Could anyone give me some clue about how could I Transform this code to recursion:
public class arrayExample {
public static void main (String[] args) {
int[] a = {2,2,2,2};
int[] b = {2,2,2,2};
int n = a.length;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i] * b[i];
}
System.out.println(sum);
}
}
So to do this do product with recursion.
You asked for a hint, so I'm not giving you the complete solution. When you want to process a list (or an array) recursively, the concept is nearly always:
public int recursiveFunction(List l, int carry) {
if (l.isEmpty()) {
return carry;
}
return recursiveFunction(l.subList(1, l.size()), operation(carry, l.get(0));
}
Where operation is whatever you want to do with your list. carry is used to provide an initial value (in the first call) and save the interim results.
You just have to change the code so it uses two arrays instead of one list and choose the correct operation.
Ok so hoping you have tried it before this is one possible way to code it.
public class ArrayExample {
public static void main (String[] args) {
int[] a = {2,2,2,2};
int[] b = {2,2,2,2};
int n = a.length;
int result = recurseSum(a, b, n-1);
System.out.println(result);
}
public static int recurseSum(int[] a, int[] b, int n){
if(n == 0)
return a[0]*b[0];
else{
return (a[n] * b[n]) + recurseSum(a,b,n-1);
}
}
}
This code is basically doing the same thing in the iteration.
The recursive call happens 4 times. When n hits 0, a[0]*b[0] is returned to the higher call. so basically from right to left it happens as follows:
a[3]*b[3] + a[2]*b[2] + a[1]*b[1] + a[0]*b[0]
One simple way to make a loop into a recursion is to answer these two questions:
What happens when the loop executes zero times?
If the loop has already executed n-1 times, how do I compute the result after the n-th iteration?
The answer to the first case produces your base case; the answer to the second question explains how to do the recursive invocation.
In your case, the answers are as follows:
When the loop executes zero times, the sum is zero.
When the loop executed n-1 times, add a[n] * b[n] to the previous result.
This can be translated into a recursive implementation
static int dotProduct(int[] a, int[] b, int n) {
... // your implementation here
}
Related
I have written a program to sort elements of an array based on the principle of quicksort. So what the program does is that it accepts an array, assumes the first element as the pivot and then compares it with rest of the elements of the array. If the element found greater then it will store at the last of another identical array(say b) and if the element is less than the smaller than it puts that element at the beginning of the array b. in this way the pivot will find its way to the middle of the array where the elements that are on the left-hand side are smaller and at the right-hand side are greater than the pivot. Then the elements of array b are copied to the main array and this whole function is called via recursion. This is the required code.
package sorting;
import java.util.*;
public class AshishSort_Splitting {
private static Scanner dogra;
public static void main(String[] args)
{
dogra=new Scanner(System.in);
System.out.print("Enter the number of elements ");
int n=dogra.nextInt();
int[] a=new int[n];
for(int i=n-1;i>=0;i--)
{
a[i]=i;
}
int start=0;
int end=n-1;
ashishSort(a,start,end);
for(int i=0;i<n;i++)
{
System.out.print(+a[i]+"\n");
}
}
static void ashishSort(int[]a,int start,int end)
{
int p;
if(start<end)
{
p=ashishPartion(a,start,end);
ashishSort(a,start,p-1);
ashishSort(a,p+1,end);
}
}
public static int ashishPartion(int[] a,int start,int end)
{
int n=start+end+1;
int[] b=new int[n];
int j=start;
int k=end;
int equal=a[start];
for(int i=start+1;i<=end;i++)
{
if(a[i]<equal)
{
b[j]=a[i];
j++;
}
else if(a[i]>equal)
{
b[k]=a[i];
k--;
}
}
b[j]=equal;
for(int l=0;l<=end;l++)
{
a[l]=b[l];
}
return j;
}
}
this code works fine when I enter the value of n up to 13930, but after that, it shows
Exception in thread "main" java.lang.StackOverflowError
at sorting.AshishSort_Splitting.ashishSort(AshishSort_Splitting.java:28)
at sorting.AshishSort_Splitting.ashishSort(AshishSort_Splitting.java:29)
I know the fact the error caused due to bad recursion but I tested my code multiple times and didn't find any better alternative. please help. thanks in advance.
EDIT: can someone suggest a way to overcome this.
