {
int end = i & get1s(distance);
System.out.println(Integer.toBinaryString(end));
int mov = end >>> 32 - distance;
System.out.println(Integer.toBinaryString(mov));
int shift = i << distance;
System.out.println(Integer.toBinaryString(shift));
System.out.println(Integer.toBinaryString(shift+mov));
return shift + mov;
}
(NOTE) Integer.toBinaryString does not show leading zeroes, so that's why it won't always print Strings of the same length.
EDIT - Thought this might be useful, you can add binary literals by placing 0b before the digits; 3 is equivalent to 0b00000000000000000000000000000011.

Related

Bit manipulation insertion

class UpdateBits
{
// Function to updateBits M insert to N.
static int updateBits(int n, int m, int i, int j)
{
/* Create a mask to clear bits i through j
in n. EXAMPLE: i = 2, j = 4. Result
should be 11100011. For simplicity, we'll
use just 8 bits for the example. */
int allOnes = ~0; // will equal sequence of all ls
// ls before position j, then 0s. left = 11100000
int left= allOnes << (j + 1);
// l's after position i. right = 00000011
int right = ((1 << i) - 1);
// All ls, except for 0s between i and j. mask 11100011
int mask = left | right;
/* Clear bits j through i then put min there */
// Clear bits j through i.
int n_cleared = n & mask;
// Move m into correct position.
int m_shifted = m << i;
// OR them, and we're done!
return (n_cleared | m_shifted);
}
public static void main (String[] args)
{
// in Binary N= 10000000000
int n = 1024;
// in Binary M= 10011
int m = 19;
int i = 2, j = 6;
System.out.println(updateBits(n,m,i,j));
}
}
I am unable to understand this line:
int right = ((1 << i) - 1);
1 << i means you shift the 1 i bits to the left. If i is 2, this would result in the bits being 00000100. No matter the i, we would always have exactly one 1 in there, followed by i zeros.
Now you take that minus 1 and get 00000011. If you are familiar with binary you should see that taking a binary number that has exactly one 1 in it minus 1 will always result in a binary number that has some zeros and then ones (regex: 0*1*).
So in total you get a number that has exactly i bits as 1 at the end.

