This question already has answers here:
Bitwise Multiply and Add in Java
(4 answers)
Closed 4 years ago.
So I have the following code to multiply two variables x and y using left and right shifts.
class Multiply {
public static long multiply(long x,long y) {
long sum = 0;
while(x != 0) {
if((x & 1) != 0) {
sum = sum+y;
}
x >>>= 1;
y <<= 1;
}
return sum;
}
public static void main(String args[]) {
long x = 7;
long y = 5;
long z = multiply(x,y);
}
}
But I dont understand the logic behind it, I understand that when you do
y<<=1
You are doubling y, but what does it mean that the number of iterations of the while loop depends on the number of bits x has?
while(x != 0)
Also why do I only sum if the rightmost bit of x is a 1?
if((x & 1) != 0) {
sum = sum+y;
}
I've really tried to understand the code but I haven't been able to get my head around the algorithm.
Those of us who remember from school how to multiply two numbers, each with two or more digits, will remember the algorithm:
23
x45
---
115
92x
----
1035
For every digit in the bottom factor, multiply it by the top factor and add the partial sums together. Note how we "shift" the partial sums (multiply them by 10) with each digit of the bottom factor.
This could apply to binary numbers as well. The thing to remember here is that no multiplication (by a factor's digit) is necessary, because it's either a 0 (don't add) or a 1 (add).
101
x110
-----
000
101
101
-----
11110
That's essentially what this algorithm does. Check the least significant bit; if it's a 1, add in the other factor (shifted), else don't add.
The line x >>>= 1; shifts right so that the next bit down becomes the least significant bit, so that the next bit can be tested during the next loop iteration. The number of loops depends on where the most significant bit 1 in x is. After the last 1 bit is shifted out of x, x is 0 and the loop terminates.
The line y <<= 1; shifts the other factor (multiplies by 2) in preparation for it be possibly added during the next loop iteration.
Overall, for every 1 bit in x at position n, it adds 2^n times y to the sum.
It does this without keeping track of n, but rather shuffling the bits x of 1 place right (dividing by 2) every iteration and shuffling the bits of y left (multiplying by 2).
Every time the 0 bit is set, which is tested by (x & 1) != 0, the amount to add is the current value of y.
Another reason this works are these equivalences:
(a + b) * y == a*y + b*y
x * y == (x/2) * (y*2)
which is the essence of what’s going on. The first equivalence allows bit-by-bit addition, and the second allows the opposite shuffling.
The >>> is an unsigned right shift which basically fills 0 irrespective of the sign of the number.
So for value x in the example 7 (in binary 111) the first time you do x >>>= 1; You are making the left most bit a zero so it changes from 111 to 011 giving you 3.
You do it again now you have 011 to 001 giving you 1
Once again and you have 001 to 000 giving you 0
So basically is giving you how many iterations before your number becomes zero. (Basically is diving your number in half and it is Integer division)
Now for the y value (5) you are adding it to your sum and then doubling the value of y
so you get:
y = 5 sum = 5
y = 10 sum = 15
y = 20 sum = 35
Only 3 iterations since x only needed to shift 3 times.
Now you have your result! 35
Here is the description:
In order to stop the Mad Coder evil genius you need to decipher the encrypted message he sent to his minions. The message contains several numbers that, when typed into a supercomputer, will launch a missile into the sky blocking out the sun, and making all the people on Earth grumpy and sad.
You figured out that some numbers have a modified single digit in their binary representation. More specifically, in the given number n the kth bit from the right was initially set to 0, but its current value might be different. It's now up to you to write a function that will change the kth bit of n back to 0.
Example
For n = 37 and k = 3, the output should be
killKthBit(n, k) = 33.
3710 = 1001012 ~> 1000012 = 3310.
For n = 37 and k = 4, the output should be
killKthBit(n, k) = 37.
The 4th bit is 0 already (looks like the Mad Coder forgot to encrypt this number), so the answer is still 37."
Here is a solution I found and I cannot understand it:
int killKthBit(int n, int k)
{
return n & ~(1 << (k - 1)) ;
}
Can someone explain what the solution does and its syntax?
