Dagger 2 Injecting Constructors - java

I'm starting to use Dagger 2 in an application I'm developing but I have some questions about how Dagger 2 works.
I get the all the logic behind the #Provides methods and the #Inject annotation for initialising your dependencies, but the #Inject annotation to class constructors kind of bugs my mind.
For example:
Im my app, I have one module defined, the ContextModule, to retrieve the context of my application:
ContextModule.java
#Module
public class ContextModule {
private final Context context;
public ContextModule(Context context) {
this.context = context;
}
#Provides
public Context context() {
return this.context;
}
}
This module is used by my BaseActivityComponent:
BaseActivityComponent.java
#BaseActivityScope
#Component(modules = ContextModule.class)
public interface BaseActivityComponent {
void injectBaseActivity(BaseActivity baseActivity);
}
So far so good.. then I have an AuthController class, that depends on the context and I want to inject it in my BaseActivity. So in my AuthControllers.class I have something like:
public class AuthController {
private Context context;
#Inject
public AuthController(Context context) {
this.context = context;
}
public void auth() {
// DO STUFF WITH CONTEXT
}
}
And I inject it in my BaseActivity like:
public class BaseActivity extends AppCompatActivity {
#Inject
AuthController authController;
#Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
BaseActivityComponent component = DaggerBaseActivityComponent.builder()
.contextModule(new ContextModule(this))
.build();
component.injectBaseActivity(this);
authController.auth();
}
}
Now my question is, how does dagger knows that my AuthControllers is a dependency for BaseActivity? Just by declaring
#Inject
AuthController authController;
it's like the same thing as if I created a ControllerModule like:
#Module(includes = ContextModule.class)
public class ControllerModule {
#Provides
AuthController authController(Context context) {
return new AuthController(context);
}
}
And then in my BaseActivityComponent I would add my AuthController getter and change my dependency module to ControllersModule:
#BaseActivityScope
#Component(modules = ControllersModule.class)
public interface BaseActivityComponent {
void injectBaseActivity(BaseActivity baseActivity);
AuthController getAuthController();
}
When I call injectBaseActivity(this) it "tells" dagger that all #Inject annotations are dependencies of my class, and then it searchers my project for #Inject annotated constructors that matches that type?
I thought a good thing about Dagger 2 is that the Module files could be used as a "documentation" of my dependencies three. But if just add #Inject in all the constructors I have control of, couldn't it get a little confusing in the future, since you don't know what actually depends on what? (I mean, you know what depends on what, you just have to browse a lot of files to really find out)
Is there any best practices for when using #Inject annotations in constructors or when to add the #Provides method in Modules files?
I get that using #Inject in constructor I don't need to change the constructor definition in my Module file, but is there any downside?
Thanks.

When I call injectBaseActivity(this) it "tells" dagger that all #Inject annotations are dependencies of my class, and then it searches my project for #Inject annotated constructors that matches that type?
Exactly. But it's not done when you call injectBaseActivity, but it all happens during compile time. This is one way of annotation processing (another makes use of reflection at runtime).
When you build your project the dagger-annotation-processor you include (as a dependency)in your build.gradle file gets called with a list of all your fields, classes, etc annotated by the #Inject annotation and builds a dependency graph with it. It then resolves the graph, generating source code that provides all the dependencies for the items on the graph.
injectBaseActivity just executes the code which was generated before, and assigns all the dependencies to your object. It is proper source code, which you can read, and debug.
The reason this is a compile step—simply put—is performance and validation. (e.g. If you have some dependency cycle, you get a compile error)
how does dagger knows that my AuthControllers is a dependency for BaseActivity?
#Inject
AuthController authController;
By annotating the field #Inject dagger knows you want an AuthController. So far so good. Now dagger will look for some means to provide the controller, looking for it within the component, the components dependencies, and the components modules. It will also look whether the class can be supplied on its own, because it knows about its constructor.
How does dagger know about the objects constructor if you don't include it in any module?
#Inject
public AuthController(Context context) { /**/ }
By annotating the constructor with inject you also told dagger that there is a class called AuthController and you need a context for it to be instantiated. It is basically the same as adding it to your module.
A module #Provides method should be used if you don't have the source code to just add the #Inject annotation to the constructor, or if the object needs further initialization. Or in your case...
[...]the Module files could be used as a "documentation" of my dependencies tree [...]
Yes, of course you could do that. But as your project grows you will have to maintain a lot of unnecessary code, since the same could have been done with a simple annotation on the constructor.
Is there any best practices for when using #Inject annotations in constructors or when to add the #Provides method in Modules files?
If you want to provide different versions for a different context (e.g. implementing an interface in 2 different ways) there is also the #Binds annotation that tells dagger which class you wish to provide as implementation.
Other than that I believe you should always use constructor injection when possible. If something changes you don't have to touch any other parts of your code, and it is just less code that you write, and hence less places where you could include a bug.
Also Dagger can and does optimize a lot by knowing more, and if you implement unnecessary code it will have to work with the overhead you introduced
Of course in the end it is all up to what you think is best. After all it is you that has to work with your code ;)

