currently I am trying to implement a CPLEX exact solution for the Asymmetric Capacitated Vehicle Routing Problem with the MTZ sub-tour elimination constraints.
My problems occurs when I try to implement Lazy Constraint Callbacks. More specifically I get a null pointer exception. There are almost no tutorials for implementing callbacks, so your help will be deeply appreciated.
This is my code:
CVRP class
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import ilog.concert.*;
import ilog.cplex.*;
public class ACVRP {
// euclidean distance method
public static double distance(int x1, int y1, int x2, int y2) {
return Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));
}
public static void solveModel() {
int n = 32; // number of customers
int k = 5; // number of vehicles
int c = 100; // capacity of vehicles
int datacoords[][] = new int[n][2];
double[][] node = new double[n][n]; // dissimilarity matrix
int[] demand = new int[n]; // demand of every customer
try {
// load matrixes
FileReader frd = new FileReader("demands.txt");
FileReader frcoords = new FileReader("coords.txt");
BufferedReader brd = new BufferedReader(frd);
BufferedReader brcoords = new BufferedReader(frcoords);
String str;
int counter = 0;
while ((str = brd.readLine()) != null) {
String[] splitStr = str.trim().split("\\s+");
demand[counter] = Integer.parseInt(splitStr[1]);
counter++;
}
counter = 0;
while ((str = brcoords.readLine()) != null) {
String[] splitStr = str.trim().split("\\s+");
datacoords[counter][0] = Integer.parseInt(splitStr[1]);
datacoords[counter][1] = Integer.parseInt(splitStr[2]);
counter++;
}
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
node[i][j] = distance(datacoords[i][0],datacoords[i][1],datacoords[j][0],datacoords[j][1]);
// if (i == j ){
// node[i][j] = 99999999;
// }
}
}
brd.close();
brcoords.close();
IloCplex cplex = new IloCplex();
// variables
IloIntVar[][] x = new IloIntVar[n][];
for (int i = 0; i < n; i++) {
x[i] = cplex.boolVarArray(n);
for (int j = 0; j < n; j++) {
x[i][j].setName("x." + i + "." + j );
}
}
// mtz variables
IloNumVar[] u = cplex.numVarArray(n, 0, Double.MAX_VALUE);
for (int j = 0; j < n; j++) {
u[j].setName("u." + j);
}
//objective
IloLinearNumExpr conObj = cplex.linearNumExpr();
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if ( i != j ){
conObj.addTerm(node[i][j], x[i][j]) ;
}
}
}
cplex.addMinimize(conObj);
// constraints
for (int i = 1; i < n; i++) {
IloLinearNumExpr equation1 = cplex.linearNumExpr();
for (int j = 0; j < n; j++) {
if (i!=j) {
equation1.addTerm(1.0, x[i][j]);
}
}
cplex.addEq(equation1, 1.0);
}
for (int j = 1; j < n; j++) {
IloLinearNumExpr equation2 = cplex.linearNumExpr();
for (int i = 0; i < n; i++) {
if (i!=j) {
equation2.addTerm(1.0, x[i][j]);
}
}
cplex.addEq(equation2, 1.0);
}
IloLinearNumExpr equation3 = cplex.linearNumExpr();
for (int i = 1; i < n; i++) {
equation3.addTerm(1.0, x[i][0]);
}
cplex.addEq(equation3, k);
IloLinearNumExpr equation4 = cplex.linearNumExpr();
for (int j = 1; j < n; j++) {
equation4.addTerm(1.0, x[0][j]);
}
cplex.addEq(equation4, k);
cplex.use(new LazyContstraintMTZ(n, c, demand, x, u, cplex));
//parameters
//cplex.setParam(IloCplex.Param.TimeLimit,50);
//cplex.setParam(IloCplex.Param.Preprocessing.Reduce, 0);
// cplex.setParam(IloCplex.Param.RootAlgorithm, IloCplex.Algorithm.Primal);
// solve model
cplex.solve();
cplex.exportModel("model.lp");
System.out.println(cplex.getBestObjValue());
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i != j) {
if (cplex.getValue(x[i][j]) != 0) {
System.out.println("name: " + x[i][j].getName() + " value: " + cplex.getValue(x[i][j]));
}
}
}
}
// end
cplex.end();
} catch (IloException | NumberFormatException | IOException exc) {
exc.printStackTrace();
}
}
}
class for lazy constraint :
import ilog.concert.*;
import ilog.cplex.*;
public class LazyContstraintMTZ extends IloCplex.LazyConstraintCallback {
int n; // number of customers
int c; // capacity of vehicles
int[] demand; // demand of every customer
IloIntVar[][] x;
IloNumVar[] u;
IloCplex cplex;
IloRange[] rng;
//constructor
LazyContstraintMTZ(int n, int c, int[] demand, IloIntVar[][] x, IloNumVar[] u, IloCplex cplex){
this.n = n;
this.c = c;
this.demand = demand;
this.x = x;
this.u = u;
this.cplex = cplex;
}
protected void main() throws IloException {
// Get the current x solution
// double[][] sol = new double[n][n];
// for (int i = 0; i < n; i++) {
// for (int j = 0; j < n; j++) {
// sol[i][j] = cplex.getValue(x[i][j]);
// }
// }
for (int i = 1; i < n; i++) {
for (int j = 1; j < n; j++) {
if (i!=j && demand[i]+demand[j]<=c){
IloLinearNumExpr equation5 = cplex.linearNumExpr();
equation5.addTerm(1.0, u[i]);
equation5.addTerm(-1.0, u[j]);
equation5.addTerm(c, x[i][j]);
rng[i].setExpr(equation5);
rng[i].setBounds(Double.MIN_VALUE, c-demand[j]);
cplex.addLazyConstraint(rng[i]);
}
}
}
for (int i = 1; i < n; i++) {
IloLinearNumExpr equation6 = cplex.linearNumExpr();
equation6.addTerm(1.0, u[i]);
rng[i].setExpr(equation6);
rng[i].setBounds(demand[i], c);
cplex.addLazyConstraint(rng[i]);
}
}
}
As far as I can tell, rng is never initialized in your callback class. So it is always null and as soon as you attempt to set an element in it, you will get that NullPointerException.