I see perfrmance issues first. I see in your partition method:
int n = start+end+1
Right there, if the method was called on an int[1000] with start=900 and end=999, you are allocating an int[1900]... Not intended, I think...!
If you are really going to trash memory instead of an in-place partitioning,
assume
int n = end-start+1
instead for a much smaller allocation, and j and k indexes b[], they would be j=0 and k=n, and return start + j.
Second, your
else if(a[i]<equal)
is not necessary and causes a bug. A simple else suffice. If you don't replace the 0's in b[j..k] you'll be in trouble when you refill a[].
Finally, your final copy is bogus, from [0 to end] is beyond the bounds of the invocation [start..end], AND most importantly, there is usually nothing of interest in b[nearby 0] with your b[] as it is. The zone of b[] (in your version) is [start..end] (in my suggested version it would be [0..n-1])
Here is my version, but it still has the O(n) stack problem that was mentioned in the comments.
public static int ashishPartion(int[] a, int start, int end) {
int n = end-start + 1;
int[] b = new int[n];
int bj = 0;
int bk = n-1;
int pivot = a[start];
for (int i = start + 1; i <= end; i++) {
if (a[i] < pivot) {
b[bj++] = a[i];
} else {
b[bk--] = a[i];
}
}
b[bj] = pivot;
System.arraycopy(b, 0, a, start, n);
return start+bj;
}
If you are free to choose a sorting algo, then a mergesort would be more uniform on performance, with logN stack depth. Easy to implement.
Otherwise, you will have to de-recurse your algo, using a manual stack and that is a nice homework that I won't do for you... LOL
I have a program that sums the common elements of two arrays. For that I used two for loops and if I have three then I could use three for loops. But how to sum the common elements of n number of arrays where n is coming during run time.
I don't know how to change the number of loops during run time or is there any other relevant concept for this ?
Here is the code I've tried for summing twoarrays:
import java.util.Scanner;
public class Sample {
public static void main(String... args)
{
Scanner sc=new Scanner(System.in);
int arr1[]={1,2,3,4,5},arr2[]={4,5,6,7,8},sum=0;
for (int i=0;i<arr1.length;i++)
{
for (int j=0;j<arr2.length;j++)
{
if (arr1[i]==arr2[j])
{
sum+=(arr1[i]);
}
}
}
}
}
There can be different implementation for that. You can use the following approach. Here is the pseudo code
use a 2D array to store the array. if the number of array is n and size is m then the array will be input[n][m]
Use a ArrayList commonItems to store the common items of. Initiate it with the elements of input[0]
Now iterate through the array for i = 1 to n-1. compare with every input[i], store only the common items of commonItems and input[i] at each step. You can do it by converting the input[i] into a list and by using retainAll method.
At the end of the iteration the commonItem list will contains the common numbers only. Now sum the value of this list.
There is actually a more general method, that also answers the question "how to change the number of loops during run time?".
The general question
We are looking for a way to implement something equivalent to this:
for (i1 = 0; i1 < k1; i1++) {
for (i2 = 0; i2 < k2; i2++) {
for (i3 = 0; i3 < k3; i3++) {
...
for (in = 0; in < kn; in++) {
f(x1[i1], x2[i2], ... xn[in]);
}
...
}
}
}
where, n is given at runtime and f is a function taking a list of n parameters, processing the current n-tuple.
A general solution
There is a general solution, based on the concept of recursion.
This is one implementation that produces the desired behavior:
void process(int idx, int n, int[][] x, int[] k, Object[] ntuple) {
if (idx == n) {
// we have a complete n-tuple,
// with an element from each of the n arrays
f(ntuple);
return;
}
// this is the idx'th "for" statement
for (int i = 0; i < k[idx]; i++) {
ntuple[idx] = x[idx][i];
// with this recursive call we make sure that
// we also generate the rest of the for's
process(idx + 1, n, x, k, ntuple);
}
}
The function assumes that the n arrays are stored in a matrix x, and the first call should look like this:
process(0, n, x, k, new Object[n]);
Practical considerations
The solution above has a high complexity (it is O(k1⋅k2⋅..⋅kn)), but sometimes it is possible to avoid going until the deepest loop.
