How system give me negative number? [duplicate] - java

I am trying to understand how Java stores integer internally. I know all java primitive integers are signed, (except short?). That means one less bit available in a byte for the number.
My question is, are all integers (positive and negative) stored as two's complement or are only negative numbers in two's complement?
I see that the specs says x bit two's complement number. But I often get confused.
For instance:
int x = 15; // Stored as binary as is? 00000000 00000000 00000000 00001111?
int y = -22; // Stored as two complemented value? 11111111 11111111 11111111 11101010
Edit
To be clear, x = 15
In binary as is: `00000000 00000000 00000000 00001111'
Two's complement: `11111111 11111111 11111111 11110001`
So if your answer is all numbers are stored as two's complement then:
int x = 15; // 11111111 11111111 11111111 11110001
int y = -22 // 11111111 11111111 11111111 11101010
The confusion here again is the sign says, both are negative numbers. May be I am misreading / misunderstanding it?
Edit
Not sure my question is confusing. Forced to isolate the question:
My question precisely: Are positive numbers stored in binary as is while negative numbers are stored as two's complement?
Some said all are stored in two's complement and one answer says only negative numbers are stored as two's complement.

Let's start by summarizing Java primitive data types:
byte: Byte data type is an 8-bit signed two's complement integer.
Short: Short data type is a 16-bit signed two's complement integer.
int: Int data type is a 32-bit signed two's complement integer.
long: Long data type is a 64-bit signed two's complement integer.
float: Float data type is a single-precision 32-bit IEEE 754 floating point.
double: double data type is a double-precision 64-bit IEEE 754 floating point.
boolean: boolean data type represents one bit of information.
char: char data type is a single 16-bit Unicode character.
Source
Two's complement
"The good example is from wiki that the relationship to two's complement is realized by noting that 256 = 255 + 1, and (255 − x) is the ones' complement of x
0000 0111=7 two's complement is 1111 1001= -7
the way it works is the MSB(the most significant bit) receives a negative value so in the case above
-7 = 1001= -8 + 0+ 0+ 1
Positive integers are generally stored as simple binary numbers (1 is 1, 10 is 2, 11 is 3, and so on).
Negative integers are stored as the two's complement of their absolute value. The two's complement of a positive number is when using this notation a negative number.
Source
Since I received a few points for this answer, I decided to add more information to it.
A more detailed answer:
Among others there are four main approaches to represent positive and negative numbers in binary, namely:
Signed Magnitude
One's Complement
Two's Complement
Bias
1. Signed Magnitude
Uses the most significant bit to represent the sign, the remaining bits are used to represent the absolute value. Where 0 represents a positive number and 1 represents a negative number, example:
1011 = -3
0011 = +3
This representation is simpler. However, you cannot add binary numbers in the same way that you add decimal numbers, making it harder to be implemented at the hardware level. Moreover, this approach uses two binary patterns to represent the 0, -0 (1000) and +0 (0000).
2. One's Complement
In this representation, we invert all the bits of a given number to find out its complementary. For example:
010 = 2, so -2 = 101 (inverting all bits).
The problem with this representation is that there still exist two bits patterns to represent the 0, negative 0 (1111) and positive 0 (0000)
3. Two's Complement
To find the negative of a number, in this representation, we invert all the bits and then add one bit. Adding one bit solves the problem of having two bits patterns representing 0. In this representation, we only have one pattern for
0 (0000).
For example, we want to find the binary negative representation of 4 (decimal) using 4 bits. First, we convert 4 to binary:
4 = 0100
then we invert all the bits
0100 -> 1011
finally, we add one bit
1011 + 1 = 1100.
So 1100 is equivalent to -4 in decimal if we are using a Two's Complement binary representation with 4 bits.
A faster way to find the complementary is by fixing the first bit that as value 1 and inverting the remaining bits. In the above example it would be something like:
0100 -> 1100
^^
||-(fixing this value)
|--(inverting this one)
Two's Complement representation, besides having only one representation for 0, it also adds two binary values in the same way that in decimal, even numbers with different signs. Nevertheless, it is necessary to check for overflow cases.
4. Bias
This representation is used to represent the exponent in the IEEE 754 norm for floating points. It has the advantage that the binary value with all bits to zero represents the smallest value. And the binary value with all bits to 1 represents the biggest value. As the name indicates, the value is encoded (positive or negative) in binary with n bits with a bias (normally 2^(n-1) or 2^(n-1)-1).
So if we are using 8 bits, the value 1 in decimal is represented in binary using a bias of 2^(n-1), by the value:
+1 + bias = +1 + 2^(8-1) = 1 + 128 = 129
converting to binary
1000 0001