Related

Spring constructor injection and super call verbosity

I started to use constructor injection in my projects since Spring declared field injection to be deprecated. Actually, the code feels prettier and more strict, I'm ok with that.
But I encountered a pattern which seems a bit...weird and verbose to me:
I have an abstract service bean class (with #Service annotation), which has, say 2 dependencies, injected directly in the constructor:
#Autowired
public AbstractService(DependencyA depA, DependencyB depB) {
this.depA = depA;
this.depB = depB;
}
Then I have multiple services bean classes (still with #Serviceannotation) extending the abstract one.
And I don't know if there is another way but this is where I find a bit verbose and repetitive having to inject the dependencies for the parent, in each sub-class constructor:
#Service
public class ServiceA extends AbstractService {
private final DepC depC;
#Autowired
public ServiceA(DepA depA, DepB depB, DepC depC) {
super(depA, depB);
this.depC = depC;
}
}
I just wanted to know if this is the right way, and what you think about this ?
The #Autowired on AbstractService doesn't do anything. Change it to:
#Service
public class ServiceA extends AbstractService {
private final DepC depC;
#Autowired
public ServiceA(DepA depA, DepB depB, DepC depC) {
super(depA, depB);
this.depC = depC;
}
}
...
public AbstractService(DependencyA depA, DependencyB depB) {
this.depA = depA;
this.depB = depB;
}
I'm ok with this setup.
For me, the main benefits of using constructor injection is to inform the developer what are the external dependencies. I find it useful when writing unit test. When writing mocks, you just know what needs to be mocked.
An other benefit is to highlight when a Class has too many dependencies, it gives a hint that refactoring may be in order.
The alternative would be using setter injection (while keeping the informational aspect), but I've grown to enjoy constructor injection.
My answer is focusing about the "verbose and repetitive" part in your question; I let others decide how "correct" your usage of annotations is.
Even with Spring and its DI framework, in the end we are still talking about Java source code!
And in Java, if your base class only offers a constructor that takes some A and B; then of course your subclass has to make a call super(A a, B b); and of course, those values a and b have to come from somewhere!
So, what you call "verbose and repetitive" is a direct consequence of using Java.
In other words: there is no way to avoid that part!