Note that you don't even need that array. Instead of
rng[i].setExpr(equation5);
rng[i].setBounds(Double.MIN_VALUE, c-demand[j]);
cplex.addLazyConstraint(rng[i]);
you can just write
IloRange rng = cplex.range(Double.MIN_VALUE, equation5, c - demand[j]);
cplex.addLazyConstraint(rng);
(and similarly for equation6).
Also note that Double.MIN_VALUE is likely not what you want. This gives the smallest representable number larger than 0. I guess what you want is Double.NEGATIVE_INFINITY to specify a range without lower bound. In that case you could also just write
IloRange rng = cplex.le(equation5, c - demand[j]);
Related
I was trying to solve a XOR problem, but the output always converged to 0.5, so i tried a simpler problem like NOT and the same thing happened.
I really don't know what's going on, i checked the code a million times and everything seems to be right, when i debugged it saving the neural network info I saw that the either the weight values or the biases values were getting really large. To do that I followed the 3 blue 1 brown youtube series about neural network and some other videos, too.
this is my code:
PS: I put the entire code here but I think the main problem is inside the bakpropag function
class NeuralNetwork {
int inNum, hiddenLayersNum, outNum, netSize;
int[] hiddenLayerSize;
Matrix[] weights;
Matrix[] biases;
Matrix[] sums;
Matrix[] activations;
Matrix[] error;
Matrix inputs;
long samples = 0;
float learningRate;
//Constructor------------------------------------------------------------------------------------------------------
NeuralNetwork(int inNum, int hiddenLayersNum, int[] hiddenLayerSize, int outNum, float learningRate) {
this.inNum = inNum;
this.hiddenLayersNum = hiddenLayersNum;
this.hiddenLayerSize = hiddenLayerSize;
this.outNum = outNum;
this.netSize = hiddenLayersNum + 1;
this.learningRate = learningRate;
//output layer plus the hidden layer size
//Note: I'm not adding the input layer because it doesn't have weights
weights = new Matrix[netSize];
//no biases added to the output layer
biases = new Matrix[netSize - 1];
sums = new Matrix[netSize];
activations = new Matrix[netSize];
error = new Matrix[netSize];
initializeHiddenLayer();
initializeOutputLayer();
}
//Initializing Algorithms------------------------------------------------------------------------------------------
void initializeHiddenLayer() {
for (int i = 0; i < hiddenLayersNum; i++) {
if (i == 0) {//only the first hidden layer takes the inputs
weights[i] = new Matrix(hiddenLayerSize[i], inNum);
} else {
weights[i] = new Matrix(hiddenLayerSize[i], hiddenLayerSize[i - 1]);
}
biases[i] = new Matrix(hiddenLayerSize[i], 1);
sums[i] = new Matrix(hiddenLayerSize[i], 1);
activations[i] = new Matrix(hiddenLayerSize[i], 1);
error[i] = new Matrix(hiddenLayerSize[i], 1);
}
}
void initializeOutputLayer() {
//the output layer takes the last hidden layer activation values
weights[netSize - 1] = new Matrix(outNum, hiddenLayerSize[hiddenLayerSize.length - 1]);
activations[netSize - 1] = new Matrix(outNum, 1);
sums[netSize - 1] = new Matrix(outNum, 1);
error[netSize - 1] = new Matrix(outNum, 1);
for (Matrix m : weights) {
for (int i = 0; i < m.i; i++) {
for (int j = 0; j < m.j; j++) {
m.values[i][j] = random(-1, 1);
}
}
}
for (Matrix m : biases) {
for (int i = 0; i < m.i; i++) {
for (int j = 0; j < m.j; j++) {
m.values[i][j] = 1;
}
}
}
for (Matrix m : sums) {
for (int i = 0; i < m.i; i++) {
for (int j = 0; j < m.j; j++) {
m.values[i][j] = 0;
}
}
}
}
//Calculation------------------------------------------------------------------------------------------------------
void calculate(float[] inputs) {
this.inputs = new Matrix(0, 0);
this.inputs = this.inputs.arrayToCollumn(inputs);
sums[0] = (weights[0].matrixMult(this.inputs)).sum(biases[0]);
activations[0] = sigM(sums[0]);
for (int i = 1; i < netSize - 1; i++) {
sums[i] = weights[i].matrixMult(activations[i - 1]);
activations[i] = sigM(sums[i]).sum(biases[i]);
}
//there's no biases in the output layer
//And the output layer uses sigmoid function
sums[netSize - 1] = weights[netSize - 1].matrixMult(activations[netSize - 1 - 1]);
activations[netSize - 1] = sigM(sums[netSize - 1]);
}
//Sending outputs--------------------------------------------------------------------------------------------------
Matrix getOuts() {
return activations[netSize - 1];
}