Java integers are of 32 bits, and always signed. This means, the most significant bit (MSB) works as the sign bit. The integer represented by an int is nothing but the weighted sum of the bits. The weights are assigned as follows:
Bit# Weight
31 -2^31
30 2^30
29 2^29
... ...
2 2^2
1 2^1
0 2^0
Note that the weight of the MSB is negative (the largest possible negative actually), so when this bit is on, the whole number (the weighted sum) becomes negative.
Let's simulate it with 4-bit numbers:
Binary Weighted sum Integer value
0000 0 + 0 + 0 + 0 0
0001 0 + 0 + 0 + 2^0 1
0010 0 + 0 + 2^1 + 0 2
0011 0 + 0 + 2^1 + 2^0 3
0100 0 + 2^2 + 0 + 0 4
0101 0 + 2^2 + 0 + 2^0 5
0110 0 + 2^2 + 2^1 + 0 6
0111 0 + 2^2 + 2^1 + 2^0 7 -> the most positive value
1000 -2^3 + 0 + 0 + 0 -8 -> the most negative value
1001 -2^3 + 0 + 0 + 2^0 -7
1010 -2^3 + 0 + 2^1 + 0 -6
1011 -2^3 + 0 + 2^1 + 2^0 -5
1100 -2^3 + 2^2 + 0 + 0 -4
1101 -2^3 + 2^2 + 0 + 2^0 -3
1110 -2^3 + 2^2 + 2^1 + 0 -2
1111 -2^3 + 2^2 + 2^1 + 2^0 -1
So, the two's complement thing is not an exclusive scheme for representing negative integers, rather we can say that the binary representation of integers are always the same, we just negate the weight of the most significant bit. And that bit determines the sign of the integer.
In C, there is a keyword unsigned (not available in java), which can be used for declaring unsigned int x;. In the unsigned integers, the weight of the MSB is positive (2^31) rather than being negative. In that case the range of an unsigned int is 0 to 2^32 - 1, while an int has range -2^31 to 2^31 - 1.
From another point of view, if you consider the two's complement of x as ~x + 1 (NOT x plus one), here's the explanation:
For any x, ~x is just the bitwise inverse of x, so wherever x has a 1-bit, ~x will have a 0-bit there (and vice versa). So, if you add these up, there will be no carry in the addition and the sum will be just an integer every bit of which is 1.
For 32-bit integers:
x + ~x = 1111 1111 1111 1111 1111 1111 1111 1111
x + ~x + 1 = 1111 1111 1111 1111 1111 1111 1111 1111 + 1
= 1 0000 0000 0000 0000 0000 0000 0000 0000
The leftmost 1-bit will simply be discarded, because it doesn't fit in 32-bits (integer overflow). So,
x + ~x + 1 = 0
-x = ~x + 1
So you can see that the negative x can be represented by ~x + 1, which we call the two's complement of x.

I have ran the following program to know it
public class Negative {
public static void main(String[] args) {
int i =10;
int j = -10;
System.out.println(Integer.toBinaryString(i));
System.out.println(Integer.toBinaryString(j));
}
}
Output is
1010
11111111111111111111111111110110
From the output it seems that it has been using two's complement.

Oracle provides some documentation regarding Java Datatypes that you may find interesting. Specifically:
int: The int data type is a 32-bit signed two's complement integer. It has a minimum value of -2,147,483,648 and a maximum value of 2,147,483,647 (inclusive).
Btw, short is also stored as two's complement.