Java inject implementation using TypeLiteral

I have a project that provides an interface, let's call it IImplementMe, which i want to inject into my project. This interface will be implemented by various producers, so I need to inject all implementations. I am trying to use TypeLiteral for this.
Here is the code of the producer :
#Singleton
public class SomeImplementation implements IImplementMe {
private final String value;
#Inject
public SomeImplementation(final SomeOtherConfig configuration) {
this.value= configuration.getValue();
}
#Override
public String getValue() {
return value;
}
}
And in my registry class I have register(IImplementMe.class).to(SomeImplementation.class);
Then, in my project I inject it like this :
#Inject
public SomeEndpoint(final List<IImplementMe> implementations){
///
}
and i bind it like
private static class MarketDataSetTypeLiteral extends TypeLiteral<List<IImplementMe>> {
}
bind(new MarketDataSetTypeLiteral()).toRegistry();
I made sure my SomeIMplementation constructor gets called, but in my endpoint the List is empty, so no implementation is provided. I'm using guice for injection. Any ideas ?
LE: It turns out that the provided implementation is created after my endpoint class is created (at creation time it injects a reference of an empty list). Later in the lifecycle the reference is updated with the implementation, so I actually have access to it after guice does it's stuff.
I'm guessing it's due to the maven dependencies, and how guice handles the instantiations. Since the producer must have a dependency on my project, I guess it makes sense it gets instantiated last, thus causing my initial problem.
You are looking for multibindings -> https://github.com/google/guice/wiki/Multibindings
public class IImplementMeModule extends AbstractModule {
public void configure() {
Multibinder< IImplementMe > uriBinder = Multibinder.newSetBinder(binder(), IImplementMe.class);
uriBinder.addBinding().to(SomeImplementationOfIImplementMe.class);
uriBinder.addBinding().to(AnotherImplementationOfIImplementMe.class);
... // bind plugin dependencies, such as our Flickr API key
}
}
Then you can inject the set of IImplemetnMe as following
#Inject TweetPrettifier(Set<IImplemetnMe> implementations)
I would suggest you to have a look at MapBindings which allows you provide keys for each implementation and then you will be able to inject your bindings as a Map