//Backpropagation--------------------------------------------------------------------------------------------------
void calcError(float[] exp) {
Matrix expected = new Matrix(0, 0);
expected = expected.arrayToCollumn(exp);
//E = (output - expected)
error[netSize - 1] = this.getOuts().diff(expected);
samples++;
}
void backPropag(int layer) {
if (layer == netSize - 1) {
error[layer].scalarDiv(samples);
for (int i = layer - 1; i >= 0; i--) {
prevLayerCost(i);
}
weightError(layer);
backPropag(layer - 1);
} else {
weightError(layer);
biasError(layer);
if (layer != 0)
backPropag(layer - 1);
}
}
void weightError(int layer) {
if (layer != 0) {
for (int i = 0; i < weights[layer].i; i++) {
for (int j = 0; j < weights[layer].j; j++) {
float changeWeight = 0;
if (layer != netSize - 1)
changeWeight = activations[layer - 1].values[j][0] * deriSig(sums[layer].values[i][0]) * error[layer].values[i][0];
else
changeWeight = activations[layer - 1].values[j][0] * deriSig(sums[layer].values[i][0]) * error[layer].values[i][0];
weights[layer].values[i][j] += -learningRate * changeWeight;
}
}
} else {
for (int i = 0; i < weights[layer].i; i++) {
for (int j = 0; j < weights[layer].j; j++) {
float changeWeight = this.inputs.values[j][0] * deriSig(sums[layer].values[i][0]) * error[layer].values[i][0];
weights[layer].values[i][j] += -learningRate * changeWeight;
}
}
}
}
void biasError(int layer) {
for (int i = 0; i < biases[layer].i; i++) {
for (int j = 0; j < biases[layer].j; j++) {
float changeBias = 0;
if (layer != netSize - 1)
changeBias = deriSig(sums[layer].values[i][0]) * error[layer].values[i][0];
biases[layer].values[i][j] += -learningRate * changeBias;
}
}
}
void prevLayerCost(int layer) {
for (int i = 0; i < activations[layer].i; i++) {
for (int j = 0; j < activations[layer + 1].j; j++) {//for all conections of that neuron to the next layer
if (layer != netSize - 1)
error[layer].values[i][0] += weights[layer + 1].values[j][i] * deriSig(sums[layer + 1].values[j][0]) * error[layer + 1].values[j][0];
else
error[layer].values[i][0] += weights[layer + 1].values[j][i] * deriSig(sums[layer + 1].values[j][0]) * error[layer + 1].values[j][0];
}
}
}
//Activation Functions---------------------------------------------------------------------------------------------
Matrix reLUM(Matrix m) {
Matrix temp = m.copyM();
for (int i = 0; i < temp.i; i++) {
for (int j = 0; j < temp.j; j++) {
temp.values[i][j] = ReLU(m.values[i][j]);
}
}
return temp;
}
float ReLU(float x) {
return max(0, x);
}
float deriReLU(float x) {
if (x <= 0)
return 0;
else
return 1;
}
Matrix sigM(Matrix m) {
Matrix temp = m.copyM();
for (int i = 0; i < temp.i; i++) {
for (int j = 0; j < temp.j; j++) {
temp.values[i][j] = sig(m.values[i][j]);
}
}
return temp;
}
float sig(float x) {
return 1 / (1 + exp(-x));
}
float deriSig(float x) {
return sig(x) * (1 - sig(x));
}
//Saving Files-----------------------------------------------------------------------------------------------------
void SaveNeuNet() {
for (int i = 0; i < weights.length; i++) {
weights[i].saveM("weights\\weightLayer" + i);
}
for (int i = 0; i < biases.length; i++) {
biases[i].saveM("biases\\biasLayer" + i);
}
for (int i = 0; i < activations.length; i++) {
activations[i].saveM("activations\\activationLayer" + i);
}
for (int i = 0; i < error.length; i++) {
error[i].saveM("errors\\errorLayer" + i);
}
}
}
and this is the Matrix code:
class Matrix {
int i, j, size;
float[][] values;
Matrix(int i, int j) {
this.i = i;
this.j = j;
this.size = i * j;
values = new float[i][j];
}
Matrix sum (Matrix other) {
if (other.i == this.i && other.j == this.j) {
for (int x = 0; x < this.i; x++) {
for (int z = 0; z < this.j; z++) {
values[x][z] += other.values[x][z];
}
}
return this;
}
return null;
}
Matrix diff(Matrix other) {
if (other.i == this.i && other.j == this.j) {
for (int x = 0; x < this.i; x++) {
for (int z = 0; z < this.j; z++) {
values[x][z] -= other.values[x][z];
}
}
return this;
}
return null;
}
Matrix scalarMult(float k) {
for (int i = 0; i < this.i; i++) {
for (int j = 0; j < this.j; j++) {
values[i][j] *= k;
}
}
return this;
}
Matrix scalarDiv(float k) {
if (k != 0) {
for (int i = 0; i < this.i; i++) {
for (int j = 0; j < this.j; j++) {
values[i][j] /= k;
}
}
return this;
} else
return null;
}
Matrix matrixMult(Matrix other) {
if (this.j != other.i)
return null;
else {
Matrix temp = new Matrix(this.i, other.j);