Positive numbers are stored/retrived as it is.
e.g) For +ve number 10; byte representation will be like 0-000 0010
(0 - MSB will represent that it is +ve).
So while retrieving based on MSB; it says it is +ve,
so the value will be taken as it is.
But negative numbers will be stored after 2's complement (other than
MSB bit), and MSB bit will be set to 1.
e.g) when storing -10 then
0-000 0010 -> (1's complement) -> 0-111 1101
-> (2's complement) 0-111 1101 + 1 -> 0-111 1110
Now MSB will be set to one, since it is negative no -> 1-111 1110
when retrieving, it found that MSB is set to 1. So it is negative no.
And 2's complement will be performed other than MSB.
1-111 1110 --> 1-000 0001 + 1 --> 1-000 0010
Since MSB representing this is negative 10 --> hence -10 will be retrived.
Casting
Also note that when you are casting int/short to byte, only last byte will be considered along with last byte MSB,
Take example "-130" short, it might be stored like below
(MSB)1-(2's complement of)130(1000 0010) --> 1-111 1111 0111 1110
Now byte casting took last byte which is 0111 1110. (0-MSB)
Since MSB says it is +ve value, so it will be taken as it is.
Which is 126. (+ve).
Take another example "130" short, it might be stored like below
0-000 000 1000 0010 (MSB = 0)
Now byte casting took last byte which is 1000 0010 . (1=MSB)
Since MSB says it is -ve value, 2's complement will be performed and negative number will be returned. So in this case -126 will be returned.
1-000 0010 -> (1's complement) -> 1-111 1101
-> (2's complement) 1-111 1101 + 1 -> 1-111 1110 -> (-)111 1110
= -126
Diff between (int)(char)(byte) -1 AND (int)(short)(byte) -1
(byte)-1 -> 0-000 0001 (2's Comp) -> 0-111 1111 (add sign) -> 1-111 1111
(char)(byte)-1 -> 1-111 1111 1111 1111 (sign bit is carry forwarded on left)
similarly
(short)(byte)-1-> 1-111 1111 1111 1111 (sign bit is carry forwarded on left)
But
(int)(char)(byte)-1 -> 0-0000000 00000000 11111111 11111111 = 65535
since char is unsigned; MSB won't be carry forwarded.
AND
(int)(Short)(byte)-1 -> 1-1111111 11111111 11111111 11111111 = -1
since short is signed; MSB is be carry forwarded.
References
Why is two's complement used to represent negative numbers?
What is “2's Complement”?

The most significant bit (32nd) indicates that the number is positive or negative. If it is 0, it means the number is positive and it is stored in its actual binary representation. but if it is 1, it means the number is negative and is stored in its two's complement representation. So when we give weight -2^32 to the 32nd bit while restoring the integer value from its binary representation, We get the actual answer.

According to this document, all integers are signed and stored in two's complement format for java. Not certain of its reliability..

positive numbers are stored directly as binary. 2's compliment is required for negative numbers.
for example:
15 : 00000000 00000000 00000000 00001111
-15: 11111111 11111111 11111111 11110001
here is the difference in signed bit.

Thank you, dreamcrash for the answer https://stackoverflow.com/a/13422442/1065835; on the wiki page they give an example which helped me understand how to find out the binary representation of the negative counterpart of a positive number.
For example, using 1 byte (= 2 nibbles = 8 bits), the decimal number 5
is represented by
0000 01012 The most significant bit is 0, so the pattern represents a
non-negative value. To convert to −5 in two's-complement notation, the
bits are inverted; 0 becomes 1, and 1 becomes 0:
1111 1010 At this point, the numeral is the ones' complement of the
decimal value −5. To obtain the two's complement, 1 is added to the
result, giving:
1111 1011 The result is a signed binary number representing the
decimal value −5 in two's-complement form. The most significant bit is
1, so the value represented is negative.

For positive integer 2'complement value is same with MSB bit 0 (like +14 2'complement is 01110).
For only negative integer only we are calculating 2'complement value (-14= 10001+1 = 10010).
So final answer is both the values(+ve and -ve) are stored in 2'complement form only.

Related

How Java represent min value of a number type? for example -128 in byte [duplicate]

