How to sort Collection in this specific way? - java

I had a final exam of OOP 1 (we use Java) at university back in december, and I did not pass. The thing was that I had to sort something in a kinda-specific way, and I can't figure out how to properly implement this. I will translate just a part of the exercise (I will do it with help of Google Translate):
"... John loves natural numbers, and he likes mostly the even numbers other than the odd numbers. Inside each subset, he prefers the smallest ones."
HERE is the original exercise (in spanish)
OK, so, I have to do this inside a class called Natural, and I have to be able to sort it in that custom way (described above). This is which I am not able to do. I know (a teacher told me after the exam) that I had to implement Comparable<T>.
(I know this part) After that, I had to instantiate a LinkedList<Natural>, read numbers from a file, sort them and put them (having being sorted) into another file.
Sorry if this is confusing, my English is really bad.
This is what I have in my class Natural:
public class Natural implements Comparable<Natural> {
public Integer numNatural;
public int compareTo(Natural otroNatural) {
Integer numNatural2 = ((Natural) otroNatural).numNatural;
if (this.numNatural > numNatural2) return 1;
else if (this.numNatural < numNatural2) return -1;
else return 0;
}
How can I make my program to understand that I need to put first the even numbers, and inside the even numbers, the smallest ones? After that, the smallest odd numbers should be sorted also.

You have several cases, and it would help to consider these individually.
even number vs even number
even number vs odd number
odd number vs even number
odd number vs odd number
For the second and third case you can already return 1/-1 as you know the answer without further logic. For the other two cases you need to compare as you've already shown in your answer.

Related

Behind the scenes of recursion? [duplicate]

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
One of the topics that seems to come up regularly on mailing lists and online discussions is the merits (or lack thereof) of doing a Computer Science Degree. An argument that seems to come up time and again for the negative party is that they have been coding for some number of years and they have never used recursion.
So the question is:
What is recursion?
When would I use recursion?
Why don't people use recursion?
There are a number of good explanations of recursion in this thread, this answer is about why you shouldn't use it in most languages.* In the majority of major imperative language implementations (i.e. every major implementation of C, C++, Basic, Python, Ruby,Java, and C#) iteration is vastly preferable to recursion.
To see why, walk through the steps that the above languages use to call a function:
space is carved out on the stack for the function's arguments and local variables
the function's arguments are copied into this new space
control jumps to the function
the function's code runs
the function's result is copied into a return value
the stack is rewound to its previous position
control jumps back to where the function was called
Doing all of these steps takes time, usually a little bit more than it takes to iterate through a loop. However, the real problem is in step #1. When many programs start, they allocate a single chunk of memory for their stack, and when they run out of that memory (often, but not always due to recursion), the program crashes due to a stack overflow.
So in these languages recursion is slower and it makes you vulnerable to crashing. There are still some arguments for using it though. In general, code written recursively is shorter and a bit more elegant, once you know how to read it.
There is a technique that language implementers can use called tail call optimization which can eliminate some classes of stack overflow. Put succinctly: if a function's return expression is simply the result of a function call, then you don't need to add a new level onto the stack, you can reuse the current one for the function being called. Regrettably, few imperative language-implementations have tail-call optimization built in.
* I love recursion. My favorite static language doesn't use loops at all, recursion is the only way to do something repeatedly. I just don't think that recursion is generally a good idea in languages that aren't tuned for it.
** By the way Mario, the typical name for your ArrangeString function is "join", and I'd be surprised if your language of choice doesn't already have an implementation of it.
Simple english example of recursion.
A child couldn't sleep, so her mother told her a story about a little frog,
who couldn't sleep, so the frog's mother told her a story about a little bear,
who couldn't sleep, so the bear's mother told her a story about a little weasel...
who fell asleep.
...and the little bear fell asleep;
...and the little frog fell asleep;
...and the child fell asleep.
In the most basic computer science sense, recursion is a function that calls itself. Say you have a linked list structure:
struct Node {
Node* next;
};
And you want to find out how long a linked list is you can do this with recursion:
int length(const Node* list) {
if (!list->next) {
return 1;
} else {
return 1 + length(list->next);
}
}
(This could of course be done with a for loop as well, but is useful as an illustration of the concept)
Whenever a function calls itself, creating a loop, then that's recursion. As with anything there are good uses and bad uses for recursion.