Understanding the strictMath java library

I got bored and decided to dive into remaking the square root function without referencing any of the Math.java functions. I have gotten to this point:
package sqrt;
public class SquareRoot {
public static void main(String[] args) {
System.out.println(sqrtOf(8));
}
public static double sqrtOf(double n){
double x = log(n,2);
return powerOf(2, x/2);
}
public static double log(double n, double base)
{
return (Math.log(n)/Math.log(base));
}
public static double powerOf(double x, double y) {
return powerOf(e(),y * log(x, e()));
}
public static int factorial(int n){
if(n <= 1){
return 1;
}else{
return n * factorial((n-1));
}
}
public static double e(){
return 1/factorial(1);
}
public static double e(int precision){
return 1/factorial(precision);
}
}
As you may very well see, I came to the point in my powerOf() function that infinitely recalls itself. I could replace that and use Math.exp(y * log(x, e()), so I dived into the Math source code to see how it handled my problem, resulting in a goose chase.
public static double exp(double a) {
return StrictMath.exp(a); // default impl. delegates to StrictMath
}
which leads to:
public static double exp(double x)
{
if (x != x)
return x;
if (x > EXP_LIMIT_H)
return Double.POSITIVE_INFINITY;
if (x < EXP_LIMIT_L)
return 0;
// Argument reduction.
double hi;
double lo;
int k;
double t = abs(x);
if (t > 0.5 * LN2)
{
if (t < 1.5 * LN2)
{
hi = t - LN2_H;
lo = LN2_L;
k = 1;
}
else
{
k = (int) (INV_LN2 * t + 0.5);
hi = t - k * LN2_H;
lo = k * LN2_L;
}
if (x < 0)
{
hi = -hi;
lo = -lo;
k = -k;
}
x = hi - lo;
}
else if (t < 1 / TWO_28)
return 1;
else
lo = hi = k = 0;
// Now x is in primary range.
t = x * x;
double c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
if (k == 0)
return 1 - (x * c / (c - 2) - x);
double y = 1 - (lo - x * c / (2 - c) - hi);
return scale(y, k);
}
Values that are referenced:
LN2 = 0.6931471805599453, // Long bits 0x3fe62e42fefa39efL.
LN2_H = 0.6931471803691238, // Long bits 0x3fe62e42fee00000L.
LN2_L = 1.9082149292705877e-10, // Long bits 0x3dea39ef35793c76L.
INV_LN2 = 1.4426950408889634, // Long bits 0x3ff71547652b82feL.
INV_LN2_H = 1.4426950216293335, // Long bits 0x3ff7154760000000L.
INV_LN2_L = 1.9259629911266175e-8; // Long bits 0x3e54ae0bf85ddf44L.
P1 = 0.16666666666666602, // Long bits 0x3fc555555555553eL.
P2 = -2.7777777777015593e-3, // Long bits 0xbf66c16c16bebd93L.
P3 = 6.613756321437934e-5, // Long bits 0x3f11566aaf25de2cL.
P4 = -1.6533902205465252e-6, // Long bits 0xbebbbd41c5d26bf1L.
P5 = 4.1381367970572385e-8, // Long bits 0x3e66376972bea4d0L.
TWO_28 = 0x10000000, // Long bits 0x41b0000000000000L
Here is where I'm starting to get lost. But I can make a few assumptions that so far the answer is starting to become estimated. I then find myself here:
private static double scale(double x, int n)
{
if (Configuration.DEBUG && abs(n) >= 2048)
throw new InternalError("Assertion failure");
if (x == 0 || x == Double.NEGATIVE_INFINITY
|| ! (x < Double.POSITIVE_INFINITY) || n == 0)
return x;
long bits = Double.doubleToLongBits(x);
int exp = (int) (bits >> 52) & 0x7ff;
if (exp == 0) // Subnormal x.
{
x *= TWO_54;
exp = ((int) (Double.doubleToLongBits(x) >> 52) & 0x7ff) - 54;
}
exp += n;
if (exp > 0x7fe) // Overflow.
return Double.POSITIVE_INFINITY * x;
if (exp > 0) // Normal.
return Double.longBitsToDouble((bits & 0x800fffffffffffffL)
| ((long) exp << 52));
if (exp <= -54)
return 0 * x; // Underflow.
exp += 54; // Subnormal result.
x = Double.longBitsToDouble((bits & 0x800fffffffffffffL)
| ((long) exp << 52));
return x * (1 / TWO_54);
}
TWO_54 = 0x40000000000000L
While I am, I would say, very understanding of math and programming, I hit the point to where I find myself at a Frankenstein monster mix of the two. I noticed the intrinsic switch to bits (which I have little to no experience with), and I was hoping someone could explain to me the processes that are occurring "under the hood" so to speak. Specifically where I got lost is from "Now x is in primary range" in the exp() method on wards and what the values that are being referenced really represent. I'm was asking for someone to help me understand not only the methods themselves, but also how they arrive to the answer. Feel free to go as in depth as needed.
edit:
if someone could maybe make this tag: "strictMath" that would be great. I believe that its size and for the Math library deriving from it justifies its existence.
To the exponential function:
What happens is that
exp(x) = 2^k * exp(x-k*log(2))
is exploited for positive x. Some magic is used to get more consistent results for large x where the reduction x-k*log(2) will introduce cancellation errors.
On the reduced x a rational approximation with minimized maximal error over the interval 0.5..1.5 is used, see Pade approximations and similar. This is based on the symmetric formula
exp(x) = exp(x/2)/exp(-x/2) = (c(x²)+x)/(c(x²)-x)
(note that the c in the code is x+c(x)-2). When using Taylor series, approximations for c(x*x)=x*coth(x/2) are based on
c(u)=2 + 1/6*u - 1/360*u^2 + 1/15120*u^3 - 1/604800*u^4 + 1/23950080*u^5 - 691/653837184000*u^6
The scale(x,n) function implements the multiplication x*2^n by directly manipulating the exponent in the bit assembly of the double floating point format.
Computing square roots
To compute square roots it would be more advantageous to compute them directly. First reduce the interval of approximation arguments via
sqrt(x)=2^k*sqrt(x/4^k)
which can again be done efficiently by directly manipulating the bit format of double.
After x is reduced to the interval 0.5..2.0 one can then employ formulas of the form
u = (x-1)/(x+1)
y = (c(u*u)+u) / (c(u*u)-u)
based on
sqrt(x)=sqrt(1+u)/sqrt(1-u)
and
c(v) = 1+sqrt(1-v) = 2 - 1/2*v - 1/8*v^2 - 1/16*v^3 - 5/128*v^4 - 7/256*v^5 - 21/1024*v^6 - 33/2048*v^7 - ...
In a program without bit manipulations this could look like
double my_sqrt(double x) {
double c,u,v,y,scale=1;
int k=0;
if(x<0) return NaN;
while(x>2 ) { x/=4; scale *=2; k++; }
while(x<0.5) { x*=4; scale /=2; k--; }
// rational approximation of sqrt
u = (x-1)/(x+1);
v = u*u;
c = 2 - v/2*(1 + v/4*(1 + v/2));
y = 1 + 2*u/(c-u); // = (c+u)/(c-u);
// one Halley iteration
y = y*(1+8*x/(3*(3*y*y+x))) // = y*(y*y+3*x)/(3*y*y+x)
// reconstruct original scale
return y*scale;
}
One could replace the Halley step with two Newton steps, or
with a better uniform approximation in c one could replace the Halley step with one Newton step, or ...