I am trying to understand how Java stores integer internally. I know all java primitive integers are signed, (except short?). That means one less bit available in a byte for the number.
My question is, are all integers (positive and negative) stored as two's complement or are only negative numbers in two's complement?
I see that the specs says x bit two's complement number. But I often get confused.
For instance:
int x = 15; // Stored as binary as is? 00000000 00000000 00000000 00001111?
int y = -22; // Stored as two complemented value? 11111111 11111111 11111111 11101010
Edit
To be clear, x = 15
In binary as is: `00000000 00000000 00000000 00001111'
Two's complement: `11111111 11111111 11111111 11110001`
So if your answer is all numbers are stored as two's complement then:
int x = 15; // 11111111 11111111 11111111 11110001
int y = -22 // 11111111 11111111 11111111 11101010
The confusion here again is the sign says, both are negative numbers. May be I am misreading / misunderstanding it?
Edit
Not sure my question is confusing. Forced to isolate the question:
My question precisely: Are positive numbers stored in binary as is while negative numbers are stored as two's complement?
Some said all are stored in two's complement and one answer says only negative numbers are stored as two's complement.
Let's start by summarizing Java primitive data types:
byte: Byte data type is an 8-bit signed two's complement integer.
Short: Short data type is a 16-bit signed two's complement integer.
int: Int data type is a 32-bit signed two's complement integer.
long: Long data type is a 64-bit signed two's complement integer.
float: Float data type is a single-precision 32-bit IEEE 754 floating point.
double: double data type is a double-precision 64-bit IEEE 754 floating point.
boolean: boolean data type represents one bit of information.
char: char data type is a single 16-bit Unicode character.
Source
Two's complement
"The good example is from wiki that the relationship to two's complement is realized by noting that 256 = 255 + 1, and (255 − x) is the ones' complement of x
0000 0111=7 two's complement is 1111 1001= -7
the way it works is the MSB(the most significant bit) receives a negative value so in the case above
-7 = 1001= -8 + 0+ 0+ 1
Positive integers are generally stored as simple binary numbers (1 is 1, 10 is 2, 11 is 3, and so on).
Negative integers are stored as the two's complement of their absolute value. The two's complement of a positive number is when using this notation a negative number.
Source
Since I received a few points for this answer, I decided to add more information to it.
A more detailed answer:
Among others there are four main approaches to represent positive and negative numbers in binary, namely:
Signed Magnitude
One's Complement
Two's Complement
Bias
1. Signed Magnitude
Uses the most significant bit to represent the sign, the remaining bits are used to represent the absolute value. Where 0 represents a positive number and 1 represents a negative number, example:
1011 = -3
0011 = +3
This representation is simpler. However, you cannot add binary numbers in the same way that you add decimal numbers, making it harder to be implemented at the hardware level. Moreover, this approach uses two binary patterns to represent the 0, -0 (1000) and +0 (0000).
2. One's Complement
In this representation, we invert all the bits of a given number to find out its complementary. For example:
010 = 2, so -2 = 101 (inverting all bits).
The problem with this representation is that there still exist two bits patterns to represent the 0, negative 0 (1111) and positive 0 (0000)
3. Two's Complement
To find the negative of a number, in this representation, we invert all the bits and then add one bit. Adding one bit solves the problem of having two bits patterns representing 0. In this representation, we only have one pattern for
0 (0000).
For example, we want to find the binary negative representation of 4 (decimal) using 4 bits. First, we convert 4 to binary:
4 = 0100
then we invert all the bits
0100 -> 1011
finally, we add one bit
1011 + 1 = 1100.
So 1100 is equivalent to -4 in decimal if we are using a Two's Complement binary representation with 4 bits.
A faster way to find the complementary is by fixing the first bit that as value 1 and inverting the remaining bits. In the above example it would be something like:
0100 -> 1100
^^
||-(fixing this value)
|--(inverting this one)
Two's Complement representation, besides having only one representation for 0, it also adds two binary values in the same way that in decimal, even numbers with different signs. Nevertheless, it is necessary to check for overflow cases.
4. Bias
This representation is used to represent the exponent in the IEEE 754 norm for floating points. It has the advantage that the binary value with all bits to zero represents the smallest value. And the binary value with all bits to 1 represents the biggest value. As the name indicates, the value is encoded (positive or negative) in binary with n bits with a bias (normally 2^(n-1) or 2^(n-1)-1).
So if we are using 8 bits, the value 1 in decimal is represented in binary using a bias of 2^(n-1), by the value:
+1 + bias = +1 + 2^(8-1) = 1 + 128 = 129
converting to binary
1000 0001
Java integers are of 32 bits, and always signed. This means, the most significant bit (MSB) works as the sign bit. The integer represented by an int is nothing but the weighted sum of the bits. The weights are assigned as follows:
Bit# Weight
31 -2^31
30 2^30
29 2^29
... ...
2 2^2
1 2^1
0 2^0
Note that the weight of the MSB is negative (the largest possible negative actually), so when this bit is on, the whole number (the weighted sum) becomes negative.
Let's simulate it with 4-bit numbers:
Binary Weighted sum Integer value
0000 0 + 0 + 0 + 0 0
0001 0 + 0 + 0 + 2^0 1
0010 0 + 0 + 2^1 + 0 2
0011 0 + 0 + 2^1 + 2^0 3
0100 0 + 2^2 + 0 + 0 4
0101 0 + 2^2 + 0 + 2^0 5
0110 0 + 2^2 + 2^1 + 0 6
0111 0 + 2^2 + 2^1 + 2^0 7 -> the most positive value
1000 -2^3 + 0 + 0 + 0 -8 -> the most negative value
1001 -2^3 + 0 + 0 + 2^0 -7
1010 -2^3 + 0 + 2^1 + 0 -6
1011 -2^3 + 0 + 2^1 + 2^0 -5
1100 -2^3 + 2^2 + 0 + 0 -4
1101 -2^3 + 2^2 + 0 + 2^0 -3