The most simple example is tail recursion where the very last line of the function is a call to itself:
int FloorByTen(int num)
{
if (num % 10 == 0)
return num;
else
return FloorByTen(num-1);
}
However, this is a lame, almost pointless example because it can easily be replaced by more efficient iteration. After all, recursion suffers from function call overhead, which in the example above could be substantial compared to the operation inside the function itself.
So the whole reason to do recursion rather than iteration should be to take advantage of the call stack to do some clever stuff. For example, if you call a function multiple times with different parameters inside the same loop then that's a way to accomplish branching. A classic example is the Sierpinski triangle.
You can draw one of those very simply with recursion, where the call stack branches in 3 directions:
private void BuildVertices(double x, double y, double len)
{
if (len > 0.002)
{
mesh.Positions.Add(new Point3D(x, y + len, -len));
mesh.Positions.Add(new Point3D(x - len, y - len, -len));
mesh.Positions.Add(new Point3D(x + len, y - len, -len));
len *= 0.5;
BuildVertices(x, y + len, len);
BuildVertices(x - len, y - len, len);
BuildVertices(x + len, y - len, len);
}
}
If you attempt to do the same thing with iteration I think you'll find it takes a lot more code to accomplish.
Other common use cases might include traversing hierarchies, e.g. website crawlers, directory comparisons, etc.
Conclusion
In practical terms, recursion makes the most sense whenever you need iterative branching.
Recursion is a method of solving problems based on the divide and conquer mentality.
The basic idea is that you take the original problem and divide it into smaller (more easily solved) instances of itself, solve those smaller instances (usually by using the same algorithm again) and then reassemble them into the final solution.
The canonical example is a routine to generate the Factorial of n. The Factorial of n is calculated by multiplying all of the numbers between 1 and n. An iterative solution in C# looks like this:
public int Fact(int n)
{
int fact = 1;
for( int i = 2; i <= n; i++)
{
fact = fact * i;
}
return fact;
}
There's nothing surprising about the iterative solution and it should make sense to anyone familiar with C#.
The recursive solution is found by recognising that the nth Factorial is n * Fact(n-1). Or to put it another way, if you know what a particular Factorial number is you can calculate the next one. Here is the recursive solution in C#:
public int FactRec(int n)
{
if( n < 2 )
{
return 1;
}
return n * FactRec( n - 1 );
}
The first part of this function is known as a Base Case (or sometimes Guard Clause) and is what prevents the algorithm from running forever. It just returns the value 1 whenever the function is called with a value of 1 or less. The second part is more interesting and is known as the Recursive Step. Here we call the same method with a slightly modified parameter (we decrement it by 1) and then multiply the result with our copy of n.
When first encountered this can be kind of confusing so it's instructive to examine how it works when run. Imagine that we call FactRec(5). We enter the routine, are not picked up by the base case and so we end up like this:
// In FactRec(5)
return 5 * FactRec( 5 - 1 );
// which is
return 5 * FactRec(4);
If we re-enter the method with the parameter 4 we are again not stopped by the guard clause and so we end up at:
// In FactRec(4)
return 4 * FactRec(3);
If we substitute this return value into the return value above we get
// In FactRec(5)
return 5 * (4 * FactRec(3));
This should give you a clue as to how the final solution is arrived at so we'll fast track and show each step on the way down:
return 5 * (4 * FactRec(3));
return 5 * (4 * (3 * FactRec(2)));
return 5 * (4 * (3 * (2 * FactRec(1))));
return 5 * (4 * (3 * (2 * (1))));
That final substitution happens when the base case is triggered. At this point we have a simple algrebraic formula to solve which equates directly to the definition of Factorials in the first place.
It's instructive to note that every call into the method results in either a base case being triggered or a call to the same method where the parameters are closer to a base case (often called a recursive call). If this is not the case then the method will run forever.
Recursion is solving a problem with a function that calls itself. A good example of this is a factorial function. Factorial is a math problem where factorial of 5, for example, is 5 * 4 * 3 * 2 * 1. This function solves this in C# for positive integers (not tested - there may be a bug).
public int Factorial(int n)
{
if (n <= 1)
return 1;
return n * Factorial(n - 1);
}
Recursion refers to a method which solves a problem by solving a smaller version of the problem and then using that result plus some other computation to formulate the answer to the original problem. Often times, in the process of solving the smaller version, the method will solve a yet smaller version of the problem, and so on, until it reaches a "base case" which is trivial to solve.