Detailed explanation of your function
The expression 1 << (k - 1) shifts the number 1 exactly k-1 times to the left so as an example for an 8 Bit number and k = 4:
Before shift: 00000001
After Shift: 00010000
This marks the bit to kill. You see, 1 was shifted to the fourth position, as it was on position zero. The operator ~ negates each bit, meaning 1 becomes 0 and 0 becomes 1. For our example:
Before negation: 00010000
After negation: 11101111
At last, & executes a bit-wise AND on two operands. Let us say, we have a number n = 17, which is 00010001 in binary. Our example now is:
00010001 & 11101111 = 00000001
This is, because each bit of both numbers is compared by AND on the same position. Only positions, where both numbers have a 1 remain 1, all others are set to 0. Consequently, only position zero remains 1.
Overall your method int killKthBit(int n, int k) does exactly that with binary operators, it sets the bit on position k of number n to 0.
Here is my try
//Returns a number that has all bits same as n
// except the k'th bit which is made 0
int turnOffK(int n, int k)
{
// k must be greater than 0
if (k <= 0) return n;
// Do & of n with a number with all set bits except
// the k'th bit
return (n & ~(1 << (k - 1)));
}
How can we create a smallest binary number whose length is given.
For example,
the smallest binary number of length 4 is 1000
the smallest binary number of length 3 is 100.
I am not able to come up with any algorithm since length is only given.
This process of creating the number is to be done
numerous time with varying length.
What can be the code for that?
That is easy: 0, 00, 000, 0000, 00000, ....
On the serious note, binary is just another notation. What you have is a simple computation like this
binary 1 = decimal 1
binary 10 = decimal 2
binary 100 = decimal 4
binary 1000 = decimal 8
So you can do
int myNumber = 1;
for (int i = 1; i < LENGTH; i++)
myNumber = myNumber * 2;
Or use
myNumber = Math.pow(2, LENGTH - 1);
I need to find the largest power of 2 less than the given number.
And I stuck and can't find any solution.
Code:
public class MathPow {
public int largestPowerOf2 (int n) {
int res = 2;
while (res < n) {
res =(int) Math.pow(res, 2);
}
return res;
}
}
This doesn't work correctly.
Testing output:
Arguments Actual Expected
-------------------------
9 16 8
100 256 64
1000 65536 512
64 256 32
How to solve this issue?
Integer.highestOneBit(n-1);
For n <= 1 the question doesn't really make sense. What to do in that range is left to the interested reader.
The's a good collection of bit twiddling algorithms in Hacker's Delight.
Change res =(int)Math.pow(res, 2); to res *= 2; This will return the next power of 2 greater than res.
The final result you are looking for will therefore finally be res / 2 after the while has ended.
To prevent the code from overflowing the int value space you should/could change the type of res to double/long, anything that can hold higher values than int. In the end you would have to cast one time.
You can use this bit hack:
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
v >>= 1;
Why not use logs?
public int largestPowerOf2(int n) {
return (int)Math.pow(2, Math.floor(Math.log(n) / Math.log(2));
}
log(n) / log(2) tells you the number of times 2 goes into a number. By taking the floor of it, gets you the integer value rounding down.
There's a nice function in Integer that is helpful, numberOfLeadingZeros.
With it you can do
0x80000000 >>> Integer.numberOfLeadingZeros(n - 1);
Which does weird things when n is 0 or 1, but for those inputs there is no well-defined "highest power of two less than n".
edit: this answer is even better
You could eliminate the least significant bit in n until n is a power of 2. You could use the bitwise operator AND with n and n-1, which would eliminate the least significant bit in n until n would be a power of 2. If originally n would be a power of 2 then all you would have to do is reduce n by 1.
public class MathPow{
public int largestPowerOf2(int n){
if((n & n-1) == 0){ //this checks if n is a power of 2
n--; //Since n is a power of 2 we have to subtract 1
}
while((n & n-1) != 0){ //the while will keep on going until n is a power of 2, in which case n will only have 1 bit on which is the maximum power of 2 less than n. You could eliminate the != 0 but just for clarity I left it in
n = n & n-1; //we will then perform the bitwise operation AND with n and n-1 to eliminate the least significant bit of n
}
return n;
}
}
EXPLANATION:
When you have a number n (that is not a power of 2), the largest power of 2 that is less than n is always the most significant bit in n. In case of a number n that is a power of 2, the largest power of 2 less than n is the bit right before the only bit that is on in n.