for (int i = 0; i < temp.i; i++) {
for (int j = 0; j < temp.j; j++) {
for (int k = 0; k < this.j; k++) {
temp.values[i][j] += this.values[i][k] * other.values[k][j];
}
}
}
return temp;
}
}
Matrix squaredValues(){
for (int i = 0; i < this.i; i++){
for (int j = 0; j < this.j; j++){
values[i][j] = sq(values[i][j]);
}
}
return this;
}
void printM() {
for (int x = 0; x < this.i; x++) {
print("| ");
for (int z = 0; z < this.j; z++) {
print(values[x][z] + " | ");
}
println();
}
}
void saveM(String name) {
String out = "";
for (int x = 0; x < this.i; x++) {
out += "| ";
for (int z = 0; z < this.j; z++) {
out += values[x][z] + " | ";
}
out += "\n";
}
saveStrings("outputs\\" + name + ".txt", new String[] {out});
}
Matrix arrayToCollumn(float[] array) {
Matrix temp = new Matrix(array.length, 1);
for (int i = 0; i < array.length; i++)
temp.values[i][0] = array[i];
return temp;
}
Matrix arrayToLine(float[] array) {
Matrix temp = new Matrix(1, array.length);
for (int j = 0; j < array.length; j++)
temp.values[0][j] = array[j];
return temp;
}
Matrix copyM(){
Matrix temp = new Matrix(i, j);
for (int i = 0; i < this.i; i++){
for (int j = 0; j < this.j; j++){
temp.values[i][j] = this.values[i][j];
}
}
return temp;
}
}
As I said, the outputs are always converging to 0.5 instead of the actual value 1 or 0
I rewrote the code and it is working now! I have no idea what was wrong with the code before but this one works:
class NeuralNetwork {
int netSize;
float learningRate;
Matrix[] weights;
Matrix[] biases;
Matrix[] activations;
Matrix[] sums;
Matrix[] errors;
NeuralNetwork(int inNum, int hiddenNum, int[] hiddenLayerSize, int outNum, float learningRate) {
netSize = hiddenNum + 1;
this.learningRate = learningRate;
weights = new Matrix[netSize];
biases = new Matrix[netSize - 1];
activations = new Matrix[netSize];
sums = new Matrix[netSize];
errors = new Matrix[netSize];
initializeMatrices(inNum, hiddenNum, hiddenLayerSize, outNum);
}
//INITIALIZING MATRICES
void initializeMatrices(int inNum, int hiddenNum, int[] layerSize, int outNum) {
for (int i = 0; i < hiddenNum; i++) {
if (i == 0)
weights[i] = new Matrix(layerSize[0], inNum);
else
weights[i] = new Matrix(layerSize[i], layerSize[i - 1]);
biases[i] = new Matrix(layerSize[i], 1);
activations[i] = new Matrix(layerSize[i], 1);
errors[i] = new Matrix(layerSize[i], 1);
sums[i] = new Matrix(layerSize[i], 1);
weights[i].randomize(-1, 1);
biases[i].randomize(-1, 1);
activations[i].randomize(-1, 1);
}
weights[netSize - 1] = new Matrix(outNum, layerSize[layerSize.length - 1]);
activations[netSize - 1] = new Matrix(outNum, 1);
errors[netSize - 1] = new Matrix(outNum, 1);
sums[netSize - 1] = new Matrix(outNum, 1);
weights[netSize - 1].randomize(-1, 1);
activations[netSize - 1].randomize(-1, 1);
}
//---------------------------------------------------------------------------------------------------------------
void forwardPropag(float[] ins) {
Matrix inputs = new Matrix(0, 0);
inputs = inputs.arrayToCollumn(ins);
sums[0] = (weights[0].matrixMult(inputs)).sum(biases[0]);
activations[0] = sigM(sums[0]);
for (int i = 1; i < netSize - 1; i++) {
sums[i] = (weights[i].matrixMult(activations[i - 1])).sum(biases[i]);
activations[i] = sigM(sums[i]);
}
//output layer does not have biases
sums[netSize - 1] = weights[netSize - 1].matrixMult(activations[netSize - 2]);
activations[netSize - 1] = sigM(sums[netSize - 1]);
}
Matrix predict(float[] inputs) {
forwardPropag(inputs);
return activations[netSize - 1].copyM();
}
//SUPERVISED LEARNING - BACKPROPAGATION
void train(float[] inps, float[] expec) {
Matrix expected = new Matrix(0, 0);
expected = expected.arrayToCollumn(expec);
errors[netSize - 1] = predict(inps).diff(expected);
calcErorrPrevLayers();
adjustWeights(inps);
adjustBiases();
for (Matrix m : errors){
m.reset();
}
}
void calcErorrPrevLayers() {
for (int l = netSize - 2; l >= 0; l--) {
for (int i = 0; i < activations[l].i; i++) {
for (int j = 0; j < activations[l + 1].i; j++) {
errors[l].values[i][0] += weights[l + 1].values[j][i] * dSig(sums[l + 1].values[j][0]) * errors[l + 1].values[j][0];
}
}
}
}
void adjustWeights(float[] inputs) {
for (int l = 0; l < netSize; l++) {
if (l == 0) {
//for ervery neuron n in the first layer
for (int n = 0; n < activations[l].i; n++) {
//for every weight w of the first layer
for (int w = 0; w < inputs.length; w++) {