For instance, to calculate a factorial for the number X, one can represent it as X times the factorial of X-1. Thus, the method "recurses" to find the factorial of X-1, and then multiplies whatever it got by X to give a final answer. Of course, to find the factorial of X-1, it'll first calculate the factorial of X-2, and so on. The base case would be when X is 0 or 1, in which case it knows to return 1 since 0! = 1! = 1.
Consider an old, well known problem:
In mathematics, the greatest common divisor (gcd) … of two or more non-zero integers, is the largest positive integer that divides the numbers without a remainder.
The definition of gcd is surprisingly simple:
where mod is the modulo operator (that is, the remainder after integer division).
In English, this definition says the greatest common divisor of any number and zero is that number, and the greatest common divisor of two numbers m and n is the greatest common divisor of n and the remainder after dividing m by n.
If you'd like to know why this works, see the Wikipedia article on the Euclidean algorithm.
Let's compute gcd(10, 8) as an example. Each step is equal to the one just before it:
gcd(10, 8)
gcd(10, 10 mod 8)
gcd(8, 2)
gcd(8, 8 mod 2)
gcd(2, 0)
2
In the first step, 8 does not equal zero, so the second part of the definition applies. 10 mod 8 = 2 because 8 goes into 10 once with a remainder of 2. At step 3, the second part applies again, but this time 8 mod 2 = 0 because 2 divides 8 with no remainder. At step 5, the second argument is 0, so the answer is 2.
Did you notice that gcd appears on both the left and right sides of the equals sign? A mathematician would say this definition is recursive because the expression you're defining recurs inside its definition.
Recursive definitions tend to be elegant. For example, a recursive definition for the sum of a list is
sum l =
if empty(l)
return 0
else
return head(l) + sum(tail(l))
where head is the first element in a list and tail is the rest of the list. Note that sum recurs inside its definition at the end.
Maybe you'd prefer the maximum value in a list instead:
max l =
if empty(l)
error
elsif length(l) = 1
return head(l)
else
tailmax = max(tail(l))
if head(l) > tailmax
return head(l)
else
return tailmax
You might define multiplication of non-negative integers recursively to turn it into a series of additions:
a * b =
if b = 0
return 0
else
return a + (a * (b - 1))
If that bit about transforming multiplication into a series of additions doesn't make sense, try expanding a few simple examples to see how it works.
Merge sort has a lovely recursive definition:
sort(l) =
if empty(l) or length(l) = 1
return l
else
(left,right) = split l
return merge(sort(left), sort(right))
Recursive definitions are all around if you know what to look for. Notice how all of these definitions have very simple base cases, e.g., gcd(m, 0) = m. The recursive cases whittle away at the problem to get down to the easy answers.
With this understanding, you can now appreciate the other algorithms in Wikipedia's article on recursion!
A function that calls itself
When a function can be (easily) decomposed into a simple operation plus the same function on some smaller portion of the problem. I should say, rather, that this makes it a good candidate for recursion.
They do!
The canonical example is the factorial which looks like:
int fact(int a)
{
if(a==1)
return 1;
return a*fact(a-1);
}
In general, recursion isn't necessarily fast (function call overhead tends to be high because recursive functions tend to be small, see above) and can suffer from some problems (stack overflow anyone?). Some say they tend to be hard to get 'right' in non-trivial cases but I don't really buy into that. In some situations, recursion makes the most sense and is the most elegant and clear way to write a particular function. It should be noted that some languages favor recursive solutions and optimize them much more (LISP comes to mind).
A recursive function is one which calls itself. The most common reason I've found to use it is traversing a tree structure. For example, if I have a TreeView with checkboxes (think installation of a new program, "choose features to install" page), I might want a "check all" button which would be something like this (pseudocode):
function cmdCheckAllClick {
checkRecursively(TreeView1.RootNode);
}
function checkRecursively(Node n) {
n.Checked = True;
foreach ( n.Children as child ) {
checkRecursively(child);
}
}
So you can see that the checkRecursively first checks the node which it is passed, then calls itself for each of that node's children.
You do need to be a bit careful with recursion. If you get into an infinite recursive loop, you will get a Stack Overflow exception :)
I can't think of a reason why people shouldn't use it, when appropriate. It is useful in some circumstances, and not in others.
I think that because it's an interesting technique, some coders perhaps end up using it more often than they should, without real justification. This has given recursion a bad name in some circles.
