Basic Distributed Counter using Java Sockets - java

I have some Java processes(Socket programs) running on different servers, some on the same network and some on different networks. These processes together have the job to maintain a global counter. A client can connect to any of these processes and issue command to increase, decrease or get the counter value. The global counter should be eventually consistent(Network partition can occur and we can recover from it).
The solution I have thought of so far is to maintain a count of increments and decrements on each node for all the nodes. When an increment command is issued on a node, it increments its own local copy of its counts of increments and then broadcasts its increment and decrement count. The nodes that receive this broadcast take the max of the received counts and their local copy of the sender's counts and stores the result as the latest count. When a get command is issued on any node it gives the difference of the sums of all the increments and decrements. I assume this will take care of cases where broadcasts are received out of order and other unreliabilities. I don't want to use any persistence layer.
Is there a better way to implement this?
What protocol should I use to broadcast the counts? Will gossip on UDP work? Any Java libraries that might help?

You may be aware of this design pattern, but it still may be inspiring: https://en.wikipedia.org/wiki/Observer_pattern
You could simply make all of the instances of the program observe all of the other instances, then they will all notify each other if any one changes (check out the diagram in that link).
As far as a Java libraries, check these out, see if any of them make your life easier:
http://mina.apache.org/
http://commons.apache.org/proper/commons-net/
http://hc.apache.org/

It sounds like you need a PNCounter from Akka's Distributed Data library. It uses Gossip to communicate the counter's state to the network. You also have fine grained control over read and write consistency. So, for example, you can do a ReadMajority where "the value will be read and merged from a majority of replicas".
Incidentally, the PNCounter works as you describe, using two distributed counters to maintain increments and decrements.

Related

Java - How can I ensure I run a single instance of a process in a clustered environment

I have a jvm process that wakes a thread every X minutes.
If a condition is true -> it starts a job (JobA).
Another jvm process does almost the same but if the condition is true -
it throws a message to a message broker which triggers the job in another server (JobB).
Now, to avoid SPOF problem I want to add another instance of this machine in my cloud.
But than I want ensure I run a single instance of a JobA each time.
What are my options?
There are a number of patterns to solve this common problem. You need to choose based on your exact situation and depending on which factor has more weight in your case (performance, correctness, fail-tolerance, misfires allowed or not, etc). The two solution-groups are:
The "Quartz" way: you can use a JDBCStore from the Quartz library which (partially) was designed for this very reason. It allows multiple nodes to communicate, and share state and workload between each other. This solution gives you a probably perfect solution at the cost of some extra coding and setting up a shared DB (9 tables I think) between the nodes.
Alternatively your nodes can take care of the distribution itself: locking on a resource (single record in a DB for example) can be enough to decide who is in charge for that iteration of the execution. Sharing previous states however will require a bit more work.

Large number of single threaded task queues

At our company we have a server which is distributed into few instances. Server handles users requests. Requests from different users can be processed in parallel. Requests from same users should be executed strongly sequentionally. But they can arrive to different instances due to balancing. Currently we use Redis-based distributed locks but this is error-prone and requires more work around concurrency than business logic.
What I want is something like this (more like a concept):
Distinct queue for each user
Queue is named after user id
Each requests identified by request id
Imagine two requests from the same user arriving at two different instances concurrently:
Each instance put their request id into this user queue.
Additionaly, they both store their request ids locally.
Then some broker takes request id from the top of "some_user_queue" and moves it into "some_user_queue_processing"
Both instances listen for "some_user_queue_processing". They peek into it and see if this is request id they stored locally. If yes, then do processing. If not, then ignore and wait.
When work is done server deletes this id from "some_user_queue_processing".
Then step 3 again.
And all of this happens concurrently for a lot (thousands of them) of different users (and their queues).
Now, I know this sounds a lot like actors, but:
We need solution requiring as small changes as possible to make fast transition from locks. Akka will force us to rewrite almost everything from scratch.
We need production ready solution. Quasar sounds good, but is not production ready yet (more correctly, their Galaxy cluster).
Tops at my work are very conservative, they simply don't want another dependency which we'll need to support. But we already use Redis (for distributed locks), so I thought maybe it could help with this too.
Thanks
The best solution that matches the description of your problem is Redis Cluster.
Basically, the cluster solves your concurrency problem, in the following way:
Two (or more) requests from the same user, will always go to the same instance, assuming that you use the user-id as a key and the request as a value. The value must be actually a list of requests. When you receive one, you will append it to that list. In other words, that is your queue of requests (a single one for every user).
That matching is being possible by the design of the cluster implementation. It is based on a range of hash-slots spread over all the instances.
When a set command is executed, the cluster performs a hashing operation, which results in a value (the hash-slot that we are going to write on), which is located on a specific instance. The cluster finds the instance that contains the right range, and then performs the writing procedure.
Also, when a get is performed, the cluster does the same procedure: it finds the instance that contains the key, and then it gets the value.
The transition from locks is very easy to perform because you only need to have the instances ready (with the cluster-enabled directive set on "yes") and then to run the cluster-create command from redis-trib.rb script.
I've worked last summer with the cluster in a production environment and it behaved very well.

