I have a case in which I need duplicate try..catch block on controller level.
Let me provide sample code for this issue:
List<String> loadedList =
engine.findSomething(param); //At this point we can obtain Exception, so this code block we should move to existing try block or create another.. but the problem if we move this to try block below, the WebApplicationException that throws in condition below will be catched in existing try block..
// if not found - return NOT_FOUND.
if (CollectionUtils.isEmpty(loadedList)) {
log.info(errorMessage);
throw new WebApplicationException(Response.status(Status.NOT_FOUND).entity(errorMessage).type("text/plain").build()); //exception from Jersey lib
}
try {
for (String item : loadedList) {
//some business logic
//I know that on controller layer we should avoid business logic but it is not my code and I can not change it..
}
return Response.ok().build();
} catch (Exception e) {
throw processException(e); //Helper method that avoids code duplication when preparing webException
}
How can I refactor this code?
Thanks!
You can benefit from #ControllerAdvice and implement global controller exception handler.
#ControllerAdvice
public class GlobalExceptionHandler {
#ExceptionHandler(Exception.class)
public String handleException(HttpServletRequest request, Exception ex){
//handle error here
return "error";
}
In order GlobalExceptionHandler to work, Exception must be thrown out of your controller.
You can simply add a specific try/catch statement for the
List<String> loadedList = engine.findSomething(param);
invocation.
You should just declare List<String> loadedList before the call to engine.findSomething(param); in order that it is outside the try catch scope to be able to use it later.
List<String> loadedList = null;
try{
loadedList = engine.findSomething(param);
}
catch (Exception e){ // or a more specific exception if it makes sense
// exception logging and processing
}
try
{
List<String> loadedList = engine.findSomething(param);
// if not found - return NOT_FOUND.
if (CollectionUtils.isEmpty(loadedList)) {
log.info(errorMessage);
throw new WebApplicationException(Response.status(Status.NOT_FOUND).entity(errorMessage).type("text/plain").build()); //exception from Jersey lib
}
for (String item : loadedList) {
//some business logic
//I know that on controller layer we should avoid business logic but it is not my code and I can not change it..
}
return Response.ok().build();
}
//You can first catch WebApplicationException before the Exception and
//redirect the throw to the parent class
catch(WebApplicationException we)
{
throw we;
}
catch(Exception e)
{
throw processException(e);
}
Another approach different from davidxxx one.
Move the code inside the try..catch clause. If it happens to throw the WebApplicationException then catch it, do whatever you need to do with it and then throw it again.
try {
List<String> loadedList =
engine.findSomething(param);
// if not found - return NOT_FOUND.
if (CollectionUtils.isEmpty(loadedList)) {
log.info(errorMessage);
throw new WebApplicationException(Response.status(Status.NOT_FOUND).entity(errorMessage).type("text/plain").build()); //exception from Jersey lib
}
for (String item : loadedList) {
//some business logic
//I know that on controller layer we should avoid business logic but it is not my code and I can not change it..
}
return Response.ok().build();
} catch (WebApplicationException e1){
//log the exception
//throw it again using throw e1
} catch (Exception e2) {
throw processException(e2); //Helper method that avoids code duplication when preparing webException
}
Related
Is it any possible way there to write catch block inside a method and call it from finally when an exception occured in try block
Ex:
try
{
int a=0,b=0;
a=b/0;
}
finally
{
callExceptions();
}
}
public static void callExceptions()
{
catch(Exception e)
{
System.out.println(e);
}
}
catch block must follow a try block. It can't stand alone.
And finally block are made to be after the catch.
You wrote an alone catch inside a finally. That doesn't make sense.
The easiest solution is to pass the exception to the method as a parameter:
public static myMethod() {
try
{
int a=0,b=0;
a=b/0;
}
catch (Exception e)
{
callExceptions(e);
}
finally
{
// do what ever you want or remove this block
}
}
public static void callExceptions(Exception e)
{
System.out.println(e);
}
Ways to uses try/catch/finally
1.- when you want to try to use some method, if everything goes well, will continue else one exception will be thrown on catch block.
try {
// some method or logic that might throw some exception.