1110 -2^3 + 2^2 + 2^1 + 0 -2
1111 -2^3 + 2^2 + 2^1 + 2^0 -1
So, the two's complement thing is not an exclusive scheme for representing negative integers, rather we can say that the binary representation of integers are always the same, we just negate the weight of the most significant bit. And that bit determines the sign of the integer.
In C, there is a keyword unsigned (not available in java), which can be used for declaring unsigned int x;. In the unsigned integers, the weight of the MSB is positive (2^31) rather than being negative. In that case the range of an unsigned int is 0 to 2^32 - 1, while an int has range -2^31 to 2^31 - 1.
From another point of view, if you consider the two's complement of x as ~x + 1 (NOT x plus one), here's the explanation:
For any x, ~x is just the bitwise inverse of x, so wherever x has a 1-bit, ~x will have a 0-bit there (and vice versa). So, if you add these up, there will be no carry in the addition and the sum will be just an integer every bit of which is 1.
For 32-bit integers:
x + ~x = 1111 1111 1111 1111 1111 1111 1111 1111
x + ~x + 1 = 1111 1111 1111 1111 1111 1111 1111 1111 + 1
= 1 0000 0000 0000 0000 0000 0000 0000 0000
The leftmost 1-bit will simply be discarded, because it doesn't fit in 32-bits (integer overflow). So,
x + ~x + 1 = 0
-x = ~x + 1
So you can see that the negative x can be represented by ~x + 1, which we call the two's complement of x.
I have ran the following program to know it
public class Negative {
public static void main(String[] args) {
int i =10;
int j = -10;
System.out.println(Integer.toBinaryString(i));
System.out.println(Integer.toBinaryString(j));
}
}
Output is
1010
11111111111111111111111111110110
From the output it seems that it has been using two's complement.
Oracle provides some documentation regarding Java Datatypes that you may find interesting. Specifically:
int: The int data type is a 32-bit signed two's complement integer. It has a minimum value of -2,147,483,648 and a maximum value of 2,147,483,647 (inclusive).
Btw, short is also stored as two's complement.
Positive numbers are stored/retrived as it is.
e.g) For +ve number 10; byte representation will be like 0-000 0010
(0 - MSB will represent that it is +ve).
So while retrieving based on MSB; it says it is +ve,
so the value will be taken as it is.
But negative numbers will be stored after 2's complement (other than
MSB bit), and MSB bit will be set to 1.
e.g) when storing -10 then
0-000 0010 -> (1's complement) -> 0-111 1101
-> (2's complement) 0-111 1101 + 1 -> 0-111 1110
Now MSB will be set to one, since it is negative no -> 1-111 1110
when retrieving, it found that MSB is set to 1. So it is negative no.
And 2's complement will be performed other than MSB.
1-111 1110 --> 1-000 0001 + 1 --> 1-000 0010
Since MSB representing this is negative 10 --> hence -10 will be retrived.
Casting
Also note that when you are casting int/short to byte, only last byte will be considered along with last byte MSB,
Take example "-130" short, it might be stored like below
(MSB)1-(2's complement of)130(1000 0010) --> 1-111 1111 0111 1110
Now byte casting took last byte which is 0111 1110. (0-MSB)
Since MSB says it is +ve value, so it will be taken as it is.
Which is 126. (+ve).
Take another example "130" short, it might be stored like below
0-000 000 1000 0010 (MSB = 0)
Now byte casting took last byte which is 1000 0010 . (1=MSB)
Since MSB says it is -ve value, 2's complement will be performed and negative number will be returned. So in this case -126 will be returned.
1-000 0010 -> (1's complement) -> 1-111 1101
-> (2's complement) 1-111 1101 + 1 -> 1-111 1110 -> (-)111 1110
= -126
Diff between (int)(char)(byte) -1 AND (int)(short)(byte) -1
(byte)-1 -> 0-000 0001 (2's Comp) -> 0-111 1111 (add sign) -> 1-111 1111
(char)(byte)-1 -> 1-111 1111 1111 1111 (sign bit is carry forwarded on left)
similarly
(short)(byte)-1-> 1-111 1111 1111 1111 (sign bit is carry forwarded on left)
But
(int)(char)(byte)-1 -> 0-0000000 00000000 11111111 11111111 = 65535
since char is unsigned; MSB won't be carry forwarded.
AND
(int)(Short)(byte)-1 -> 1-1111111 11111111 11111111 11111111 = -1
since short is signed; MSB is be carry forwarded.
References
Why is two's complement used to represent negative numbers?
What is “2's Complement”?
The most significant bit (32nd) indicates that the number is positive or negative. If it is 0, it means the number is positive and it is stored in its actual binary representation. but if it is 1, it means the number is negative and is stored in its two's complement representation. So when we give weight -2^32 to the 32nd bit while restoring the integer value from its binary representation, We get the actual answer.
According to this document, all integers are signed and stored in two's complement format for java. Not certain of its reliability..
positive numbers are stored directly as binary. 2's compliment is required for negative numbers.
for example:
15 : 00000000 00000000 00000000 00001111
-15: 11111111 11111111 11111111 11110001
here is the difference in signed bit.
Thank you, dreamcrash for the answer https://stackoverflow.com/a/13422442/1065835; on the wiki page they give an example which helped me understand how to find out the binary representation of the negative counterpart of a positive number.
For example, using 1 byte (= 2 nibbles = 8 bits), the decimal number 5
is represented by
0000 01012 The most significant bit is 0, so the pattern represents a
non-negative value. To convert to −5 in two's-complement notation, the
bits are inverted; 0 becomes 1, and 1 becomes 0:
1111 1010 At this point, the numeral is the ones' complement of the
decimal value −5. To obtain the two's complement, 1 is added to the
result, giving:
1111 1011 The result is a signed binary number representing the
decimal value −5 in two's-complement form. The most significant bit is
1, so the value represented is negative.
For positive integer 2'complement value is same with MSB bit 0 (like +14 2'complement is 01110).
For only negative integer only we are calculating 2'complement value (-14= 10001+1 = 10010).
So final answer is both the values(+ve and -ve) are stored in 2'complement form only.