In Java concurrency tutorial in fork/join section, how is the "computeDirectly" function executed via "invokeAll"?

In the fork/join chapter in the official Java Concurrency tutorial, it has the following partial-example code.
I understand if the image-array size is less than the threshold (100,000), then it's computed directly (computeDirectly). Otherwise it's split in half, and two ForkBlur objects are created and invoked (invokeAll). What I don't understand is how invokeAll ends up executing the computeDirectly function for those pieces.
How is the computeDirectly function called for arrays that are larger than the threshold? (The pieces it's split into.)
public class ForkBlur extends RecursiveAction {
private int[] mSource;
private int mStart;
private int mLength;
private int[] mDestination;
// Processing window size; should be odd.
private int mBlurWidth = 15;
public ForkBlur(int[] src, int start, int length, int[] dst) {
mSource = src;
mStart = start;
mLength = length;
mDestination = dst;
}
protected void computeDirectly() {
int sidePixels = (mBlurWidth - 1) / 2;
for (int index = mStart; index < mStart + mLength; index++) {
// Calculate average.
float rt = 0, gt = 0, bt = 0;
for (int mi = -sidePixels; mi <= sidePixels; mi++) {
int mindex = Math.min(Math.max(mi + index, 0),
mSource.length - 1);
int pixel = mSource[mindex];
rt += (float)((pixel & 0x00ff0000) >> 16)
/ mBlurWidth;
gt += (float)((pixel & 0x0000ff00) >> 8)
/ mBlurWidth;
bt += (float)((pixel & 0x000000ff) >> 0)
/ mBlurWidth;
}
// Reassemble destination pixel.
int dpixel = (0xff000000 ) |
(((int)rt) << 16) |
(((int)gt) << 8) |
(((int)bt) << 0);
mDestination[index] = dpixel;
}
}
...
And this separate piece which calls it:
protected static int sThreshold = 100000;
protected void compute() {
if (mLength < sThreshold) {
computeDirectly();
return;
}
int split = mLength / 2;
invokeAll(new ForkBlur(mSource, mStart, split, mDestination),
new ForkBlur(mSource, mStart + split, mLength - split,
mDestination));
}
This
invokeAll(new ForkBlur(mSource, mStart, split, mDestination),
new ForkBlur(mSource, mStart + split, mLength - split,
mDestination));
ends up invoking the compute method of ForkBlur which, if you've split it to a small enough threshold, will execute computeDirectly by passing through the if condition here
if (mLength < sThreshold) {
computeDirectly();
return;
}
So one big task gets split into two (or more) smaller tasks, which may get split again, and again, until the tasks are small enough to be run.