} catch (ExceptionType name) {
// catch the exception that was thrown.
}
2.- It's the same the first but adding finally block means that the finally block will always be executed independently if some unexpected exception occurs.
try {
// some method or logic that might throw some exception.
} catch (ExceptionType name) {
// catch the exception that was thrown.
} finally {
// some logic after try or catch blocks.
}
3.- try and finally blocks are used to ensure that a resource is closed regardless of whether the try statement completes normally or abruptly. For example:
BufferedReader br = new BufferedReader(new FileReader(path));
try {
return br.readLine();
} finally {
if (br != null) br.close();
}
Referencias Official documentation JAVA for try/catch/finally blocks
On your case:
public static myMethod() {
try {
int a=0,b=0;
a=b/0;
} catch (Exception e) {
callException(e);
}
}
public static void callException(Exception e) {
System.out.println(e);
}
This was too long for a comment so sorry it's not a direct answer to your question (as others have pointed out, that's not possible). Assuming what you're trying to do is define a common way to handle your exception logic in one place, Callable might be a way to go. Something like the following might suffice... Although I'm not going to comment on whether any of it is a good idea...
static E callAndHandle(final Callable<E> callable) {
try {
return callable.call();
} catch (final Exception ex) {
System.out.println(ex);
return null;
}
}
static void tryIt() {
final String result = callAndHandle(() -> {
// Thing which might throw an Exception
return "ok";
});
// result == null => there was an error here...
}
Unfortunately Runnable doesn't declare any Exception in the signature, so if you know it always needs to be void and you don't like the return null; or similar hacks, you'd have to define your own interface to pass in.
I have below code.
The question is :
Is there a better way to handle exception for below use case other than this ?
My particular interest is using handleException method.
public void checkSomeBehaviour() throws Exception{
try{
someBusinessValidation() ;
//this method can throw BusinessValidationException which is subclass of Exception
//BusinessValidationException contains code in getMessage() method
try{
doSomething();
}catch(Exception ex1){
//throw Exception object with specific error code say 123. So this needs to be wrapped in separate try/catch
throw CustomException('123'); //CustomException is subclass of Exception
}
try{
doSomethingElse();
}catch(Exception ex2){
//throw Exception object with specific error code say 456 .So this needs to be wrapped in separate try/catch
throw CustomException('456'); //CustomException is subclass of Exception
}
}
catch(Exception ex){
//Based on Exception type , a common exception needs to be thrown as ValidationException
handleException(ex);
}
}
//this method inspects exception type and does appropriate action accordingly
private void handleException(Exception ex){
if(ex instanceof CustomException){
throw new ValidationException(ex.getCode());
}else if(ex instanceof BusinessValidationException){
throw new ValidationException(ex.getMessage());
}else{
throw new ValidationException(100); //throw code as 100 since this is generalised exception
}
}
Answer is: YES. Java gives you native syntax to do just that (cleaner and simply more appropriate than checking exception classes):
//...your try block
} catch (CustomException ex) {
throw new ValidationException(ex.getCode());
} catch (BusinessValidationException ex) {
throw new ValidationException(ex.getMessage());
} catch (Exception ex) {
throw new ValidationException(100);
}
Just note that you may need to reorder these catch blocks if they extend one another.
If you don't have any business logic between method calls then you can declare errorCode as a variable, change it after method execution and re-throw appropriate exception in catch, e.g.:
public void checkSomeBehavior() throws Exception{
int errorCode = 123;
try{
someBusinessValidation();
doSomething();
errorCode = 456;
doSomethingElse();
}catch(BusinessValidationException bve){
throw new Exception(bve.getMessage());
}catch(Exception e){
throw new Exception(String.valueOf(errorCode));
}
}
If doSomething fails, the value will be 123 and if doSomethingElse fails, the value will be 456.
I am using SonarQube for code quality. I got one issue related to exception handling, which says remove throw clause from finally block.