Indeed, in the specific problem mentioned in this post (which requires summing common elements across all arrays), we can skip generating some tuples e.g. if already x2[i2] ≠ x1[i1].
In the recursive solution, those situations can easily be pruned. The specific code for this problem would probably look like this:
void process(int idx, int n, int[][] x, int[] k, int value) {
if (idx == n) {
// all elements from the current tuple are equal to "value".
// add this to the global "sum" variable
sum += value;
return;
}
for (int i = 0; i < k[idx]; i++) {
if (idx == 0) {
// this is the outer "for", set the new value
value = x[0][i];
} else {
// check if the current element from the idx'th for
// has the same value as all previous elements
if (x[idx][i] == value) {
process(idx + 1, n, x, k, value);
}
}
}
}
Assuming that the index of the element is not important: a[1] = 2 and a[5] = 2, you only need two nested loops.
First you need to put n-1 arrays in a list of sets. Then loop over nth array and check if each element exists in all of the sets in the list. If it does exist then add to total.
I have written a java program to add elements in an array using Linear Recursion. The output obtained is not as expected. Can anyone point what is wrong with this program?
public class TestSum {
public int count = 0;
public int sum(int[] a){
count++;
if(a.length == count){
return a[count -1];
}
return sum(a) + a[count -1] ;
}
public static void main(String[] args) {
int[] a = {1,2,3};
int val = new TestSum().sum(a);
System.out.println(val);
}
}
I am expecting the output as 6 but obtained is 9. What is wrong?
Strangely if I change the order of addition i.e. return a[count -1] + sum(a); then it gives output as 6.
Generally, recursive programs that are not re-entrant (i.e. relying on external state) are suspicious. In your particular case count will change between invocations of sum, making the behavior hard to trace, and ultimately resulting in the error that you observe.
You should pass the index along with the array to make it work:
// The actual implementation passes the starting index
private static int sum(int[] a, int start){
if(a.length == start){
return 0;
}
return sum(a, start+1) + a[start];
}
// Make sure the method can be called with an array argument alone
public static int sum(int[] a) {
return sum(a, 0);
}
Unlike an implementation that increments the count external to the method, this implementation can be called concurrently on multiple threads without breaking.
I was writing a recursive algorithm to calculate Fibonacci numbers in Java as part of a programming 101 course. This is the code:
public class Fib {
public static void main(String[] args) {
Fib fib = new Fib();
}
public Fib() {
int end = 9;
long[] nums = new long[2];
printFib(0, end, nums);
}
private void printFib(int i, int end, long[] nums) {
while(i < end) {
if(i == 0 || i == 1) {
nums[i] = 1;
System.out.println("1");
} else {
long fib;
fib = 0;
fib += (nums[0] + nums[1]);
nums[0] = nums[1];
nums[1] = fib;
System.out.println(fib);
}
i++;
printFib(i, end, nums);
}
}
}
As I was stepping through the program it was working as intended until i became equal to end, the variable telling the printFib method how many Fibonacci numbers it should print out. When ì was equal to end while(i < 1) returns false as expected and the program go to the last }, now you'd(me)
expect the program to return the constructor from which I initially called the function and the program should exit, this not the case. The program goes back to the while statement and somehow evaluates to false again. Then it does the same thing again except the second time it decreases i by 1(what?!) and then proceeds to the else clause when it reaches the if statement. It then does the same thing over and over alternating the amount it subtracts from i between 1 and 2. I've asked my teacher about this and he was unable to explain it.
The program works fully like I intended if I replace the while with an if so maybe there is something about while that I don't know.
Edit
So I realize now that each time the method is called i has a different value which is stored and when the method exits and i = end the program goes back to the previous calls where i had a different value.
You implemented an iterative algorithm to calculate Fibonacci series. That's what the while loop does. There is no point in making the recursive call - printFib(i, end, nums) - at the end.
If you intended a recursive implementation, the entire while loop is not needed.
This code doesn't look right to me.
I would recommend that you not print from your method. Return a value to the main and let it print.
Your recursive method should not have a while loop in it. That's iteration - exactly what you're trying to avoid here.
Your method should have a stopping condition and a call to itself. That's not what you're doing.