How to split an Integer into an Array using Java?

I apologise if this has already been asked before, but I was unable to find a conclusive answer after some extensive searching, so I thought I would ask here. I am a beginner to Java (to coding, in general) and was tasked with writing a program that takes a user-inputted 3 digit number, and adds those three digits.
Note: I cannot use loops for this task, and the three digits must all be inputted at once.
String myInput;
myInput =
JOptionPane.showInputDialog(null,"Hello, and welcome to the ThreeDigit program. "
+ "\nPlease input a three digit number below. \nThreeDigit will add those three numbers and display their sum.");
int threedigitinput;
threedigitinput = Integer.parseInt(myInput);
There are a number of ways, one of which would be...
String ss[] = "123".split("");
int i =
Integer.parseInt(ss[0]) +
Integer.parseInt(ss[1]) +
Integer.parseInt(ss[2]);
System.out.println(i);
another would be...
String s = "123";
int i =
Character.getNumericValue(s.charAt(0)) +
Character.getNumericValue(s.charAt(1)) +
Character.getNumericValue(s.charAt(2));
System.out.println(i);
and still another would be...
String s = "123";
int i =
s.charAt(0) +
s.charAt(1) +
s.charAt(2) -
(3 * 48);
System.out.println(i);
BUT hard coding for 3 numbers isn't very useful beyond this simple case. So how about recursion??
public static int addDigis(String s) {
if(s.length() == 1)
return s.charAt(0) - 48;
return s.charAt(0) - 48 + addDigis(s.substring(1, s.length()));
}
Output for each example: 6
you can use integer math to come up with the three numbers seperately
int first = threedigitinput / 100;
int second = (threedigitinput % 100) / 10;
int third = threedigitinput % 10;
If I understand your question, you could use Character.digit(char,int) to get the value for each character with something like -
int value = Character.digit(myInput.charAt(0), 10)
+ Character.digit(myInput.charAt(1), 10)
+ Character.digit(myInput.charAt(2), 10);
Classic example of using divmod:
public class SumIntegerDigits {
public static void main(String[] args) {
System.out.println(sumOfDigitsSimple(248)); // 14
System.out.println(sumOfDigitsIterative(248)); // 14
System.out.println(sumOfDigitsRecursive(248)); // 14
}
// Simple, non-loop solution
public static final int sumOfDigitsSimple(int x) {
int y = x % 1000; // Make sure that the value has no more than 3 digits.
return divmod(y,100)[0]+divmod(divmod(y,100)[1],10)[0]+divmod(y,10)[1];
}
// Iterative Solution
public static final int sumOfDigitsIterative(int x) {
int sum = 0;
while (x > 0) {
int[] y = divmod(x, 10);
sum += y[1];
x = y[0];
}
return sum;
}
// Tail-recursive Solution
public static final int sumOfDigitsRecursive(int x) {
if (x <= 0) {
return 0;
}
int[] y = divmod(x, 10);
return sumOfDigitsRecursive(y[0]) + y[1];
}
public static final int[] divmod(final int x, int m) {
return new int[] { (x / m), (x % m) };
}
}