} catch(Exception e) {
throw new MyException("request failed : ", e);
} finally {
try {
httpClient.close();
} catch (IOException e) {
throw new MyException("failed to close server conn: ", e);
}
}
Based on my understanding above code looks good. If I remove throw clause and suppress exception in finally then caller of this method will not be able to know server's status. I am not sure how we can achieve same functionality without having throw clause.
Your best shot is to use the Automatic Resource Management feature of Java, available since Java 7. If that is for some reason not available to you, then the next best thing is to replicate what that syntactic sugar expands into:
public static void runWithoutMasking() throws MyException {
AutoClose autoClose = new AutoClose();
MyException myException = null;
try {
autoClose.work();
} catch (MyException e) {
myException = e;
throw e;
} finally {
if (myException != null) {
try {
autoClose.close();
} catch (Throwable t) {
myException.addSuppressed(t);
}
} else {
autoClose.close();
}
}
}
Things to note:
your code swallows the original exception from the try block in case closing the resource fails. The original exception is surely more important for diagnostic;
in the ARM idiom above, closing the resource is done differently depending on whether there already was an exception in the try-block. If try completed normally, then the resource is closed outside any try-catch block, naturally propagating any exception.
Generally, methods in the finally block are 'cleanup' codes (Closing the Connection, etc) which the user does not necessarily need to know.
What I do for these exceptions is to absorb the exception, but log the details.
finally{
try{
connection.close();
}catch(SQLException e){
// do nothing and just log the error
LOG.error("Something happened while closing connection. Cause: " + e.getMessage());
}
}
You're getting a warning because this code could potentially throw an exception while dealing with a thrown exception. You can use the try with resource syntax to close the resource automatically. Read more here.
In the case that the "request failed : " exception is thrown and you fail to close the httpclient, the second exception is the one that would bubble up.
I am not sure how we can achieve same functionality without having
throw clause.
You could nest the two try blocks differently to achieve the same result:
HttpClient httpClient = null; // initialize
try {
try {
// do something with httpClient
} catch(Exception e) {
throw new MyException("request failed : ", e);
} finally {
httpClient.close();
}
} catch (IOException e) {
throw new MyException("failed to close server conn: ", e);
}
I am trying to create a helper method that will eliminate the need of having code like this:
void foo() throws ExceptionA, ExceptionB, DefaultException {
try {
doSomething(); // that throws ExceptionA, ExceptionB or others
} catch (Exception e) {
if (e instanceof ExceptionA)
throw new ExceptionA("extra message", e);
if (e instanceof ExceptionB)
throw new ExceptionB("extra message", e);
throw new DefaultException("extra message", e);
}
}
The problem is that I need to maintain the throws list in the function declaration and in the body of the function at the same time. I am looking how to avoid that and to make changing the throws list sufficient and my code to looks like:
void foo() throws ExceptionA, ExceptionB, DefaultException {
try {
doSomething(); // that throws ExceptionA, ExceptionB or others
} catch (Exception e) {
rethrow(DefaultException.class, "extra message", e);
}
}
Where rethrow method will be smart enough to recognize the throws list from the method declaration.
This way when I change the list of type that my method propagates in the throws list I to not need to change the body.
The following is a function that could solve the problem. The problem is because it does not know what type of exception it will throw its throws declaration has to say Exception, but if it does this, the method that is going to use it will need to specify it as well, and the whole idea of using the throws list goes to hell.
Any suggestions how this could be solved?