Publishing to KDB from multiple threads

We have an application with multiple threads which reuses one KDB connection.
From performance perspective, will it be good to open multiple connection to multithreaded KDB instance to speed up the process? Just also interesting is there any potential downside effect if we publish from multiple threads to a single connection: we have java app and use exxeleron java library.
Aside from the fact that a single socket connection to KDB isn't very resource hungry by itself, in the end I think you'll find that disk seeks and memory allocation are by far the largest bottlenecks, not how many connections you have to a database. That said, since you ask...
Let's go on simple assumptions:
The KDB database is a historical database. Multithread options on that side are negative port number and -s - which can't be set simultaneously
You have a single process, let's call it A, that accesses it
With a negative port number, you get multi-threaded input queue. So if A has the ability to do multiple queries they can be dispatched simultaneously and KDB+ won't block on each call. However A would somehow need to be able to identify the incoming stream of results as the responses to particular queries. You can query it like (<queryId>;<actualQuery>) and parse the the first element for identification I suppose. However in this use case it sounds like you should have multiple A's.
With -s you get multi-threaded queries so you q queries have to written as such (sometimes you get it for free though, like querying across partitions). You'll block on every call, so no real advantage in having multiple A's.

Use threads as "sessions"

I am developing a text-based game, MUD. I have the base functions of the program ready, and now I would like to allow to connect more than one client at a time. I plan to use threads to accomplish that.
In my game I need to store information such as current position or health points for each player. I could hold it in the database, but as it will change very quick, sometimes every second, the use of database would be inefficient (am I right?).
My question is: can threads behave as "sessions", ie hold some data unique to each user?
If yes, could you direct me to some resources that I could use to help me understand how it works?
If no, what do you suggest? Is database a good option or would you recommend something else?
Cheers,
Eleeist
Yes, they can, but this is a mind-bogglingly stupid way to do things. For one thing, it permanently locks you into a "one thread per client" model. For another thing, it makes it difficult (maybe even impossible) to implement interactions between users, which I'm sure your MUD has.
Instead, have a collection of some kind that stores your users, with data on each user. Save persistent data to the database, but you don't need to update ephemeral data on every change.
One way to handle this is to have a "changed" boolean in each user. When you make a critical change to a user, write them to the database immediately. But if it's a routine, non-critical change, just set the "changed" flag. Then have a thread come along every once in a while and write out changed users to the database (and clear the "changed" flag).
Use appropriate synchronization, of course!
A Thread per connection / user session won't scale. You can only have N number of threads active where N is equal to the number of physical cores / processors your machine has. You are also limited by the amount of memory in your machine for how many threads you can create a time, some operating systems just put arbitrary limits as well.
There is nothing magical about Threads in handling multiple clients. They will just make your code more complicated and less deterministic and thus harder to reason about what is actually happening when you start hunting logic errors.
A Thread per connection / user session would be an anti-pattern!
Threads should be stateless workers that pull things off concurrent queues and process the data.
Look at concurrent maps for caching ( or use some appropriate caching solution ) and process them and then do something else. See java.util.concurrent for all the primitive classes you need to implement something correctly.
Instead of worrying about threads and thread-safety, I'd use an in-memory SQL database like HSQLDB to store session information. Among other benefits, if your MUD turns out to be the next Angry Birds, you could more easily scale the thing up.
Definitely you can use threads as sessions. But it's a bit off the mark.
The main point of threads is the ability of concurrent, asynchronous execution. Most probably, you don't want events received from your MUD clients to happen in an parallel, uncontrolled order.
To ensure consistency of the world I'd use an in-memory database to store the game world. I'd serialize updates to it, or at least some updates to it. Imagine two players in parallel hitting a monster with HP 100. Each deals 100 damage. If you don't serialize the updates, you could end up giving credit for 100 damage to both players. Imagine two players simultaneously taking loot from the monster. Without proper serialization they could end up each with their own copy of the loot.
Threads, on the other hand, are good for asynchronous communication with clients. Use threads for that, unless something else (like a web server) does that for you already.
ThreadLocal is your friend! :)
http://docs.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html
ThreadLocal provides storage on the Thread itself. So the exact same call from 2 different threads will return/store different data.
The biggest danger is having a leak between Threads. You would have to be absolutely sure that if a different user used a Thread that someone else used, you would reset/clear the data.