For example if we had 8 (which is 2 to the 3rd power), its binary representation is 1000 the 0 that is bold would be the largest power of 2 before n. Since we know that each digit in binary represents a power of 2, then if we have n as a number that's a power of 2, the greatest power of 2 less than n would be the power of 2 before it, which would be the bit before the only bit on in n.
With a number n, that is not a power of 2 and is not 0, we know that in the binary representation n would have various bits on, these bits would only represent a sum of various powers of 2, the most important of which would be the most significant bit. Then we could deduce that n is only the most significant bit plus some other bits. Since n is represented in a certain length of bits and the most significant bit is the highest power of 2 we can represent with that number of bits, but it is also the lowest number we can represent with that many bits, then we can conclude that the most significant bit is the highest power of 2 lower than n, because if we add another bit to represent the next power of 2 we will have a power of 2 greater than n.
EXAMPLES:
For example, if we had 168 (which is 10101000 in binary) the while would take 168 and subtract 1 which is 167 (which is 10100111 in binary). Then we would do the bitwise AND on both numbers.
Example:
10101000
& 10100111
------------
10100000
We now have the binary number 10100000. If we subtract 1 from it and we use the bitwise AND on both numbers we get 10000000 which is 128, which is 2 to the power of 7.
Example:
10100000
& 10011111
-------------
10000000
If n were to be originally a power of 2 then we have to subtract 1 from n. For example if n was 16, which is 10000 in binary, we would subtract 1 which would leave us with 15, which is 1111 in binary, and we store it in n (which is what the if does). We then go into the while which does the bitwise operator AND with n and n-1, which would be 15 (in binary 1111) & 14 (in binary 1110).
Example:
1111
& 1110
--------
1110
Now we are left with 14. We then perform the bitwise AND with n and n-1, which is 14 (binary 1110) & 13 (binary 1101).
Example:
1110
& 1101
---------
1100
Now we have 12 and we only need to eliminate one last least significant bit. Again, we then execute the bitwise AND on n and n-1, which is 12 (in binary 1100) and 11 (in binary 1011).
Example
1100
& 1011
--------
1000
We are finally left with 8 which is the greatest power of 2 less than 16.
You are squaring res each time, meaning you calculate 2^2^2^2 instead of 2^k.
Change your evaluation to following:
int res = 2;
while (res * 2 < n) {
res *= 2;
}
Update:
Of course, you need to check for overflow of int, in that case checking
while (res <= (n - 1) / 2)
seems much better.
Here is a recursive bit-shifting method I wrote for this purpose:
public static int nextPowDown(int x, int z) {
if (x == 1)
return z;
return nextPowDown(x >> 1, z << 1);
}
Or shorter definition:
public static int nextPowTailRec(int x) {
return x <= 2 ? x : nextPowTailRec(x >> 1) << 1;
}
So in your main method let the z argument always equal 1. It's a pity default parameters aren't available here:
System.out.println(nextPowDown(60, 1)); // prints 32
System.out.println(nextPowDown(24412, 1)); // prints 16384
System.out.println(nextPowDown(Integer.MAX_VALUE, 1)); // prints 1073741824
A bit late but...
(Assuming 32 bit number.)
n|=(n>>1);
n|=(n>>2);
n|=(n>>4);
n|=(n>>8);
n|=(n>>16);
n=n^(n>>1);
Explanation:
The first | makes sure the original top bit and the 2nd highest top bit are set. The second | makes sure those two, and the next two are, etc, until you potentially hit all 32 bits. Ie
100010101 -> 111111111
Then we remove all but the top bit by xor'ing the string of 1's with that string of 1's shifted one to the left, and we end up with just the one top bit followed by 0's.
public class MathPow {
public int largestPowerOf2 (int n) {
int res = 2;
while (res < n) {
res = res * 2;
}
return res;
}
}
Find the first set bit from left to right and make all other set bits 0s.