Recursion is an expression directly or indirectly referencing itself.
Consider recursive acronyms as a simple example:
GNU stands for GNU's Not Unix
PHP stands for PHP: Hypertext Preprocessor
YAML stands for YAML Ain't Markup Language
WINE stands for Wine Is Not an Emulator
VISA stands for Visa International Service Association
More examples on Wikipedia
Recursion works best with what I like to call "fractal problems", where you're dealing with a big thing that's made of smaller versions of that big thing, each of which is an even smaller version of the big thing, and so on. If you ever have to traverse or search through something like a tree or nested identical structures, you've got a problem that might be a good candidate for recursion.
People avoid recursion for a number of reasons:
Most people (myself included) cut their programming teeth on procedural or object-oriented programming as opposed to functional programming. To such people, the iterative approach (typically using loops) feels more natural.
Those of us who cut our programming teeth on procedural or object-oriented programming have often been told to avoid recursion because it's error prone.
We're often told that recursion is slow. Calling and returning from a routine repeatedly involves a lot of stack pushing and popping, which is slower than looping. I think some languages handle this better than others, and those languages are most likely not those where the dominant paradigm is procedural or object-oriented.
For at least a couple of programming languages I've used, I remember hearing recommendations not to use recursion if it gets beyond a certain depth because its stack isn't that deep.
A recursive statement is one in which you define the process of what to do next as a combination of the inputs and what you have already done.
For example, take factorial:
factorial(6) = 6*5*4*3*2*1
But it's easy to see factorial(6) also is:
6 * factorial(5) = 6*(5*4*3*2*1).
So generally:
factorial(n) = n*factorial(n-1)
Of course, the tricky thing about recursion is that if you want to define things in terms of what you have already done, there needs to be some place to start.
In this example, we just make a special case by defining factorial(1) = 1.
Now we see it from the bottom up:
factorial(6) = 6*factorial(5)
= 6*5*factorial(4)
= 6*5*4*factorial(3) = 6*5*4*3*factorial(2) = 6*5*4*3*2*factorial(1) = 6*5*4*3*2*1
Since we defined factorial(1) = 1, we reach the "bottom".
Generally speaking, recursive procedures have two parts:
1) The recursive part, which defines some procedure in terms of new inputs combined with what you've "already done" via the same procedure. (i.e. factorial(n) = n*factorial(n-1))
2) A base part, which makes sure that the process doesn't repeat forever by giving it some place to start (i.e. factorial(1) = 1)
It can be a bit confusing to get your head around at first, but just look at a bunch of examples and it should all come together. If you want a much deeper understanding of the concept, study mathematical induction. Also, be aware that some languages optimize for recursive calls while others do not. It's pretty easy to make insanely slow recursive functions if you're not careful, but there are also techniques to make them performant in most cases.
Hope this helps...
I like this definition:
In recursion, a routine solves a small part of a problem itself, divides the problem into smaller pieces, and then calls itself to solve each of the smaller pieces.
I also like Steve McConnells discussion of recursion in Code Complete where he criticises the examples used in Computer Science books on Recursion.
Don't use recursion for factorials or Fibonacci numbers
One problem with
computer-science textbooks is that
they present silly examples of
recursion. The typical examples are
computing a factorial or computing a
Fibonacci sequence. Recursion is a
powerful tool, and it's really dumb to
use it in either of those cases. If a
programmer who worked for me used
recursion to compute a factorial, I'd
hire someone else.
I thought this was a very interesting point to raise and may be a reason why recursion is often misunderstood.
EDIT:
This was not a dig at Dav's answer - I had not seen that reply when I posted this
1.)
A method is recursive if it can call itself; either directly:
void f() {
... f() ...
}
or indirectly:
void f() {
... g() ...
}
void g() {
... f() ...
}
2.) When to use recursion
Q: Does using recursion usually make your code faster?
A: No.
Q: Does using recursion usually use less memory?
A: No.
Q: Then why use recursion?
A: It sometimes makes your code much simpler!
3.) People use recursion only when it is very complex to write iterative code. For example, tree traversal techniques like preorder, postorder can be made both iterative and recursive. But usually we use recursive because of its simplicity.
Here's a simple example: how many elements in a set. (there are better ways to count things, but this is a nice simple recursive example.)