Is right shifting undefined behavior for negative number in cpp and in java?

To optimize my cpp code, I'm trying to use Right Shifting in some case. Here is an example:
int main()
{
int i = (1 - 2) >> 31; // sizeof(int) == 4
...
...
}
I've printed the i and I got -1. It means that it will use 1 instead of 0 to fill in the empty position if the number is negative. In other words, -1 >> 31 works as below:
1111...1 <--- the result of (1 - 2), which is -1
1111...1 <--- -1 >> 31, 1 is used to fill in the empty position
I just want to know if this behavior is clearly defined or not?
If it is UB in cpp, how about in Java?
Yes. It is implementation-defined.
According to C++03 5.8/3 which defines right-shifting:
The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has
an unsigned type or if E1 has a signed type and a nonnegative value,
the value of the result is the integral part of the quotient of E1
divided by the quantity 2 raised to the power E2. If E1 has a signed
type and a negative value, the resulting value is
implementation-defined.
For more information, see this link.
By default it is signed int. The range is -32767 to 32767, bit wise range -111111111111111 to +111111111111111 the very first bit on the left acts as negative or positive indicator. And all the arithmetic operation will be done in 2's complement method. In general negative int are represents in two complements method i.e take you example how -1 is represent.
4 Bytes = 32 bits
0000 0000 0000 0000 0000 0000 0000 0000
how represent 1
0000 0000 0000 0000 0000 0000 0000 0001
Then we invert the digits. 0 becomes 1, 1 becomes 0.
1111 1111 1111 1111 1111 1111 1111 1110
Then we add 1.
1111 1111 1111 1111 1111 1111 1111 1111
This is how -1 is represented
The right-shift of a negative number is defined to shift in 1s to the highest bit positions, then on a 2s complement representation it will behave as an arithmetic shift - the result of right-shifting by N will be the same as dividing by 2N, rounding toward negative infinity. So shifting of -1 is -1
now take an other number
For example,
if you have the 8-bit 2s complement binary number let represent -3
0000 0011
Then we invert the digits.
1111 1100
Then we add 1.
1111 1101
11111101 representing -3 in decimal, and you perform an arithmetic right shift by 1 to give 11111110 representing -2 in decimal, this is the same as dividing -3 by 2^1, giving -1.5 which rounds towards negative infinity resulting in -2.
In Java, behavior of >> is well-defined for negative numbers (see below).
In C++, behavior of >> is undefined for negative numbers (see answer by rsp).
Quoting Java Language Specification, §15.19. Shift Operators:
The value of n >> s is n right-shifted s bit positions with sign-extension. The resulting value is floor(n / 2s). For non-negative values of n, this is equivalent to truncating integer division, as computed by the integer division operator /, by two to the power s.
The value of n >>> s is n right-shifted s bit positions with zero-extension, where:
If n is positive, then the result is the same as that of n >> s.
If n is negative and the type of the left-hand operand is int, then the result is equal to that of the expression (n >> s) + (2 << ~s).
If n is negative and the type of the left-hand operand is long, then the result is equal to that of the expression (n >> s) + (2L << ~s).