#SuppressWarnings("unchecked")
public static void rethrow(Class<?> defaultException, String message, Exception e) throws Exception
{
final StackTraceElement[] ste = Thread.currentThread().getStackTrace();
final StackTraceElement element = ste[ste.length - 1 - 1];
Method method = null;
try {
method = getMethod(element);
} catch (ClassNotFoundException ignore) {
// ignore the Class not found exception - just make sure the method is null
method = null;
}
boolean preserveType = true;
if (method != null) {
// if we obtained the method successfully - preserve the type
// only if it is in the list of the thrown exceptions
preserveType = false;
final Class<?> exceptions[] = method.getExceptionTypes();
for (Class<?> cls : exceptions) {
if (cls.isInstance(e)) {
preserveType = true;
break;
}
}
}
if (preserveType)
{
// it is throws exception - preserve the type
Constructor<Exception> constructor;
Exception newEx = null;
try {
constructor = ((Constructor<Exception>) e.getClass().getConstructor());
newEx = constructor.newInstance(message, e);
} catch (Exception ignore) {
// ignore this exception we prefer to throw the original
newEx = null;
}
if (newEx != null)
throw newEx;
}
// if we get here this means we do not want, or we cannot preserve the type
// just rethrow it with the default type
Constructor<Exception> constructor;
Exception newEx = null;
if (defaultException != null) {
try {
constructor = (Constructor<Exception>) defaultException.getConstructor();
newEx = constructor.newInstance(message, e);
} catch (Exception ignore) {
// ignore this exception we prefer to throw the original
newEx = null;
}
if (newEx != null)
throw newEx;
}
// if we get here we were unable to construct the default exception
// there lets log the message that we are going to lose and rethrow
// the original exception
log.warn("this message was not propagated as part of the exception: \"" + message + "\"");
throw e;
}
Update 1:
I can use RuntimeException to avoid the need of throws declaration, but in this case I am losing the type of the exception which is one of the most important points.
Ideas how I can resolve this?
I'm guessing that code where you're doing real work (ie. the part where you're not tinkering with exceptions) looks like this.
public void doSomeWork( ... ) throws ExceptionA, ExceptionB, DefaultException
{
try
{
// some code that could throw ExceptionA
...
// some code that could throw OtherExceptionA
...
// some code that could throw ExceptionB
...
// some code that could throw OtherExceptionB
}
catch (Exception e)
{
if( e instanceof ExceptionA )
{
throw new ExceptionA("extra message", e);
}
if( e instanceof ExceptionB )
{
throw new ExceptionB("extra message", e);
}
throw new DefaultException("extra message", e);
}
}
There are two better approaches
First Approach
public void doSomeWork( ... ) throws ExceptionA, ExceptionB, DefaultException
{
// some code that could throw ExceptionA
...
try
{
// some code that could throw OtherExceptionA
...
}
catch (Exception e)
{
throw new DefaultException("extra message", e);
}
// some code that could throw ExceptionB
...
try
{
// some code that could throw OtherExceptionB
}
catch (Exception e)
{
throw new DefaultException("extra message", e);
}
}
Second Approach
public void doSomeWork( ... ) throws ExceptionA, ExceptionB, DefaultException
{
try
{
// some code that could throw ExceptionA
...
// some code that could throw OtherExceptionA
...
// some code that could throw ExceptionB
...
// some code that could throw OtherExceptionB
}
catch (OtherExceptionA | OtherExceptionB e)
{
throw new DefaultException("extra message", e);
}
}
The first approach is good if you want to continue execution at all costs and catch and wrap RuntimeExceptions if you run into them. Generally you don't want to do this, and it's better to let them propagate up, as you probably can't handle them.
The second approach is generally the best. Here you're explicitly pointing out which exceptions you can handle, and dealing with them by wrapping them. Unexpected RuntimeExceptions propagate up, as they should unless you have some way of dealing with them.
Just a general comment: playing with StackTraceElements isn't considered to be a great idea. You may end up getting an empty array from Thread.currentThread().getStackTrace() (although you most likely will not if using a modern Oracle JVM), and the depth of the calling method isn't always length-2, it may be length-1 particularly in older versions of the Oracle JVM.
You can read more about this problem in this question.
To elaborate on what )some) people are telling you, this is MyFunctionFailedException, ofcourse it should be named something more sensible:
public class MyFunctionFailedException extends Exception {
public MyFunctionFailedException(String message, Throwable cause) {
super(message, cause);
}
}
Then your catch block becomes something like this.
try {
...
} catch (Exception e) {
throw new MyFunctionFailedException("extra message", e);
}
If you really want to rethrow a lower level exception, you should use multiple catch blocks. Be aware tho' that not all types of Exceptions necessarily has a constructor that let's you add a cause. And you really should think about why it makes sense for your method to let for instance an uncaught SQLException bubble up the call stack.