Patterns/Principles for thread-safe queues and "master/worker" program in Java

I have a problem which I believe is the classic master/worker pattern, and I'm seeking advice on implementation. Here's what I currently am thinking about the problem:
There's a global "queue" of some sort, and it is a central place where "the work to be done" is kept. Presumably this queue will be managed by a kind of "master" object. Threads will be spawned to go find work to do, and when they find work to do, they'll tell the master thing (whatever that is) to "add this to the queue of work to be done".
The master, perhaps on an interval, will spawn other threads that actually perform the work to be done. Once a thread completes its work, I'd like it to notify the master that the work is finished. Then, the master can remove this work from the queue.
I've done a fair amount of thread programming in Java in the past, but it's all been prior to JDK 1.5 and consequently I am not familiar with the appropriate new APIs for handling this case. I understand that JDK7 will have fork-join, and that that might be a solution for me, but I am not able to use an early-access product in this project.
The problems, as I see them, are:
1) how to have the "threads doing the work" communicate back to the master telling them that their work is complete and that the master can now remove the work from the queue
2) how to efficiently have the master guarantee that work is only ever scheduled once. For example, let's say this queue has a million items, and it wants to tell a worker to "go do these 100 things". What's the most efficient way of guaranteeing that when it schedules work to the next worker, it gets "the next 100 things" and not "the 100 things I've already scheduled"?
3) choosing an appropriate data structure for the queue. My thinking here is that the "threads finding work to do" could potentially find the same work to do more than once, and they'd send a message to the master saying "here's work", and the master would realize that the work has already been scheduled and consequently should ignore the message. I want to ensure that I choose the right data structure such that this computation is as cheap as possible.
Traditionally, I would have done this in a database, in sort of a finite-state-machine manner, working "tasks" through from start to complete. However, in this problem, I don't want to use a database because of the high volume and volatility of the queue. In addition, I'd like to keep this as light-weight as possible. I don't want to use any app server if that can be avoided.
It is quite likely that this problem I'm describing is a common problem with a well-known name and accepted set of solutions, but I, with my lowly non-CS degree, do not know what this is called (i.e. please be gentle).
Thanks for any and all pointers.
As far as I understand your requirements, you need ExecutorService. ExecutorService have
submit(Callable task)
method which return value is Future. Future is a blocking way to communicate back from worker to master. You could easily expand this mechanism to work is asynchronous manner. And yes, ExecutorService also maintaining work queue like ThreadPoolExecutor. So you don't need to bother about scheduling, in most cases. java.util.concurrent package already have efficient implementations of thread safe queue (ConcurrentLinked queue - nonblocking, and LinkedBlockedQueue - blocking).
Check out java.util.concurrent in the Java library.
Depending on your application it might be as simple as cobbling together some blocking queue and a ThreadPoolExecutor.
Also, the book Java Concurrency in Practice by Brian Goetz might be helpful.
First, why do you want to hold the items after a worker started doing them? Normally, you would have a queue of work and a worker takes items out of this queue. This would also solve the "how can I prevent workers from getting the same item"-problem.
To your questions:
1) how to have the "threads doing the
work" communicate back to the master
telling them that their work is
complete and that the master can now
remove the work from the queue
The master could listen to the workers using the listener/observer pattern
2) how to efficiently have the master
guarantee that work is only ever
scheduled once. For example, let's say
this queue has a million items, and it
wants to tell a worker to "go do these
100 things". What's the most efficient
way of guaranteeing that when it
schedules work to the next worker, it
gets "the next 100 things" and not
"the 100 things I've already
scheduled"?
See above. I would let the workers pull the items out of the queue.
3) choosing an appropriate data
structure for the queue. My thinking
here is that the "threads finding work
to do" could potentially find the same
work to do more than once, and they'd
send a message to the master saying
"here's work", and the master would
realize that the work has already been
scheduled and consequently should
ignore the message. I want to ensure
that I choose the right data structure
such that this computation is as cheap
as possible.
There are Implementations of a blocking queue since Java 5
Don't forget Jini and Javaspaces. What you're describing sounds very like the classic producer/consumer pattern that space-based architectures excel at.
A producer will write the jobs into the space. 1 or more consumers will take out jobs (under a transaction) and work on that in parallel, and then write the results back. Since it's under a transaction, if a problem occurs the job is made available again for another consumer .
You can scale this trivially by adding more consumers. This works especially well when the consumers are separate VMs and you scale across the network.
If you are open to the idea of Spring, then check out their Spring Integration project. It gives you all the queue/thread-pool boilerplate out of the box and leaves you to focus on the business logic. Configuration is kept to a minimum using #annotations.
btw, the Goetz is very good.
This doesn't sound like a master-worker problem, but a specialized client above a threadpool. Given that you have a lot of scavenging threads and not a lot of processing units, it may be worthwhile simply doing a scavaging pass and then a computing pass. By storing the work items in a Set, the uniqueness constraint will remove duplicates. The second pass can submit all of the work to an ExecutorService to perform the process in parallel.
A master-worker model generally assumes that the data provider has all of the work and supplies it to the master to manage. The master controls the work execution and deals with distributed computation, time-outs, failures, retries, etc. A fork-join abstraction is a recursive rather than iterative data provider. A map-reduce abstraction is a multi-step master-worker that is useful in certain scenarios.
A good example of master-worker is for trivially parallel problems, such as finding prime numbers. Another is a data load where each entry is independant (validate, transform, stage). The need to process a known working set, handle failures, etc. is what makes a master-worker model different than a thread-pool. This is why a master must be in control and pushes the work units out, whereas a threadpool allows workers to pull work from a shared queue.

Categories