float weightChange = inputs[w] * dSig(sums[l].values[n][0]) * errors[l].values[n][0];
weights[l].values[n][w] += -learningRate * weightChange;
}
}
} else {
//for ervery neuron n in the first layer
for (int n = 0; n < activations[l].i; n++) {
//for every weight w of the first layer
for (int w = 0; w < activations[l - 1].i; w++) {
float weightChange = activations[l - 1].values[w][0] * dSig(sums[l].values[n][0]) * errors[l].values[n][0];
weights[l].values[n][w] += -learningRate * weightChange;
}
}
}
}
}
void adjustBiases() {
for (int l = 0; l < netSize - 1; l++) {
//for ervery neuron n in the first layer
for (int n = 0; n < activations[l].i; n++) {
float biasChange = dSig(sums[l].values[n][0]) * errors[l].values[n][0];
biases[l].values[n][0] += -learningRate * biasChange;
}
}
}
//ACTIVATION FUNCTION
float sig(float x) {
return 1 / (1 + exp(-x));
}
float dSig(float x) {
return sig(x) * (1 - sig(x));
}
Matrix sigM(Matrix m) {
Matrix temp = m.copyM();
for (int i = 0; i < m.i; i++) {
for (int j = 0; j < m.j; j++) {
temp.values[i][j] = sig(m.values[i][j]);
}
}
return temp;
}
}
I have to build Simplex Algorithm and its working but I want to allow user to input data, in method main I made few "for" loops where I put date into arrays, but that I put the same data in another arrays, (they have exactly the same data) I have no idea how to fix it.
When I try to make just one arrays for one type of date, it's crash.
[edit]
Yep, I update those Scanners (thanks guys)
And right now I have this error:
"Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 2
at simplex.Simplex$Modeler.(Simplex.java:224)
at simplex.Simplex.main(Simplex.java:196)"
package simplex;
import java.awt.List;
import java.util.ArrayList;
import java.util.Scanner;
public class Simplex {
private double[][] macierz; // macierz
private int LiczbaOgraniczen; // liczba ograniczen
private int LiczbaX; // liczba zmiennych "orginalnych"
private boolean MaxCzyMin;
private static final boolean MAX = true;
private static final boolean MIN = false;
private int[] baza; // baza[i] = basic variable corresponding to row i
public Simplex(double[][] macierz, int LiczbaOgraniczen, int numberOfOriginalVariable, boolean MaxCzyMin) {
this.MaxCzyMin = MaxCzyMin;
this.LiczbaOgraniczen = LiczbaOgraniczen;
this.LiczbaX = numberOfOriginalVariable;
this.macierz = macierz;
baza = new int[LiczbaOgraniczen];
for (int i = 0; i < LiczbaOgraniczen; i++)
baza[i] = LiczbaX + i;
Licz();
}
// Licz algorytm simples od startowych BFS
private void Licz() {
while (true) {
DrukujInteracje();
int q = 0;
// znajdz kolumne q wchodzącą do bazy
if (MaxCzyMin) {
q = ZnajdzIndexPoz(); //jesli szukamy max
} else {
q = ZnajdzIndexNeg(); //jesli szukamy min
}
if (q == -1){
break; // optimum
}
// znajdz rzad p wychodzący z bazy
int p = minRatioRule(q);
if (p == -1){
throw new ArithmeticException("BLAD");
}
//wiersz - kolumna
piwot(p, q);
// zaktualizuj baze
baza[p] = q;
}
}
// znajdowanie indexu niebazowej kolumny z najbardzoje pozytywnym kosztem
private int ZnajdzIndexPoz() {
int q = 0;
for (int j = 1; j < LiczbaOgraniczen + LiczbaX; j++)
if (macierz[LiczbaOgraniczen][j] > macierz[LiczbaOgraniczen][q])
q = j;
if (macierz[LiczbaOgraniczen][q] <= 0){
return -1; // optimum
} else {
return q;
}
}
// znajdowanie indexu niebazowej kolumny z najbardziej negatywnym kosztem
private int ZnajdzIndexNeg() {
int q = 0;
for (int j = 1; j < LiczbaOgraniczen + LiczbaX; j++)
if (macierz[LiczbaOgraniczen][j] < macierz[LiczbaOgraniczen][q])
q = j;
if (macierz[LiczbaOgraniczen][q] >= 0){
return -1; // optimum
} else {
return q;
}
}
// find row p using min ratio rule (-1 if no such row)
private int minRatioRule(int q) {
int p = -1;
for (int i = 0; i < LiczbaOgraniczen; i++) {
if (macierz[i][q] <= 0)
continue;
else if (p == -1)
p = i;
else if ((macierz[i][LiczbaOgraniczen
+ LiczbaX] / macierz[i][q]) < (macierz[p][LiczbaOgraniczen
+ LiczbaX] / macierz[p][q]))
p = i;
}
return p;
}
//zastosowanie metody Gauss-Jordan, aby doprowadzic macierz do postaci bazowej
private void piwot(int p, int q) {
for (int i = 0; i <= LiczbaOgraniczen; i++)
for (int j = 0; j <= LiczbaOgraniczen + LiczbaX; j++)
if (i != p && j != q)
macierz[i][j] -= macierz[p][j] * macierz[i][q] / macierz[p][q];
for (int i = 0; i <= LiczbaOgraniczen; i++)
if (i != p)
macierz[i][q] = 0.0;
for (int j = 0; j <= LiczbaOgraniczen + LiczbaX; j++)
if (j != q)