Is there an elegant way to handle exceptions that are thrown in finally block?
For example:
try {
// Use the resource.
}
catch( Exception ex ) {
// Problem with the resource.
}
finally {
try{
resource.close();
}
catch( Exception ex ) {
// Could not close the resource?
}
}
How do you avoid the try/catch in the finally block?
I usually do it like this:
try {
// Use the resource.
} catch( Exception ex ) {
// Problem with the resource.
} finally {
// Put away the resource.
closeQuietly( resource );
}
Elsewhere:
protected void closeQuietly( Resource resource ) {
try {
if (resource != null) {
resource.close();
}
} catch( Exception ex ) {
log( "Exception during Resource.close()", ex );
}
}
I typically use one of the closeQuietly methods in org.apache.commons.io.IOUtils:
public static void closeQuietly(OutputStream output) {
try {
if (output != null) {
output.close();
}
} catch (IOException ioe) {
// ignore
}
}
If you're using Java 7, and resource implements AutoClosable, you can do this (using InputStream as an example):
try (InputStream resource = getInputStream()) {
// Use the resource.
}
catch( Exception ex ) {
// Problem with the resource.
}
Arguably a bit over the top, but maybe useful if you're letting exceptions bubble up and you can't log anything from within your method (e.g. because it's a library and you'd rather let the calling code handle exceptions and logging):
Resource resource = null;
boolean isSuccess = false;
try {
resource = Resource.create();
resource.use();
// Following line will only run if nothing above threw an exception.
isSuccess = true;
} finally {
if (resource != null) {
if (isSuccess) {
// let close throw the exception so it isn't swallowed.
resource.close();
} else {
try {
resource.close();
} catch (ResourceException ignore) {
// Just swallow this one because you don't want it
// to replace the one that came first (thrown above).
}
}
}
}
UPDATE: I looked into this a bit more and found a great blog post from someone who has clearly thought about this more than me: http://illegalargumentexception.blogspot.com/2008/10/java-how-not-to-make-mess-of-stream.html He goes one step further and combines the two exceptions into one, which I could see being useful in some cases.
As of Java 7 you no longer need to explicitly close resources in a finally block instead you can use try-with-resources syntax. The try-with-resources statement is a try statement that declares one or more resources. A resource is an object that must be closed after the program is finished with it. The try-with-resources statement ensures that each resource is closed at the end of the statement. Any object that implements java.lang.AutoCloseable, which includes all objects which implement java.io.Closeable, can be used as a resource.
Assume the following code:
try( Connection con = null;
Statement stmt = con.createStatement();
Result rs= stmt.executeQuery(QUERY);)
{
count = rs.getInt(1);
}
If any exception happens the close method will be called on each of these three resources in opposite order in which they were created. It means the close method would be called first for ResultSetm then the Statement and at the end for the Connection object.
It's also important to know that any exceptions that occur when the close methods is automatically called are suppressed. These suppressed exceptions can be retrieved by getsuppressed() method defined in the Throwable class.
Source: https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
Ignoring exceptions which occur in a 'finally' block is generally a bad idea unless one knows what those exceptions will be and what conditions they will represent. In the normal try/finally usage pattern, the try block places things into a state the outside code won't be expecting, and the finally block restores those things' state to what the outside code expects. Outside code which catches an exception will generally expect that, despite the exception, everything has been restored to a normal state. For example, suppose some code starts a transaction and then tries to add two records; the "finally" block performs a "rollback if not committed" operation. A caller might be prepared for an exception to occur during the execution of the second "add" operation, and may expect that if it catches such an exception, the database will be in the state it was before either operation was attempted. If, however, a second exception occurs during the rollback, bad things could happen if the caller makes any assumptions about the database state. The rollback failure represents a major crisis--one which should not be caught by code expecting a mere "Failed to add record" exception.
My personal inclination would be to have a finally method catch exceptions that occur and wrap them in a "CleanupFailedException", recognizing that such failure represents a major problem and such an exception should not be caught lightly.
One solution, if the two Exceptions are two different classes
try {
...
}
catch(package1.Exception err)
{
...