First, we need two rules:
if the set is empty, the count of items in the set is zero (duh!).
if the set is not empty, the count is one plus the number of items in the set after one item is removed.
Suppose you have a set like this: [x x x]. let's count how many items there are.
the set is [x x x] which is not empty, so we apply rule 2. the number of items is one plus the number of items in [x x] (i.e. we removed an item).
the set is [x x], so we apply rule 2 again: one + number of items in [x].
the set is [x], which still matches rule 2: one + number of items in [].
Now the set is [], which matches rule 1: the count is zero!
Now that we know the answer in step 4 (0), we can solve step 3 (1 + 0)
Likewise, now that we know the answer in step 3 (1), we can solve step 2 (1 + 1)
And finally now that we know the answer in step 2 (2), we can solve step 1 (1 + 2) and get the count of items in [x x x], which is 3. Hooray!
We can represent this as:
count of [x x x] = 1 + count of [x x]
= 1 + (1 + count of [x])
= 1 + (1 + (1 + count of []))
= 1 + (1 + (1 + 0)))
= 1 + (1 + (1))
= 1 + (2)
= 3
When applying a recursive solution, you usually have at least 2 rules:
the basis, the simple case which states what happens when you have "used up" all of your data. This is usually some variation of "if you are out of data to process, your answer is X"
the recursive rule, which states what happens if you still have data. This is usually some kind of rule that says "do something to make your data set smaller, and reapply your rules to the smaller data set."
If we translate the above to pseudocode, we get:
numberOfItems(set)
if set is empty
return 0
else
remove 1 item from set
return 1 + numberOfItems(set)
There's a lot more useful examples (traversing a tree, for example) which I'm sure other people will cover.
Well, that's a pretty decent definition you have. And wikipedia has a good definition too. So I'll add another (probably worse) definition for you.
When people refer to "recursion", they're usually talking about a function they've written which calls itself repeatedly until it is done with its work. Recursion can be helpful when traversing hierarchies in data structures.
An example: A recursive definition of a staircase is:
A staircase consists of:
- a single step and a staircase (recursion)
- or only a single step (termination)
To recurse on a solved problem: do nothing, you're done.
To recurse on an open problem: do the next step, then recurse on the rest.
In plain English:
Assume you can do 3 things:
Take one apple
Write down tally marks
Count tally marks
You have a lot of apples in front of you on a table and you want to know how many apples there are.
start
Is the table empty?
yes: Count the tally marks and cheer like it's your birthday!
no: Take 1 apple and put it aside
Write down a tally mark
goto start
The process of repeating the same thing till you are done is called recursion.
I hope this is the "plain english" answer you are looking for!
A recursive function is a function that contains a call to itself. A recursive struct is a struct that contains an instance of itself. You can combine the two as a recursive class. The key part of a recursive item is that it contains an instance/call of itself.
Consider two mirrors facing each other. We've seen the neat infinity effect they make. Each reflection is an instance of a mirror, which is contained within another instance of a mirror, etc. The mirror containing a reflection of itself is recursion.
A binary search tree is a good programming example of recursion. The structure is recursive with each Node containing 2 instances of a Node. Functions to work on a binary search tree are also recursive.
This is an old question, but I want to add an answer from logistical point of view (i.e not from algorithm correctness point of view or performance point of view).
I use Java for work, and Java doesn't support nested function. As such, if I want to do recursion, I might have to define an external function (which exists only because my code bumps against Java's bureaucratic rule), or I might have to refactor the code altogether (which I really hate to do).
Thus, I often avoid recursion, and use stack operation instead, because recursion itself is essentially a stack operation.
You want to use it anytime you have a tree structure. It is very useful in reading XML.
Recursion as it applies to programming is basically calling a function from inside its own definition (inside itself), with different parameters so as to accomplish a task.
"If I have a hammer, make everything look like a nail."
Recursion is a problem-solving strategy for huge problems, where at every step just, "turn 2 small things into one bigger thing," each time with the same hammer.
Example
Suppose your desk is covered with a disorganized mess of 1024 papers. How do you make one neat, clean stack of papers from the mess, using recursion?
Divide: Spread all the sheets out, so you have just one sheet in each "stack".
Conquer:
Go around, putting each sheet on top of one other sheet. You now have stacks of 2.
Go around, putting each 2-stack on top of another 2-stack. You now have stacks of 4.
Go around, putting each 4-stack on top of another 4-stack. You now have stacks of 8.