macierz[p][j] /= macierz[p][q];
macierz[p][q] = 1.0;
}
// Metoda zwraca wartosc funkcji celu
public double WartoscFunkcjiCelu() {
return -macierz[LiczbaOgraniczen][LiczbaOgraniczen + LiczbaX];
}
// metoda zwaraca wartosc x-ow
public double[] WyliczX() {
double[] x = new double[LiczbaX];
for (int i = 0; i < LiczbaOgraniczen; i++)
if (baza[i] < LiczbaX)
x[baza[i]] = macierz[i][LiczbaOgraniczen + LiczbaX];
return x;
}
// drukuj macierz => drukuj tabele
public void DrukujInteracje() {
System.out.println("Liczba Ograniczen = " + LiczbaOgraniczen);
System.out.println("Liczba zmiennych 'orginalnych' = " + LiczbaX);
for (int i = 0; i <= LiczbaOgraniczen; i++) {
for (int j = 0; j <= LiczbaOgraniczen
+ LiczbaX; j++) {
System.out.printf("%7.2f ", macierz[i][j]);
}
System.out.println();
}
System.out.println("Funkcja celu = " + WartoscFunkcjiCelu());
for (int i = 0; i < LiczbaOgraniczen; i++)
if (baza[i] < LiczbaX)
System.out.println("x_"
+ baza[i]
+ " = "
+ macierz[i][LiczbaOgraniczen + LiczbaX]);
System.out.println();
}
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
System.out.println("Podaj ilosc x");
int iloscX = scan.nextInt();
double[] WspolczynnikiFunkcjiCelu = new double[iloscX + 1];
for(int ggg = 0; ggg < iloscX; ggg++){
System.out.println("Podaj x" + ggg);
WspolczynnikiFunkcjiCelu[ggg] =scan.nextDouble();
}
System.out.println("Podaj ilosc ograniczen");
int iloscOgraniczen = scan.nextInt();
double[][] LewaStronaOgraniczen = new double[iloscOgraniczen][iloscX];
double[] PrawaStronaOgraniczen = new double[iloscOgraniczen + 1];
Znaki[] OperatorOgraniczen = new Znaki [iloscOgraniczen + 1];
for(int ggh = 0;ggh <iloscOgraniczen; ggh++){
System.out.println("Podaj znak ograniczenia (lessThan - equal - greatherThan ");
OperatorOgraniczen[ggh] = Znaki.valueOf(scan.next());
System.out.println("Podaj prawa strone ograniczenia");
PrawaStronaOgraniczen[ggh] = scan.nextDouble();
for(int haha = 0; haha < iloscX; haha++){
System.out.println("Lewa strona: Podaj wspolczynnik przy x" + haha);
LewaStronaOgraniczen[ggh][haha] =scan.nextDouble();
}
}
//double[] WspolczynnikiFunkcjiCelu = {Xsy[0], Xsy[1]};
// double[][] LewaStronaOgraniczen = {
// { TablicaTablic[0][0], TablicaTablic[0][1] }, { TablicaTablic[1][0], TablicaTablic[1][1] }, { TablicaTablic[2][0], TablicaTablic[2][1] }, { TablicaTablic[3][0], TablicaTablic[3][1] } };
//Znaki[] OperatorOgraniczen = { TablicaOgraniczen[0], TablicaOgraniczen[1], TablicaOgraniczen[2], TablicaOgraniczen[3] };
//double[] PrawaStronaOgraniczen = {TablicaPrawejStrony[0],TablicaPrawejStrony[1],TablicaPrawejStrony[2],TablicaPrawejStrony[3]};
Modeler model = new Modeler(LewaStronaOgraniczen, PrawaStronaOgraniczen, OperatorOgraniczen, WspolczynnikiFunkcjiCelu);
Simplex simplex = new Simplex(model.getmacierz(),
model.getLiczbaOgraniczen(),
model.getLiczbaX(), MAX);
double[] x = simplex.WyliczX();
for (int i = 0; i < x.length; i++)
System.out.println("x[" + i + "] = " + x[i]);
System.out.println("Rozwiazanie optymalne: " + simplex.WartoscFunkcjiCelu());
}
//zbior mozliwych znakow ograniczajacych
private enum Znaki {
lessThan, equal, greatherThan
}
public static class Modeler {
private double[][] a; // macierz
private int LiczbaOgraniczen; // Liczba Ograniczen
private int LiczbaX; // Liczba x w funkcji celu
public Modeler(double[][] LewaStronaOgraniczen,double[] PrawaStronaOgraniczen, Znaki[] OperatorOgraniczen, double[] WspolczynnikiFunkcjiCelu) {
LiczbaOgraniczen = PrawaStronaOgraniczen.length;
LiczbaX = WspolczynnikiFunkcjiCelu.length;
a = new double[LiczbaOgraniczen + 1][LiczbaX + LiczbaOgraniczen + 1];
for (int i = 0; i < LiczbaOgraniczen; i++) {
for (int j = 0; j < LiczbaX; j++) {
a[i][j] = LewaStronaOgraniczen[i][j];
}
}
for (int i = 0; i < LiczbaOgraniczen; i++)
a[i][LiczbaOgraniczen + LiczbaX] = PrawaStronaOgraniczen[i];
for (int i = 0; i < LiczbaOgraniczen; i++) {
int slack = 0;
switch (OperatorOgraniczen[i]) {
case greatherThan:
slack = -1;
break;
case lessThan:
slack = 1;
break;
default:
}
a[i][LiczbaX + i] = slack;
}
for (int j = 0; j < LiczbaX; j++)
a[LiczbaOgraniczen][j] = WspolczynnikiFunkcjiCelu[j];
}
public double[][] getmacierz() {
return a;
}
public int getLiczbaOgraniczen() {
return LiczbaOgraniczen;
}
public int getLiczbaX() {
return LiczbaX;
}
}
}
why have you so many scanners? Try use only one. Declare and initialize it at the beginning main method.
