Problem Statement : Find the max temperature of each city using MapReduce
Input:
Kolkata,56
Jaipur,45
Delhi,43
Mumbai,34
Goa,45
Kolkata,35
Jaipur,34
Delhi,32
Output:
Kolkata 56
Jaipur 45
Delhi 43
Mumbai 34
I have written the following code :
Map:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class Map
extends Mapper<LongWritable, Text, Text, IntWritable>{
private IntWritable max = new IntWritable();
private Text word = new Text();
#Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer line = new StringTokenizer(value.toString(),",\t");
word.set(line.nextToken());
max.set(Integer.parseInt(line.nextToken()));
context.write(word,max);
}
}
Reduce:
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class Reduce
extends Reducer<Text, IntWritable, Text, IntWritable>{
private int max_temp = Integer.MIN_VALUE;
private int temp = 0;
#Override
protected void reduce(Text key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {
Iterator<IntWritable> itr = values.iterator();
while (itr.hasNext()) {
temp = itr.next().get();
if( temp > max_temp)
{
max_temp = temp;
}
}
context.write(key, new IntWritable(max_temp));
}
}
Driver Class:
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class MaxTempDriver {
public static void main(String[] args) throws Exception {
// Create a new job
Job job = new Job();
// Set job name to locate it in the distributed environment
job.setJarByClass(MaxTempDriver.class);
job.setJobName("Max Temperature");
// Set input and output Path, note that we use the default input format
// which is TextInputFormat (each record is a line of input)
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// Set Mapper and Reducer class
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
// Set Output key and value
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
I am getting the following error:
17/06/15 10:44:17 INFO mapred.JobClient: Task Id :
attempt_201706151011_0002_m_000000_1, Status : FAILED
java.util.NoSuchElementException
at java.util.StringTokenizer.nextToken(StringTokenizer.java:349)
at Map.map(Map.java:23)
at Map.map(Map.java:1)
at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:144)
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:764)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:370)
at org.apache.hadoop.mapred.Child$4.run(Child.java:255)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
atorg.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1121)
at org.apache.hadoop.mapred.Child.main(Child.java:249)
As you can see, I am getting java.util.NoSuchElementException in the map function. Please help me with this exception and provide your suggestions to modify the map() code.
Check whether the next token exists:
#Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer line = new StringTokenizer(value.toString(), ",\t");
if (line.countTokens() > 0) {
word.set(line.nextToken());
if (line.hasMoreTokens())
max.set(Integer.parseInt(line.nextToken()));
context.write(word, max);
}
}
One thing that I noticed when I tried out this particular example of MapReduce is that, the highest value gets cascaded for all the values following the place with the highest temperature.
Output looked something similar to this,
Delhi 43
Goa 45
Jaipur 45
Kolkata 56
Mumbai 56
As opposed to this,
Delhi 43
Goa 45
Jaipur 45
Kolkata 56
Mumbai 34
You can see that the last value of Mumbai has a temperature of 56(which is the highest temperature for Kolkata)
I noticed that, this was because of not resetting the temp and the max_temperature for each call of the reduce function.
Adding the following two lines inside the reduce function within the Reduce class, just before the while loop solves this issue,
temp = 0;
max_temp = Integer.MIN_VALUE;
Related
I am currently using Eclipse and Hadoop to create a mapper and reducer to find Maximum Total Cost of an Airline Data Set.
So the Total Cost is Decimal Value and Airline Carrier is Text.
The dataset I used can be found in the following weblink:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/236265/dft-flights-data-2011.csv
When I export the jar file in Hadoop,
I am getting the following message: ls: "output" : No such file or directory.
Can anyone help me correct the code please?
My code is below.