... on and on ...
You now have one huge stack of 1024 sheets!
Notice that this is pretty intuitive, aside from counting everything (which isn't strictly necessary). You might not go all the way down to 1-sheet stacks, in reality, but you could and it would still work. The important part is the hammer: With your arms, you can always put one stack on top of the other to make a bigger stack, and it doesn't matter (within reason) how big either stack is.
Recursion is the process where a method call iself to be able to perform a certain task. It reduces redundency of code. Most recurssive functions or methods must have a condifiton to break the recussive call i.e. stop it from calling itself if a condition is met - this prevents the creating of an infinite loop. Not all functions are suited to be used recursively.
hey, sorry if my opinion agrees with someone, I'm just trying to explain recursion in plain english.
suppose you have three managers - Jack, John and Morgan.
Jack manages 2 programmers, John - 3, and Morgan - 5.
you are going to give every manager 300$ and want to know what would it cost.
The answer is obvious - but what if 2 of Morgan-s employees are also managers?
HERE comes the recursion.
you start from the top of the hierarchy. the summery cost is 0$.
you start with Jack,
Then check if he has any managers as employees. if you find any of them are, check if they have any managers as employees and so on. Add 300$ to the summery cost every time you find a manager.
when you are finished with Jack, go to John, his employees and then to Morgan.
You'll never know, how much cycles will you go before getting an answer, though you know how many managers you have and how many Budget can you spend.
Recursion is a tree, with branches and leaves, called parents and children respectively.
When you use a recursion algorithm, you more or less consciously are building a tree from the data.
In plain English, recursion means to repeat someting again and again.
In programming one example is of calling the function within itself .
Look on the following example of calculating factorial of a number:
public int fact(int n)
{
if (n==0) return 1;
else return n*fact(n-1)
}
Any algorithm exhibits structural recursion on a datatype if basically consists of a switch-statement with a case for each case of the datatype.
for example, when you are working on a type
tree = null
| leaf(value:integer)
| node(left: tree, right:tree)
a structural recursive algorithm would have the form
function computeSomething(x : tree) =
if x is null: base case
if x is leaf: do something with x.value
if x is node: do something with x.left,
do something with x.right,
combine the results
this is really the most obvious way to write any algorith that works on a data structure.
now, when you look at the integers (well, the natural numbers) as defined using the Peano axioms
integer = 0 | succ(integer)
you see that a structural recursive algorithm on integers looks like this
function computeSomething(x : integer) =
if x is 0 : base case
if x is succ(prev) : do something with prev
the too-well-known factorial function is about the most trivial example of
this form.
function call itself or use its own definition.

Recursive Knapsack in Java

I have read many variations of the Knapsack problem, but the version I am tasked with is a little different and I don't quite understand how to solve it.
I have an array of integers that represent weights (ie. {1,4,6,12,7,2}) and need to find only one solution that adds up to the target weight.
I understand the basic algorithm, but I cannot understand how to implement it.
First, what is my base case? Is it when the array is empty? The target has been reached? The target has been over-reached? Or maybe some combination?
Second, when the target is over-reached, how do I backtrack and try the next item?
Third, what am I supposed to return? Should I be returning ints (in which case, am I supposed to print them out?)? Or do I return arrays and the final return is the solution?
Think carefully about the problem you are trying to solve. To approach this problem, I am
considering the inputs and outputs of the Knapsack algorithm.
Input: A set of integers (the knapsack) and a single integer (the proposed sum)
Output: A set of integers who add up to the proposed sum, or null.
In this way your code might look like this
public int[] knapsackSolve(int[] sack, int prospectiveSum) {
//your algorithm here
}
The recursive algorithm is straightforward. First compute the sum of the sack. If it equals
prospectiveSum then return the sack. Otherwise iterate over sack, and for each item initialise a new knapsack with that item removed. Call knapsackSolve on this. If there is a solution, return it. Otherwise proceed to the next item.
For example if we call knapsackSolve({1,2,3},5) the algorithm tries 1 + 2 + 3 = 5 which is false. So it loops through {1,2,3} and calls knapsackSolve on the sublists {2,3},{1,3} and {1,2}. knapsackSolve({2,3},5) is the one that returns a solution.
This isn't a very efficient algorithm although it illustrates fairly well how complex the Knapsack problem is!