Two Ways to Interpret Integer Overflow

I have read here (https://stackoverflow.com/a/27762490/4415632) that when integer overflow occurs, the most significant bits are simply cut off.
However, I have also read here (https://stackoverflow.com/a/27747180/3808877) that when overflow occurs, "the value becomes the minimum value of the type, and start counting up again." Which one is correct, or are both answers correct? If so, can anyone show me why those two interpretations are equivalent to each other?
Both are correct, it depends on context. One is the result of casting and one is the result of overflow. Those are different operations. For example, if you cast Long.MAX_VALUE to an int that is a cast operation
System.out.println((int) Long.MAX_VALUE); // <-- -1
If you overflow an int by adding one to Integer.MAX_VALUE then
System.out.println(Integer.MAX_VALUE + 1); // <-- Integer.MIN_VALUE
Both interpretations are correct, because they are actually the same.
Let's look at the maths to see why.
Java stores values in byte, short, char, int and long in a format called two's complement.
In case of byte, short, int and long it is signed, in case of char it is unsigned.
One of the attributes of the two's complement format is that for most operations it does not matter whether the value is interpreted as signed or unsigned as the resulting bit pattern would be the same.
To shorten things, I'll explain it using byte, but the other types work along the same scheme.
A byte has 8 bits. The topmost bit is interpreted as sign bit. So, the bit pattern goes like this:
snnn nnnn
The separation into two groups of 4 bits each is called Nibble and is performed here for pure readability. As a side note, a nibble can be represented by a hexadecimal digit.
So there are 8 bits in a byte, and each bits could be 0 or 1. This leaves us with 2^8 = 256 different values that could be stored in a byte.
Here are some sample values:
0000 0000 -> 0
0000 0001 -> 1
0000 0010 -> 2
0100 0000 -> 64
0111 1111 -> 127
1000 0000 -> -128
1111 1110 -> -2
1111 1111 -> -1
The 2's complement value of signed numbers which are negative, i.e. the sign bit is set, is created by taking the positive value of the 8 bits and subtracting the range, i.e. in case of a byte by subtracting 256.
Now let's see what happens if you take -1 and add 1.
1111 1111 -1 / 255
+ 0000 0001 1
--------------
= 1 0000 0000 -0 / 256 intermediate result
= 0000 0000 0 / 256 result after dropping excess leading bits
There is an overflow. The result would need 9 bits now, but the byte only has 8 bits, so the most significant bit is lost.
Let's look at another example, -1 plus -1.
1111 1111 -1 / 255
+ 1111 1111 -1 / 255
--------------
= 1 1111 1110 -2 / 510 intermediate result
= 1111 1110 -2 / 254 result after dropping excess leading bits
Or this, 127 plus 5.
0111 1111 127
+ 0000 0101 5
--------------
= 1000 0100 132 / -124
As we can see, the leading bits are dropped and this actually is what leads to the effect that causes it to overflow by "starting to count from the minimum value again".
I add another option: a processor trap. Some processors will generate a trap on integer overflows. When available, this feature usually can be enabled in user mode by setting a bit in the processor status register.