I have a class which is :
public class CCTest {
public double f;
public double[][][] x;
public double counter;
};
and i have assigned random number to x,
CCTest[] cls = new CCTest[5];
for (int i = 0; i < cls.length; i++) {
cls[i] = new CCTest();
}
for (int i = 0; i < (Size = 5); i++) {
cls[i].x = new double[this.c][this.D][this.Size];
for (int j = 0; j < this.D; j++) {
cls[i].x = getRandomX(this.c, this.D, this.Size);
}
}
then I tried to display the result using :
public static void display(double[][][] array) {
int rows = array.length;
int columns = array[0].length;
int depth = array[0][0].length;
for (int d = 0; d < depth; d++) {
for (int r = 0; r < rows; r++) {
for (int c = 0; c < columns; c++) {
System.out.print(array[r][c][d] + " ");
}
System.out.println();
}
System.out.println();
}
}
The Random Generation method is :
public static double[][][] getRandomX(int x, int y, int z) {
double[][][] result = new double[x][y][z];
Random r = new Random();
for (int i = 0; i < z; i++) {
for (int j = 0; j < y; j++) {
for (int k = 0; k < x; k++) {
result[k][j][i] = r.nextDouble();
}
}
}
return result;
}
but the output is empty [] , any idea please
The inner loop : for (int j = 0; j < this.D; j++) {...} is useless so you can remove this.The display and getRandomX() functions are fine. Try this in main , works in my environment:
CCTest[] cls = new CCTest[5];
for (int i = 0; i < cls.length; i++) {
cls[i] = new CCTest();
}
for (int i = 0; i < (Size = 5); i++) {
cls[i].x = new double[c][D][S];
cls[i].x = getRandomX(c, D, S);
}
for (int i = 0; i < (Size = 5); i++) {
display(cls[0].x);
}
Your display method should rather look like:
public static void display(double[][][] array) {
for (int x = 0; x < array.length; x++) {
for (int y = 0; y < array[x].length; y++) {
for (int z = 0; z < array[x][y].length; z++) {
System.out.println(array[x][y][z]);
}
}
}
}
There is another question which comes to my mind. What is getRandomX? You haven't shown us. I'd use the following:
public static double[][][] getRandom3DArray(double[][][] array) {
Random r = new Random();
for (int x = 0; x < array.length; x++) {
for (int y = 0; y < array[x].length; y++) {
for (int z = 0; z < array[x][y].length; z++) {
array[x][y][z] = r.nextDouble();
}
}
}
return array;
}
You're mistaking rows with depth in your display.
I have a method transpose in class Matice. When i apply this method on my m2.matice i can see during debugging that my matrix is being transposed, but when i print m2 i get the same matrix as before.
public class Main {
public static void main(String[] args) {
Matice m1 = new Matice(5);
m1.matrixFill(0, 5);
m1.matrixPrint();
Matice m2 = new Matice(3);
m2.matrixFill(-5, 10);
m2.matrixPrint();
m2.transpose();
m2.matrixPrint();
}
}
package matice;
/**
*
* #author Adam Rychter
*/
public class Matice {
int[][] matice;
private int n;
public Matice(int n) {
this.n = n;
if(n > 0) {
matice = new int[n][n];
}
}
public void matrixPrint(){
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
System.out.format("%5d", matice[i][j]);
}
System.out.println("");
}
System.out.println("");
}
public void matrixFill(int a, int b){
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
matice[i][j] = (int) (Math.random() * (a + b + 1) - a);
}
}
}
public void transpose(){
int tmp;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
tmp = matice[i][j];
matice[i][j] = matice[j][i];
matice[j][i] = tmp;
}
}
}
}
Your problem is that you're transposing each element twice ! once when i=row, j=col, and once when i=col, j=row, with the net effect of leaving the matrix as it was. The easiest way I see to fix it is do the swap only if i>j (and then test to make sure :) this is a suggestion, not working code :)
Note that j goes from i to n, not 1 to n; also note need for two tmp variables.
public void transpose(){
int tmp1, tmp2;
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
tmp1 = matice[i][j];
tmp2 = matice[j][i];
matice[i][j] = tmp2;
matice[j][i] = tmp1;
}
}
Like this, maybe:
public void transpose(){
Matice mL = new Matice(n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
mL.matice[i][j] = matice[j][i];
}
}
matice = mL.matice;
}
See alternate, more efficient answer above.