Mapper:
package org.myorg;
import java.io.IOException;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MaxTotalCostMapper extends Mapper<LongWritable, Text, Text, DoubleWritable>
{
private final static DoubleWritable totalcostWritable = new DoubleWritable(0);
private Text AirCarrier = new Text();
#Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException
{
String[] line = value.toString().split(",");
AirCarrier.set(line[8]);
double totalcost = Double.parseDouble(line[2].trim());
totalcostWritable.set(totalcost);
context.write(AirCarrier, totalcostWritable);
}
}
Reducer:
package org.myorg;
import java.io.IOException;
import java.util.ArrayList;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class MaxTotalCostReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable>
{
ArrayList<Double> totalcostList = new ArrayList<Double>();
#Override
public void reduce(Text key, Iterable<DoubleWritable> values, Context context)
throws IOException, InterruptedException
{
double maxValue=0.0;
for (DoubleWritable value : values)
{
maxValue = Math.max(maxValue, value.get());
}
context.write(key, new DoubleWritable(maxValue));
}
}
Main:
package org.myorg;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class MaxTotalCost
{
public static void main(String[] args) throws Exception
{
Configuration conf = new Configuration();
if (args.length != 2)
{
System.err.println("Usage: MaxTotalCost<input path><output path>");
System.exit(-1);
}
Job job;
job=Job.getInstance(conf, "Max Total Cost");
job.setJarByClass(MaxTotalCost.class);
FileInputFormat.addInputPath(job, new Path(args[1]));
FileOutputFormat.setOutputPath(job, new Path(args[2]));
job.setMapperClass(MaxTotalCostMapper.class);
job.setReducerClass(MaxTotalCostReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DoubleWritable.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
ls: "output" : No such file or directory
You have no HDFS user directory. Your code isn't making it into the Mapper or Reducer. That error typically arises at the Job
FileOutputFormat.setOutputPath(job, new Path(args[2]));
Run an hdfs dfs -ls, see if you get any errors. If so, make a directory under /user that matches your current user.
Otherwise, change your output directory to something like /tmp/max
Can someone please help me to find out why I am not getting the average salary after running my MapReduce code.
Problem: Calculate Average salary of permanent and contract employee
Sample Input:
1 user1 permanent 100
2 user2 contract 500
3 user3 permanent 200
4 user4 contract 300
Expected Output:
permanent 285
contract 187
Output I got:
permanent 100
permanent 200
contract 500
contract 300
Run Job:
$ hadoop jar partition.jar com.hadoop.PartitionExample
input/partition_example.txt output
package com.hadoop;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class PartitionExample {
public static class MapClass extends Mapper<LongWritable, Text,
Text, IntWritable>{
Text outKey = new Text(); ;
IntWritable outValue = new IntWritable();
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException{
String[] colmn = value.toString().split(" ");
outKey.set(colmn[2]);
outValue.set(Integer.parseInt(colmn[3]));
context.write(outKey, outValue);
}
}
// permanent [100,300,200,400]
public static class ReduceClass extends Reducer<Text,IntWritable,Text,
IntWritable>{
IntWritable outValue = new IntWritable();
public void Reduce(Text key, Iterable<IntWritable> value, Context
context) throws IOException, InterruptedException{
int sum = 0; int count = 0; int avg ;
//outKey.set(key);
for (IntWritable sal:value){
sum = sum + sal.get();
count++;
}
avg = sum/count ;
outValue.set(avg);
context.write(key, outValue);
}
}
public static void main(String[] args) throws IOException,
ClassNotFoundException, InterruptedException{
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if(otherArgs.length != 2){
System.err.println("Number of argument passed is not 2");
System.exit(1);
}
Job job = new Job(conf, "My regular MapReduce job");
job.setJarByClass(PartitionExample.class);
job.setMapperClass(MapClass.class);
// job.setCombinerClass(ReduceClass.class);
job.setReducerClass(ReduceClass.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
I found my mistake in the code. It was very silly mistake I can say :(
it was in ovirridden reduce function name. I change it from "Reduce" to "reduce".
I am very new to hadoop and I am getting this error while running a mapreduce job. I am trying to calculate the avg for a person and trying to take the input of first job and passing to 2nd job for calculating grades. I understood the problem but I am not able to figure out where I am doing wrong.