Dagger 2 scope and subcomponents

I am trying to make my app better and code more maintainable using Dagger2 I caught general idea, but still cannot figure out how scopes are managed by Dagger2
I injected dagger into my project (sounds funny).
I created ApplicationComonent component and it works perfectly in my project.
Here is my code.
#Singleton
#Component(modules = {
ApplicationModule.class,
ThreadingModule.class,
NetworkModule.class,
DatabaseModule.class,
ServiceModule.class,
ParseModule.class,
PreferencesSessionModule.class})
public interface ApplicationComponent {
ActivityComponent activityComponent(ActivityModule activityModule);
void inject(BaseActivity baseActivity);
void inject(MainAppActivity mainAppActivity);
void inject(MyApplication application);
void inject(BaseFragment baseFragment);
void inject(MyService service);
void inject(RegistrationIntentService service);
}
I create my component instance in MyApplication class like this
private void initializeAndInjectComponent() {
mApplicationComponent =
DaggerApplicationComponent
.builder()
.threadingModule(new ThreadingModule(1))
.applicationModule(new ApplicationModule(this))
.networkModule(new NetworkModule(
MyService.API_SERVER_BASE_URL,
MyService.TIMEOUT))
.build();
mApplicationComponent.inject(this);
}
And I can obtain component in order to inject in in my Activities
MyApplication application = MyApplication.get(this);
application.getApplicationComponent().inject(this);
Everything works perfectly.
To add each method as well as module class is annotated with #Singleton scope, all modules related to the ApplicationComponent
Now I want to make dependencies better and I have seen a lot of examples with custom scopes like #PerActivity, #PerFragment. I have a lot of questions, but about this later.
So I created ActivityComponent
#PerActivity
#Subcomponent(
modules = {
NetworkServiceModule.class,
ActivityModule.class,
PermissionModule.class
})
public interface ActivityComponent {
Activity activity();
void inject(BaseActivity baseActivity);
}
All modules looks like this
#PerActivity
#Module
public class ActivityModule {
private Activity mActivity;
public ActivityModule(Activity activity) {
this.mActivity = activity;
}
#Provides
#PerActivity
Activity provideActivity() {
return this.mActivity;
}
}
I have following dependencies in my BaseActivity
// Dependencies from ApplicationComponent
#Inject
protected ApplicationSettingsManager mApplicationSettingsManager;
#Inject
protected ScheduledThreadPoolExecutor mPoolExecutor;
// Dependencies from ActivityComponent
#Inject
protected SpiceManager mSpiceManager;
#Inject
protected PermissionController mPermissionController;
And in my onCreate() method I am injecting as following
MyApplication application = MyApplication.get(this);
application.getApplicationComponent().activityComponent(new ActivityModule(this)).inject(this);
Before creating subcomponent ActivityComponent it was
MyApplication application = MyApplication.get(this);
application.getApplicationComponent().inject(this);
Now I got an error
Error:(34, 10) error: com.octo.android.robospice.SpiceManager cannot be provided without an #Inject constructor or from an #Provides- or #Produces-annotated method.
BaseActivity.mSpiceManager
[injected field of type: com.octo.android.robospice.SpiceManager mSpiceManager]
I cannot figure out where is problem, what I missed.
My questions about scopes in dagger2.
Everything but #Singleton is ignored by Dagger 2, am I right ?
I don't understand how life of component is managed ? I have only one idea
When you use #Singleton annotation dagger is creating object in some static pool that will exist during whole application lifecycle, and will be destroyed when JVM process (dalvik VM,ART) instance will be destroyed.
When you use any other annotation is just for you as developer to better maintain code, #PerActivity, #PerFragment is just custom annotation nothing more. And in case you place #PerFragment component in Application class it will live as long as Application lives. Am I right ?
So I understand this like this, if dagger finds #Singleton annotation it will add static reference to component when it is created first time and in case of any other annotation it won't hold reference to component.
I would be very grateful for any help with problems described above.
UPDATE
Thank you David Medenjak for great answer, I got much better understanding of Dagger2.
I have also just found the problem, as far as I am using separate Activity component now, I forgot about two lines in ApplicationComponent and change inejction in my MainActivity to ActivityComponent instead of ApplicationComponent, so for sure it couldn't resolve dependencies from subcomponent.
void inject(BaseActivity baseActivity);
void inject(MainAppActivity mainAppActivity);
Now everything works perfectly, I like Dagger2 and separated architecture.
A bit radical, but to simplify things:
All Scope annotations are nothing but syntactic sugar—including #Singleton.
Scopes mostly just provide compile time checks. Cyclic dependencies, or errors about things that you might have missed. #Singleton is just like any other scope, the only difference is that it is an already existing annotation and you don't have to create it yourself. You could just use #MySingleton instead.
[...] dagger is creating object in some static pool that will exists during whole application lifecycle
No. Dagger does nothing static. You have component objects. Those components hold your objects created by modules. If an object in a component has the scope of the component, it will only be created once in that exact component. If you decide to create 2 AppComponent objects, you will have 2 objects of each #Singleton annotated object, each within its component. This is why you should keep the reference to the component. Most implementations that I have seen or used hence keep their AppComponent within their Application. If you do this, you can use it like a singleton—it is still just a POJO.
[...]you place #PerFragment component in Application class it will live as long as Application lives.
Yes. As already covered by the paragraph above, it is just an object. Keep the reference, you keep the objects. Throw it away or create a new one and you have new objects (defined within in this component / scope). You should although not keep activity or fragment scoped components any place besides in activities or fragments respectively, since keeping them e.g. in your app component will most likely lead to a memory leak. (If it doesn't, you probably would not have needed the activity or fragment scope.)
if dagger finds #Singleton annotation it will add static reference to component when it is created first time and in case of any other annotation it won't hold reference to component.
Again, no. Nothing static. Plain old java objects. You can have multiple #Singleton components with their own objects, but you probably shouldn't (Although this is what makes instrumentation testing possible / easy—just swap components.)
Your mentioned error
SpiceManager cannot be provided without an #Inject constructor or from an #Provides- or #Produces-annotated method.
This means that the component you are trying to inject your object with can not find any way to produce or provide a SpiceManager. Make sure you provide it from your AppComponent or some other place, are not missing any annotations, etc.