Binary presentation of negative integer in Java

Please, help me to understand binary presentation of negative integers.
For example we have 5.
Binary presentation of 5 is 00000000.00000000.00000000.00000101.
And as I understand binary presentation of -5 should be like 10000000.00000000.00000000.00000101.
But output is 11111111.11111111.11111111.11111011.
I have 2 question:
1) Why here is so much 1 bits.
2) What I really cant understand it last 3 bits 011. It looks like 3. Even +1 or -1 it'll be 100 or 010
Thanks
Your understanding of what those negative numbers should look like is flawed. Java uses two's complement for negative numbers and the basic rule is to take the positive, invert all bits then add one. That gets you the negative.
Hence five is, as you state:
0000...00000101
Inverting that gives you:
1111...11111010
Then adding one gives:
1111...11111011
The bit pattern you have shown for -5 is what's called sign/magnitude, where you negate a number simply by flipping the leftmost bit. That's allowed in C implementations as one of the three possibilities(a), but Java uses two's complement only (for its negative integers).
(a) But keep in mind there are current efforts in both C and C++ to remove the other two encoding types and allow only two's complement.
And as I understand binary presentation of -5 should be like 10000000.00000000.00000000.00000101.
That would be right if Java used a Sign and Magnitude representation for integers. However, Java uses Two's Complement representation, so the rest of the bits are changed in accordance with the rules of that representation.
The idea behind two's complement representation is that when you add a number in such representation to another value dropping the extra bit on the most significant end, the result would be as if you subtracted a positive number of the same magnitude.
You can illustrate this with decimal numbers. In a two-digit representation, the value of 99 would behave like -1, 98 would be like -2, 97 like -3, and so on. For example, if you drop the top digit in 23 + 99 = [1]22, so 99 behaved like -1. 23 + 98 = [1]21, so 98 behaved like -2.
This works the same way with two's complement representation of binary numbers, except you would drop the extra bit at the top.
http://en.wikipedia.org/wiki/Two%27s_complement
The way negative numbers are stored is that the most significant bit (e.g. the bit representing 2^31 for a 32 bit number) is regarded as negative. So if you stored all 1s, you would add up
(-2^31) + 2^30 + 2^29 + ... + 2^1 + 2^0
which makes -1.
Small negative numbers will be mostly ones under this representation.
Here is an example for 2's compliment:
If you have -30, and want to represent it in 2's complement, you take the binary representation of 30:
0000 0000 0000 0000 0000 0000 0001 1110
Invert the digits.
1111 1111 1111 1111 1111 1111 1110 0001
And add one.
1111 1111 1111 1111 1111 1111 1110 0010
Converted back into hex, this is 0xFFFFFFE2. And indeed, suppose you have this code:
#include <stdio.h>
int main() {
int myInt;
myInt = 0xFFFFFFE2;
printf("%d\n",myInt);
return 0;
}
That should yield an output of -30. Try it out if you like.
With two's complement it's true that a MSB of 1 indicates a negative number. But the remaining bits are not the binary representation of its value. On the other hand, if the MSB is 0 the remaining bits represent the binary value. But it cannot be said that the number is positive then. Zero is neither positive nor negative.
This picture helped me to understand the principle when I started to learn that there are more representations of numbers than with 0..9:
0
-1 000 1
111 001
-2 110 010 2
101 011
-3 100 3
-4

how 128 int after narrow casting to byte becomes -128

i know in java Byte has 8 bit memory , that is from -128 to 127. I also know the concept of narrowing casting. and int lost some precision. But can some one help me understand the following
public class PrimitiveTypes {
public static void main(String[] args) {
Byte byteVar= (byte) 128;
System.out.println(byteVar);
}
}
o/p is -128
please dont tell me because of cycle of 127 it shows -128 .
I need the binary arithmatic that happened here.
What i able to find from net is java stores integer in 2's complements which is used to store negative no.
so from 2's complement
128 becomes 10000000
after flipping 11111111
and adding 1 bit will be
10000000
Question is how this 10000000
becomes -128?
ANS :
Thanks all i got my ans:
I need to convert 2's complement no 10000000 to decimal like
you first check if the number is negative or positive by looking at the sign bit. If it is positive, simply convert it to decimal. If it is negative, make it positive by inverting the bits and adding one. Then, convert the result to decimal. The negative of this number is the value of the original binary.
Interpret 11011011 as a two's complement binary number, and give its decimal equivalent.
First, note that the number is negative, since it starts with a 1.
Change the sign to get the magnitude of the number.
1 1 0 1 1 0 1 1
¬ 0 0 1 0 0 1 0 0
+ 1
0 0 1 0 0 1 0 1
Convert the magnitude to decimal: 001001012 = 25_16 = 2×16 + 5 = 37_10.
Since the original number was negative, the final result is -37.
So in my case
10000000
becomes
01111111
adding 1 will be
10000000
which is 128
and original no was negative since the first bit is 1
so -128
In binary the int 128 looks like this.
0000 0000 0000 0000 0000 0000 1000 0000
This is 32 bits, 4 bytes.
When you type cast it to byte you get the last 8 binary digits.
1000 0000
And this turns out to be the binary representation of the byte -128.
So the result is -128 indeed.
All the byte values in binary go like this:
1000 0000 -> - 128
1000 0001 -> - 127
1000 0010 -> - 126
...
1111 1110 -> -2
1111 1111 -> -1
0000 0000 -> 0
0000 0001 -> 1
0000 0010 -> 2
...
0111 1110 -> 126
0111 1111 -> 127
This should make it clear to you.
Your confusion is probably because you're thinking of
1000 0000 as an unsigned byte value. In Java there are
no unsigned bytes. The 1st bit determines the sign.
If there were unsigned bytes (as in some other languages),
this binary value would be indeed 128 and not -128.

Categories