}
catch(package2.Exception err)
{
...
}
finally
{
}
But sometimes you cannot avoid this second try-catch. e.g. for closing a stream
InputStream in=null;
try
{
in= new FileInputStream("File.txt");
(..)// do something that might throw an exception during the analysis of the file, e.g. a SQL error
}
catch(SQLException err)
{
//handle exception
}
finally
{
//at the end, we close the file
if(in!=null) try { in.close();} catch(IOException err) { /* ignore */ }
}
Why do you want to avoid the additional block? Since the finally block contains "normal" operations which may throw an exception AND you want the finally block to run completely you HAVE to catch exceptions.
If you don't expect the finally block to throw an exception and you don't know how to handle the exception anyway (you would just dump stack trace) let the exception bubble up the call stack (remove the try-catch from the finally block).
If you want to reduce typing you could implement a "global" outer try-catch block, which will catch all exceptions thrown in finally blocks:
try {
try {
...
} catch (Exception ex) {
...
} finally {
...
}
try {
...
} catch (Exception ex) {
...
} finally {
...
}
try {
...
} catch (Exception ex) {
...
} finally {
...
}
} catch (Exception ex) {
...
}
After lots of consideration, I find the following code best:
MyResource resource = null;
try {
resource = new MyResource();
resource.doSomethingFancy();
resource.close();
resource = null;
} finally {
closeQuietly(resource)
}
void closeQuietly(MyResource a) {
if (a!=null)
try {
a.close();
} catch (Exception e) {
//ignore
}
}
That code guarantees following:
The resource is freed when the code finished
Exceptions thrown when closing the resource are not consumed without processing them.
The code does not try to close the resource twice, no unnecessary exception will be created.
If you can you should test to avoid the error condition to begin with.
try{...}
catch(NullArgumentException nae){...}
finally
{
//or if resource had some useful function that tells you its open use that
if (resource != null)
{
resource.Close();
resource = null;//just to be explicit about it was closed
}
}
Also you should probably only be catching exceptions that you can recover from, if you can't recover then let it propagate to the top level of your program. If you can't test for an error condition that you will have to surround your code with a try catch block like you already have done (although I would recommend still catching specific, expected errors).
You could refactor this into another method ...
public void RealDoSuff()
{
try
{ DoStuff(); }
catch
{ // resource.close failed or something really weird is going on
// like an OutOfMemoryException
}
}
private void DoStuff()
{
try
{}
catch
{
}
finally
{
if (resource != null)
{
resource.close();
}
}
}
I usually do this:
MyResource r = null;
try {
// use resource
} finally {
if( r != null ) try {
r.close();
} catch( ThatSpecificExceptionOnClose teoc ){}
}
Rationale: If I'm done with the resource and the only problem I have is closing it, there is not much I can do about it. It doesn't make sense either to kill the whole thread if I'm done with the resource anyway.
This is one of the cases when at least for me, it is safe to ignore that checked exception.
To this day I haven't had any problem using this idiom.
try {
final Resource resource = acquire();
try {
use(resource);
} finally {
resource.release();
}
} catch (ResourceException exx) {
... sensible code ...
}
Job done. No null tests. Single catch, include acquire and release exceptions. Of course you can use the Execute Around idiom and only have to write it once for each resource type.
Changing Resource from best answer to Closeable
Streams implements Closeable Thus you can reuse the method for all streams
protected void closeQuietly(Closeable resource) {
if (resource == null)
return;
try {
resource.close();
} catch (IOException e) {
//log the exception
}
}
I encountered a situation similar where I couldn't use try with resources but I also wanted to handle the exception coming from the close, not just log and ignore it like closeQuietly mechanism do. in my case I'm not actually dealing with an output stream, so the failure on close is of more interest than a simple stream.
IOException ioException = null;
try {
outputStream.write("Something");
outputStream.flush();
} catch (IOException e) {
throw new ExportException("Unable to write to response stream", e);
}
finally {
try {
outputStream.close();
} catch (IOException e) {
ioException = e;
}
}
if (ioException != null) {
throw new ExportException("Unable to close outputstream", ioException);
}