How to inject implementations from another module

I'm having a project based on Dagger 2 which consists of two modules. The core module includes some interfaces and some classes that have member injections declared for these interfaces.
The actual implementations of these interfaces are included in the second module which is an Android project. So, naturally the provide methods for these are included in the Android project.
Dagger will complain during compilation about not knowing how to inject these in the core module.
Any thoughts on how to achieve this without using constructor injections?
In short, I just tried this, and it works. Be sure to check the exact error messages and make sure you are providing these interfaces and #Inject annotations are present.
There is probably just some wrong named interface or a missing annotation. Following up is a full sample using your described architecture that is compiling just fine. The issue you are currently experiencing is probably the one described in the last part of this post. If possible, you should go with the first solution though and just add those annotations.
The library
For reproducability this sample has minimalist models. First, the interface needed by my class in the library module:
public interface MyInterface {
}
Here is my class that needs that interface. Make sure to declare it in the constructor and provide the #Inject annotation!
#MyScope // be sure to add scopes in your class if you use constructor injection!
public class MyClassUsingMyInterface {
private MyInterface mMyInterface;
#Inject
public MyClassUsingMyInterface(MyInterface myInterface) {
mMyInterface = myInterface;
}
}
The idea is that the interface will be implemented by the app using MyClassUsingMyInterface and provided by dagger. The code is nicely decoupled, and my awesome library with not so many features is complete.
The application
Here need to supply the actual coupling. This means to get MyClassUsingMyInterface we have to make sure we can supply MyInterface. Let's start with the module supplying that:
#Module
public class MyModule {
#Provides
MyInterface providesMyInterface() {
return new MyInterface() {
// my super awesome implementation. MIT license applies.
};
}
}
And to actually use this, we provide a component that can inject into MyTestInjectedClass that is going to need MyClassUsingMyInterface.
#Component(modules = MyModule.class)
public interface MyComponent {
void inject(MyTestInjectedClass testClass);
}
Now we have a way to provide the requested interface. We declared that interface needed by the library class in a constructor marked with #Inject. Now I want a class that requires my awesome library class to use. And I want to inject it with dagger.
public class MyTestInjectedClass {
#Inject
MyClassUsingMyInterface mMyClassUsingMyInterface;
void onStart() {
DaggerMyComponent.create().inject(this);
}
}
Now we hit compile...and dagger will create all the factories needed.
Inject Libraries you can not modify
To just provide the full scale of dagger, this sample could also have been without actual access to the source code of the library. If there is no #Inject annotation dagger will have a hard time creating the object. Notice the missing annotation:
public class MyClassUsingMyInterface {
private MyInterface mMyInterface;
public MyClassUsingMyInterface(MyInterface myInterface) {
mMyInterface = myInterface;
}
}
In that case we have to manually provide the class. The module would be needed to be modified like the following:
#Module
public class MyModule {
#Provides
MyInterface providesMyInterface() {
return new MyInterface() {
};
}
#Provides
MyClassUsingMyInterface providesMyClass(MyInterface myInterface) {
return new MyClassUsingMyInterface(myInterface);
}
}
This introduces more code for us to write, but will make those classes available that you can not modify.

Is it more optimal from maintenance point of view to implement property injection vs constructor injection?

Let's say I have the following classes and dagger module
public class Base implements IBase {
private IDependency dependency; //IDependency is an interface
Base(IDependency dependency) {
this.dependency = dependency
}
}
public class SubClass extends Base implements ISubclass {
Base(IDependency dependency) {
super(dependency)
}
}
#Module
public class MyModule {
// Let's assume some other class use SubClass and requires this
#Provides
ISubclass providesSubclass(IDependency dependency) {
return new SubClass(dependency);
}
}
If I add a new parameter to Base constructor, I'll have to go to MyModule and modify provides method to include this new parameter (besides obviusly chaging Base and Subclass constuctors). It seems to me that using propery injection I don't have this problem since I'm not using any constructor.
My feeling is that I might be doing something wrong or I have some concept wrong. I prefer constructor injection over property injection but right now I have to add a constructor parameter to a base class used by 40 other classes and not only I have to modify those 40 classes constructors, I also have to modify modules to reflect new constructors parameters.
Am I missing something? Am I correct if I say that doing constructor injection I'll write much more less code and maintenance will be easier?
Yes, you are missing some awesome feature: You can still use constructor injection in this case! And you don't even have to write it yourself.
If all of the dependencies can be provided, dagger can and will create the object for you. Given that you can provide IDependency you just need to modify your code like the following:
public class SubClass extends Base implements ISubclass {
#Inject // Don't forget the annotation!
public Base(IDependency dependency) {
super(dependency)
}
}
#Module
public class MyModule {
#Provides
ISubclass providesSubclass(SubClass subclass) {
return subclass;
}
}
You provide the interface, yet you depend on your implementation to provide it. Dagger will resolve this, and you can merrily add as many parameters to the constructor as you like. (Apart from the obvious changes to the actual constructors you already pointed out)
Don't forget the #Inject annotation!

Categories