Below is the exception:
15/07/02 23:53:36 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
15/07/02 23:53:36 INFO input.FileInputFormat: Total input paths to process : 1
15/07/02 23:53:38 INFO mapred.JobClient: Running job: job_201507022153_0026
15/07/02 23:53:39 INFO mapred.JobClient: map 0% reduce 0%
15/07/02 23:53:44 INFO mapred.JobClient: Task Id : attempt_201507022153_0026_m_000000_0, Status : FAILED
java.lang.ClassCastException: org.apache.hadoop.io.Text cannot be cast to org.apache.hadoop.io.DoubleWritable
at com.hadoop.mrchain.Driver$Mapper2.map(Driver.java:1)
at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:144)
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:647)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:323)
at org.apache.hadoop.mapred.Child$4.run(Child.java:266)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1278)
at org.apache.hadoop.mapred.Child.main(Child.java:260)
My code:
package com.hadoop.mrchain;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class Driver {
/*
* Mapper1
*/
public static class Mapper1 extends
Mapper<Object, Text, Text, DoubleWritable> {
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
String studentName = itr.nextToken();
Double marks = Double.parseDouble(itr.nextToken());
context.write(new Text(studentName), new DoubleWritable(marks));
}
}
/*
* Mapper1
*/
public static class Mapper2 extends
Mapper<Object, DoubleWritable, Text, DoubleWritable> {
public void map(Object key, DoubleWritable value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
context.write(new Text(itr.nextToken()), new DoubleWritable(Double
.parseDouble(itr.nextToken().toString())));
}
}
/*
* Reducer1
*/
public static class Reducer1 extends
Reducer<Text, DoubleWritable, Text, DoubleWritable> {
public void reduce(Text key, Iterable<DoubleWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
int count = 0;
for (DoubleWritable val : values) {
sum += val.get();
count++;
}
double avg = sum / count;
context.write(key, new DoubleWritable(avg));
}
}
/*
* Reducer2
*/
public static class Reducer2 extends
Reducer<Text, DoubleWritable, Text, Text> {
public void reduce(Text key, Iterable<DoubleWritable> values,
Context context) throws IOException, InterruptedException {
for (DoubleWritable val : values) {
// double marks = Double.parseDouble(val.toString());
int marks = ((Double) val.get()).intValue();
if (marks >= 70) {
context.write(key, new Text("GradeA"));
} else if (marks >= 60 && marks < 70) {
context.write(key, new Text("GradeB"));
} else if (marks < 60 && marks >= 40) {
context.write(key, new Text("GradeC"));
} else {
context.write(key, new Text("FAIL"));
}
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
cleanFileSystem(conf, args);
Job job1 = new Job(conf, "BATCH51-MRCHAIN-JOB1");
job1.setJarByClass(Driver.class);
job1.setMapperClass(Mapper1.class);
job1.setCombinerClass(Reducer1.class);
job1.setReducerClass(Reducer1.class);
job1.setOutputKeyClass(Text.class);
job1.setOutputValueClass(DoubleWritable.class);
FileInputFormat.addInputPath(job1, new Path(args[0]));
FileOutputFormat.setOutputPath(job1, new Path(args[1]));
job1.waitForCompletion(true);
// Job2
Job job2 = new Job(conf, "BATCH51-MRCHAIN-JOB2");
job2.setJarByClass(Driver.class);
job2.setMapperClass(Mapper2.class);
job2.setCombinerClass(Reducer2.class);
job2.setReducerClass(Reducer2.class);
// job2.setMapOutputKeyClass(Text.class);
// job2.setMapOutputValueClass(DoubleWritable.class);
job2.setOutputKeyClass(Text.class);
job2.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job2, new Path(args[1]));
FileOutputFormat.setOutputPath(job2, new Path(args[2]));
System.exit(job2.waitForCompletion(true) ? 0 : 1);
}
private static void cleanFileSystem(Configuration conf, String[] args)
throws Exception {
FileSystem fs = FileSystem.get(conf);
if (fs.exists(new Path(args[1]))) {
fs.delete(new Path(args[1]), true);
}
if (fs.exists(new Path(args[2]))) {
fs.delete(new Path(args[2]), true);
}
// if (fs.exists(new Path(args[3]))) {
// fs.delete(new Path(args[3]), true);
// }
}
}
Sample Input:
hello 90
suresh 80
krishna 16
ramesh 55
santosh 82
anji 66
gopal 88
hello99
suresh 80
krishna 16
gopal 91
hello 91
suresh 80
krishna 86
ramesh 55
santosh 82
anji 66
gopal 95
It is not able to cast few strings into double, for example hello cannot be casted to double. You need to change you logic in mapper to fix this.
There are 2 issues to be addressed in the code posted in question:
We need to ensure that second mapper is able to correctly read the output generated by first map-reduce job. As the input format in use is default TextInputFormat which reads and store key-value in LongWritable, Text. In here, the code is trying to fit value of type Text into type DoubleWritable. Hence the exception. To fix this we need to ensure Text goes into Text.
As the combiner output goes to the reducer, the given reducer class cannot be used as is for combiner. To explain it; in the given scenario combiner emits Text, Text, but this is NOT the type reducer expects its key-values to be.
Below are the changes required to make the code working:
Mapper<LongWritable, Text, Text, DoubleWritable> { //Changed in mapper2 defn
//Changes in Driver main method
job1.setInputFormatClass(TextInputFormat.class); //added
job1.setOutputFormatClass(TextOutputFormat.class); //added
//job2.setCombinerClass(Reducer2.class); //commented
job2.setMapOutputKeyClass(Text.class); //un-commented
job2.setMapOutputValueClass(DoubleWritable.class); //un-commented
job2.setInputFormatClass(TextInputFormat.class); //added
Hope this helps.