Reverse all bits in an int and return the int

What integer should be returned when we reverse all bits of integer 1? How do we do that with Java code?
No java built in functions should be used. Shouldn't use String reverse, converting to string etc. Only bitwise operations allowed.
import java.util.*;
import java.lang.*;
import java.io.*;
class BitReverseInt
{
public static void main (String[] args) throws java.lang.Exception{
System.out.println(reverser(1));
}
public static int reverser(int given){
int input = given;
int temp = 0;
int output = 0;
while(input > 0){
output = output << 1;
temp = input & 1;
input = input >> 1;
output = output | temp;
}
return output;
}
}
Bit reversal can be done by interchanging adjacent single bits, then interchanging adjacent 2-bit fields, then 4-bits, and so on as shown below. These five assignment statements can be executed in any order.
/********************************************************
* These are the bit masks used in the bit reversal process
0x55555555 = 01010101010101010101010101010101
0xAAAAAAAA = 10101010101010101010101010101010
0x33333333 = 00110011001100110011001100110011
0xCCCCCCCC = 11001100110011001100110011001100
0x0F0F0F0F = 00001111000011110000111100001111
0xF0F0F0F0 = 11110000111100001111000011110000
0x00FF00FF = 00000000111111110000000011111111
0xFF00FF00 = 11111111000000001111111100000000
0x0000FFFF = 00000000000000001111111111111111
0xFFFF0000 = 11111111111111110000000000000000
*/
uint x = 23885963; // 00000001011011000111100010001011
x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1;
x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2;
x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4;
x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8;
x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;
// result x == 3508418176 11010001000111100011011010000000
By looking at each intermediary result you can see what is happening.
Hopefully this will give you what you need to sort it out in your head. John Doe's answer consolidates steps 4 and 5 in to a single expression. This will work on most machines.
Here is the actual implementation of Integer.reverse(int).
public static int reverse(int i) {
// HD, Figure 7-1
i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
i = (i << 24) | ((i & 0xff00) << 8) |
((i >>> 8) & 0xff00) | (i >>> 24);
return i;
}
You can use a do while loop like this:
public static int reverse(int number){
int reverse = 0;
int remainder = 0;
do{
remainder = number%10;
reverse = reverse*10 + remainder;
number = number/10;
}while(number > 0);
return reverse;
}
And for bitwise operation: here it goes:
// value=your integer, numBitsInt=how much bit you will use to reverse
public static int reverseIntBitwise(int value, int numBitsInt) {
int i = 0, rev = 0, bit;
while (i++ < numBitsInt) {
bit = value & 1;
value = value >> 1;
rev = rev ^ bit;
if (i < numBitsInt)
rev = rev << 1;
}
return rev;
}
Well there are multiple ways to reverse the bits of the given number in Java.
First, Java language has inbuild bitwise complement operator(~). So (~number) reverses the bits of number.
Second, one can use the Integer.reverse(number)
Third, if this is a part of test or you just want to play with bits, you can refer the code below.
/*
The logic uses moving bitmask from right to left:
1. Get the bit of given number, by binary and(&) with bitmask
2. XOR(^) with the bitmask, so here we reverse the bit.
3. OR(|) this reversed bit with the result(result has all Zero initially)
This logic is repeated for each 32 bits by moving the mask from right to left,
one bit at a time using (<<) left shift operator on bitmask.
*/
public class ReverseBits {
public static int reverseBits(int input) {
print("Input", input);
int bitmask = 1;
int result = 0;
do {
//print("Bitmask", bitmask);
result = result | (bitmask ^ (input & bitmask)) ;
//print("Result", result);
bitmask = bitmask << 1;
} while (bitmask != 0);
print("Reverse", result);
return result;
}
public static void print(String label, int input) {
System.out.println(label +"\t:"+Integer.toBinaryString(input));
}
public static void main(String[] args) {
reverseBits(Integer.MIN_VALUE);
reverseBits(Integer.MAX_VALUE);
reverseBits(reverseBits(170));
}
}
Output:
Input :10000000000000000000000000000000
Reverse :1111111111111111111111111111111
Input :1111111111111111111111111111111
Reverse :10000000000000000000000000000000
Input :10101010
Reverse :11111111111111111111111101010101
Input :11111111111111111111111101010101
Reverse :10101010
return Integer.reverse(given);
Integer.reverse Reference

Categories