public void transpose(){
int tmp;
for (int i = 0; i < n; i++) {
for (int j = i+1; j < n; j++) {
tmp = matice[i][j];
matice[i][j] = matice[j][i];
matice[j][i] = tmp;
}
}
}
With n=5 and k=3 the following loop will do it
List<String> l=new ArrayList<String>();
l.add("A");l.add("B");l.add("C");l.add("D");l.add("E");
int broadcastSize = (int) Math.pow(2, l.size());
for (int i = 1; i < broadcastSize; i++) {
StringBuffer buffer = new StringBuffer(50);
int mask = i;
int j = 0;
int size=0;
System.out.println();
while (mask > 0) {
if ((mask & 1) == 1) {
System.out.println(".. "+mask);
buffer.append(l.get(j));
if (++size>3){
buffer = new StringBuffer(50);
break;
}
}
System.out.println(" "+mask);
mask >>= 1;
j++;
}
if (buffer.length()>0)
System.out.println(buffer.toString());
}
but it's not efficient I would like to do it with Banker's sequence and thus explore first singletons, then pairs, then 3-tuple and stop.
I did not find a way do that, but at least this loop should be more efficient:
List<String> l=new ArrayList<String>();
l.add("A");l.add("B");l.add("C");l.add("D");l.add("E");
int broadcastSize = (int) Math.pow(2, l.size());
for (int i = 1; i < broadcastSize; i++) {
StringBuffer buffer = new StringBuffer(50);
int mask = i;
int j = 0;
if (StringUtils.countMatches(Integer.toBinaryString(i), "1") < 4){
while (mask > 0) {
if ((mask & 1) == 1) {
buffer.append(l.get(j));
}
mask >>= 1;
j++;
}
if (buffer.length()>0)
System.out.println(buffer.toString());
}
}
there is also: but k embedded loops looks ugly
//singleton
for (int i = 0; i < l.size(); i++) {
System.out.println(l.get(i));
}
//pairs
for (int i = 0; i < l.size(); i++) {
for (int j = i+1; j < l.size(); j++) {
System.out.println(l.get(i)+l.get(j));
}
}
//3-tuple
for (int i = 0; i < l.size(); i++) {
for (int j = i+1; j < l.size(); j++) {
for (int k = j+1; k < l.size(); k++) {
System.out.println(l.get(i)+l.get(j)+l.get(k));
}
}
}
//...
// k-tuple
This technique is called Gosper's hack. It only works for n <= 32 because it uses the bits of an int, but you can increase it to 64 if you use a long.
int nextCombo(int x) {
// moves to the next combination with the same number of 1 bits
int u = x & (-x);
int v = u + x;
return v + (((v ^ x) / u) >> 2);
}
...
for (int x = (1 << k) - 1; (x >>> n) == 0; x = nextCombo(x)) {
System.out.println(Integer.toBinaryString(x));
}
For n = 5 and k = 3, this prints
111
1011
1101
1110
10011
10101
10110
11001
11010
11100
exactly as you'd expect.
this should be the most efficient way, even if k embedded loops looks ugly
//singleton
for (int i = 0; i < l.size(); i++) {
System.out.println(l.get(i));
}
//pairs
for (int i = 0; i < l.size(); i++) {
for (int j = i+1; j < l.size(); j++) {
System.out.println(l.get(i)+l.get(j));
}
}
//3-tuple
for (int i = 0; i < l.size(); i++) {
for (int j = i+1; j < l.size(); j++) {
for (int k = j+1; k < l.size(); k++) {
System.out.println(l.get(i)+l.get(j)+l.get(k));
}
}
}
// ...
//k-tuple
Apache commons has iterators for subsets of size k, and for permutations.
Here is an iterator that iterates through 1-k tuples of an n-tuple, that combines the two:
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import org.apache.commons.collections4.iterators.PermutationIterator;
import org.apache.commons.math3.util.Combinations;
public class AllTuplesUpToKIterator implements Iterator<List<Integer>> {
private Iterator<int[]> combinationIterator;
private PermutationIterator<Integer> permutationIterator;
int i;
int k;
int n;
public AllTuplesUpToKIterator(int n, int k) {
this.i = 1;
this.k = k;
this.n = n;
combinationIterator = new Combinations(n, 1).iterator();
permutationIterator = new PermutationIterator<Integer>(intArrayToIntegerList(combinationIterator.next()));
}
#Override
public boolean hasNext() {
if (permutationIterator.hasNext()) {
return true;
} else if (combinationIterator.hasNext()) {
return true;
} else if (i<k) {
return true;
} else {
return false;
}
}
#Override
public List<Integer> next() {
if (!permutationIterator.hasNext()) {
if (!combinationIterator.hasNext()) {
i++;
combinationIterator = new Combinations(n, i).iterator();
}
permutationIterator = new PermutationIterator<Integer>(intArrayToIntegerList(combinationIterator.next()));
}
return permutationIterator.next();
}
#Override
public void remove() {
// TODO Auto-generated method stub
}
public static List<Integer> intArrayToIntegerList(int[] arr) {
List<Integer> result = new ArrayList<Integer>();
for (int i=0; i< arr.length; i++) {
result.add(arr[i]);
}
return result;
}
public static void main(String[] args) {
int n = 4;
int k = 2;
for (AllTuplesUpToKIterator iter= new AllTuplesUpToKIterator(n, k); iter.hasNext();) {
System.out.println(iter.next());
}
}
}