If there is only 1 set bit then shift right by one.
I think this is the simplest way to do it.
Integer.highestOneBit(n-1);
public class MathPow
{
public int largestPowerOf2(int n)
{
int res = 1;
while (res <= (n-1)/2)
{
res = res * 2;
}
return res;
}
}
If the number is an integer you can always change it to binary then find out the number of digits.
n = (x>>>0).toString(2).length-1
p=2;
while(p<=n)
{
p=2*p;
}
p=p/2;
If the number is a power of two then the answer is obvious. (just bit shift) if not well then it is also can be achieved by bit shifting.
find the length of the given number in binary representation. (13 in binary = 1101 ; length is 4)
then
shift 2 by (4-2) // 4 is the length of the given number in binary
the below java code will solve this for BigIntegers(so basically for all numbers).
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String num = br.readLine();
BigInteger in = new BigInteger(num);
String temp = in.toString(2);
System.out.println(new BigInteger("2").shiftLeft(temp.length() - 2));
I saw another BigInteger solution above, but that is actually quite slow. A more effective way if we are to go beyond integer and long is
BigInteger nvalue = TWO.pow(BigIntegerMath.log2(value, RoundingMode.FLOOR));
where TWO is simply BigInteger.valueOf(2L)
and BigIntegerMath is taken from Guava.
Simple bit operations should work
public long largestPowerOf2 (long n)
{
//check already power of two? if yes simply left shift
if((num &(num-1))==0){
return num>>1;
}
// assuming long can take 64 bits
for(int bits = 63; bits >= 0; bits--) {
if((num & (1<<bits)) != 0){
return (1<<bits);
}
}
// unable to find any power of 2
return 0;
}
/**
* Find the number of bits for a given number. Let it be 'k'.
* So the answer will be 2^k.
*/
public class Problem010 {
public static void highestPowerOf2(int n) {
System.out.print("The highest power of 2 less than or equal to " + n + " is ");
int k = 0;
while(n != 0) {
n = n / 2;
k++;
}
System.out.println(Math.pow(2, k - 1) + "\n");
}
public static void main(String[] args) {
highestPowerOf2(10);
highestPowerOf2(19);
highestPowerOf2(32);
}
}
if(number>=2){
while(result < number){
result *=2;
}
result = result/ 2;
System.out.println(result);
}
Working on a method that would take in an integer (num) and an integer (n) that would take the absolute value of an n-bit number. I believe my logic is correct, have done it on paper and it worked out but the code seems like it is off. All help is greatly appreciated!
/**
* Take the absolute value of an n-bit number.
*
* Examples:
* abs(0x00001234, 16); // => 0x00001234
* abs(0x00001234, 13); // => 0x00000DCC
*
* Note: values passed in will only range from 1 to 31 for n.
*
* #param num An n-bit 2's complement number.
* #param n The bit length of the number.
* #return The n-bit absolute value of num.
*/
public static int abs(int num, int n)
{
int shifter = num << (n+1);
int newInt = num & ~shifter;
return newInt;
}
I don't think there's a single bitmask that will work for both positive and negative cases.
First test if the number is negative by checking that the nth bit is 1; if not, return the original, else return the two's complement.
Something like this looks like it works:
public static int abs(int num, int n)
{
int shifter = -1 << (n - 1);
if ((num & shifter) == 0)
return num;
shifter = shifter << 1;
return (~num + 1) & ~shifter;
}
For example, suppose you pass in 0x1FFF as a 16 bit number, so it's positive.
-1 << 15 would be 0xFFFF8000 (0's for the lowest 15 bits, 1's for the rest), 0xFFFF8000 & 0x00001FFF is 0, and your return the original.
If on the other hand 0x1FFF is treated as only 13 bits, then it's negative. num & shifter will be 1 because both have the 13th bit set. Now do the two's complement by flipping bits and adding ones. Because you'll be flipping all 32 bits, you need to use a bitmask to zero out all the remaining ones. The original shifter works if you push it one more bit to the left and invert it.
Use -1(all 1 bits) for shifter.
int shifter = -1 << n;