Think about it like this:
/**
* Recursive Fibonnaci
* User: mduffy
* Date: 2/11/2015
* Time: 8:50 AM
* #link http://stackoverflow.com/questions/28455798/strange-behavior-in-recursive-algorithm/28455863#28455863
*/
public class Math {
private static Map<Integer, Integer> memo = new ConcurrentHashMap<Integer, Integer>();
public static void main(String [] args) {
for (String arg : args) {
int n = Integer.valueOf(arg);
System.out.println(String.format("n: %d fib(n): %d", n, fibonnaci(n)));
}
}
public static int fibonnaci(int n) {
if (n < 0) throw new IllegalArgumentException("index cannot be negative");
int value = 0;
if (memo.containsKey(n)) {
value = memo.get(n);
} else {
if (n <= 1) {
value = n;
} else {
value = fibonnaci(n-1)+fibonnaci(n-2);
}
memo.put(n, value);
}
return value;
}
}
Basicly this is happening because i would guess that you are thinking of i as an reference which will influence the basic callings of the Fibunacci method calling the sub Fibunacci method. This will finally lead way to many calls of the fibunacci method.
in my eyes the loop doesn´t make sense in your recursive way of solving it.
I am having a lot of trouble with this basic recursion problem in java; any pointers would be great.
"Write a static recursive method to print out the nth term of the
geometric sequence: 2, 6, 18, 54."
From what I can gather, somewhere in the code I should be recursively multiplying something by 3, but I'm struggling to figure out how to do this. I know I need a termination statement, but when does that occur? Do I need a helper method?
A Recursive Function is a function whose implementation references itself. Below is some funny example:
public class Inception {
public void dream() {
boolean enoughDreaming = false;
//Some code logic below to check if it's high time to stop dreaming recursively
...
...
if(!enoughDreaming) {
dream(); //Dream inside a Dream
}
}
}
And the solution for your problem:
public class GeometricSequence {
public static void main(String[] args) {
//Below method parameters - 5 = n, 1 = count (counter), res = result (Nth number in the GP.
System.out.println(findNthNumber(5, 1, 2));
}
public static int findNthNumber(int n, int count, int res) {
return ((count == n)) ? res : findNthNumber(n, count+1, res *3);
}
}
EDIT:
The above class uses "int", which is good only for small numbers (because of Integer Overflow problem). The below class is better for all types/numbers:
public class GeometricSequence {
public static void main(String[] args) {
//Below method parameters - 5 = n, 1 = count (counter), res = result (Nth number in the GP.
System.out.println(findNthNumber(2000, 1, new BigInteger("2")));
}
public static BigInteger findNthNumber(int n, int count, BigInteger res) {
return ((count == n)) ? res : findNthNumber(n, count+1, res.multiply(new BigInteger("3")));
}
}
This is the simplest example of recursion.
You need a method declaration.
You need to check if the end has been reached.
Otherwise you need to call the method again with an operation which makes the difference between one term and the next.
Yes, you need a termination condition - basically when you've taken as many steps as you need. So consider how you want to transition from one call to another:
How are you going to propagate the results so far?
What extra state do you need to keep track of how many more steps you need to take?
What are you going to return from the method?
Here's a C# example (I know your doing Java but it's pretty similar)
public static void Recursive(int counter, int iterations, int value, int multiplier)
{
if (counter < iterations)
{
Console.WriteLine(value);
counter++;
Recursive(counter, iterations, (value * multiplier), multiplier);
}
}
So when you run the function you enter the parameters
"counter" will always be 0 when you first call it
"iterations" is the value of n
"value" is your starting value, in your case 2
"multiplier" is how much you want to multiply by each iteration, in your case 3
Every time it runs it will check to see if counter is less than iterations. If it is more, the value is printed, the counter is incremented, the value is multiplied by the multiplier and you add the same parameters back in to the function.
A recursive solution: Seq(1) is the first element of the sequence .... Seq(n-th)
public static void main(String args[]) throws Exception {
int x = Seq(3); //x-> 18
}
public static int Seq(int n){
return SeqRec(n);
}
private static int SeqRec(int n){
if(n == 1)
return 2;
else return SeqRec(n - 1) * 3;
}
Non-Recursive solution:
public static int Non_RecSeq(int n){
int res = 2;
for(int i = 1; i < n; i ++)
res *= 3;
return res;
}
public static void main(String args[]) throws Exception {
int x = Non_RecSeq(3); //x-> 18
}