I use this code below to get output result like ( Key , Value )
Apple 12
Bee 345
Cat 123
What I want is descending sorted by value ( 345 ) and place them before the key ( Value , Key )
345 Bee
123 Cat
12 Apple
I found there are something called "secondary sorted" not going to lie but I'm so lost - I tried to change .. context.write(key, result); but failed miserably. I'm new to Hadoop and not sure how can I start to tackle this problem. Any recommendation would be appreciated. Which function do I need to change ? or which class do I need modify ?
here 'are my classes :
package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
You have been able to do word count correctly.
You will need second map only job to perform the second requirement of descending sort and swapping of key value
Use DecreasingComparator as sort comparator
Use InverseMapper to swap key and values
Use Identity Reducer i.e. Reducer.class - In case of Identity Reducer no aggregation will happen ( as each value is output individually for key )
Set number of reduce tasks to 1 or use TotalOderPartitioner
Goal:
I want to be able to specify the number of mappers used on an input file
Equivalently, I want to specify the number of line of a file each mapper will take
Simple example:
For an input file of 10 lines (of unequal length; example below), I want there to be 2 mappers -- each mapper will thus process 5 lines.
This is
an arbitrary example file
of 10 lines.
Each line does
not have to be
of
the same
length or contain
the same
number of words
This is what I have:
(I have it so that each mapper produces one "<map,1>" key-value pair ... so that it will then be summed in the reducer)
package org.myorg;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.NLineInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.InputFormat;
public class Test {
// prduce one "<map,1>" pair per mapper
public static class Map extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
context.write(new Text("map"), one);
}
}
// reduce by taking a sum
public static class Red extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job1 = Job.getInstance(conf, "pass01");
job1.setJarByClass(Test.class);
job1.setMapperClass(Map.class);
job1.setCombinerClass(Red.class);
job1.setReducerClass(Red.class);
job1.setOutputKeyClass(Text.class);
job1.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job1, new Path(args[0]));
FileOutputFormat.setOutputPath(job1, new Path(args[1]));
// // Attempt#1
// conf.setInt("mapreduce.input.lineinputformat.linespermap", 5);
// job1.setInputFormatClass(NLineInputFormat.class);
// // Attempt#2
// NLineInputFormat.setNumLinesPerSplit(job1, 5);
// job1.setInputFormatClass(NLineInputFormat.class);
// // Attempt#3
// conf.setInt(NLineInputFormat.LINES_PER_MAP, 5);
// job1.setInputFormatClass(NLineInputFormat.class);
// // Attempt#4
// conf.setInt("mapreduce.input.fileinputformat.split.minsize", 234);
// conf.setInt("mapreduce.input.fileinputformat.split.maxsize", 234);
System.exit(job1.waitForCompletion(true) ? 0 : 1);
}
}
The above code, using the above example data, will produce
map 10
I want the output to be
map 2
where the first mapper will do something will the first 5 lines, and the second mapper will do something with the second 5 lines.
You could use NLineInputFormat.
With NLineInputFormat functionality, you can specify exactly how many lines should go to a mapper.
E.g. If your file has 500 lines, and you set number of lines per mapper to 10, you have 50 mappers
(instead of one - assuming the file is smaller than a HDFS block size).
EDIT:
Here is an example for using NLineInputFormat:
Mapper Class:
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MapperNLine extends Mapper<LongWritable, Text, LongWritable, Text> {
#Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
context.write(key, value);
}
}
Driver class:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.NLineInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.LazyOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class Driver extends Configured implements Tool {
#Override
public int run(String[] args) throws Exception {
if (args.length != 2) {
System.out
.printf("Two parameters are required for DriverNLineInputFormat- <input dir> <output dir>\n");
return -1;
}
Job job = new Job(getConf());
job.setJobName("NLineInputFormat example");
job.setJarByClass(Driver.class);
job.setInputFormatClass(NLineInputFormat.class);
NLineInputFormat.addInputPath(job, new Path(args[0]));
job.getConfiguration().setInt("mapreduce.input.lineinputformat.linespermap", 5);
LazyOutputFormat.setOutputFormatClass(job, TextOutputFormat.class);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(MapperNLine.class);
job.setNumReduceTasks(0);
boolean success = job.waitForCompletion(true);
return success ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new Configuration(), new Driver(), args);
System.exit(exitCode);
}
}
With the input you provided the output from the above sample Mapper would be written to two files as 2 Mappers get initialized :
part-m-00001
0 This is
8 an arbitrary example file
34 of 10 lines.
47 Each line does
62 not have to be
part-m-00002
77 of
80 the same
89 length or contain
107 the same
116 number of words