Basically the Knapsack problem is formulated as (from Wikipedia): "Given a set of items, each with a mass and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. For your problem we are interested in weights only. So you can set all values to 1. Additionally we only want to know if the target weight can be reached exactly. I guess you are allowed to use a weight only once and not multiple times?
This problem can be solved nicely with dynamic programming. Are you familiar with that principle? Applying dynamic programming is much more elegant and quicker to program than backtracking. But if you are only allowed to do backtracking use the approach from user2738608 posted above.

Finding a prime number at least a 100 digits long that contains 273042282802155991

I am new to Java and one of my class assignments is to find a prime number at least 100 digits long that contains the numbers 273042282802155991.
I have this so far but when I compile it and run it it seems to be in a continuous loop.
I'm not sure if I've done something wrong.
public static void main(String[] args) {
BigInteger y = BigInteger.valueOf(304877713615599127L);
System.out.println(RandomPrime(y));
}
public static BigInteger RandomPrime(BigInteger x)
{
BigInteger i;
for (i = BigInteger.valueOf(2); i.compareTo(x)<0; i.add(i)) {
if ((x.remainder(i).equals(BigInteger.ZERO))) {
x.divide(i).equals(x);
i.subtract(i);
}
}
return i;
}
Since this is homework ...
There is a method on BigInteger that tests for primality. This is much much faster than attempting to factorize a number. (If you take an approach that involves attempting to factorize 100 digit numbers you will fail. Factorization is believed to be an NP-complete problem. Certainly, there is no known polynomial time solution.)
The question is asking for a prime number that contains a given sequence of digits when it is represented as a sequence of decimal digits.
The approach of generating "random" primes and then testing if they contain those digits is infeasible. (Some simple high-school maths tells you that the probability that a randomly generated 100 digit number contains a given 18 digit sequence is ... 82 / 1018. And you haven't tested for primality yet ...
But there's another way to do it ... think about it!
Only start writing code once you've figured out in your head how your algorithm will work, and done the mental estimates to confirm that it will give an answer in a reasonable length of time.
When I say infeasible, I mean infeasible for you. Given a large enough number of computers, enough time and some high-powered mathematics, it may be possible to do some of these things. Thus, technically they may be computationally feasible. But they are not feasible as a homework exercise. I'm sure that the point of this exercise is to get you to think about how to do this the smart way ...
One tip is that these statements do nothing:
x.divide(i).equals(x);
i.subtract(i);
Same with part of your for loop:
i.add(i)
They don't modify the instances themselves, but return new values - values that you're failing to check and do anything with. BigIntegers are "immutable". They can't be changed - but they can be operated upon and return new values.
If you actually wanted to do something like this, you would have to do:
i = i.add(i);
Also, why would you subtract i from i? Wouldn't you always expect this to be 0?
You need to implement/use miller-rabin algorithm
Handbook of Applied Cryptography
chapter 4.24
http://www.cacr.math.uwaterloo.ca/hac/about/chap4.pdf

What is a good algorithm for mapping random (barcode values) numbers to an String in a collection?

Say that my application has a finite number of "stuff", in my case they will be items in my game but for the purposes of this question I'll use Strings.
Say I have 5 Strings :
James
Dave
John
Steve
Jack
There will be a set list of them, however I will increase that list in the future.
Question : What is a good algorithm I can use, to go from a random number (generated from a barcode) into one of those values from above?
For example, if I have the value 4523542354254, then what algorithm could I use to map that onto Dave? If I have that same number again, I need to make sure it maps to Dave and not to something else each time.
One option I did consider was taking the last digit of the barcode and using the 0-9 that would map onto 10 items, but its not very future proof if I added an 11th item.
Any suggestions?
Hmm... If it is OK that multiple values can be mapped to the one, you can use
string name = names[value % number_of_names];
With the clarification that "If I have that same number again, I need to make sure it maps to Dave and not to something else each time." only applies as long as the set of strings doesn't change.
Simplest is what Maverik says, name = names[barcode % names.length];
A Java long is big enough to store any UPC barcode, int isn't, so I assume here barcode is a long. Note that the last digit of a UPC barcode is base-11, it can be X. I leave it as an exercise for the reader how you actually map barcodes to numbers. One option is just discard the check digit once you've established that it's correct - it's computed from the others, so it doesn't add any information or discriminate between any otherwise-equal codes.
But as Stephen C says, barcodes aren't random, so this might not give you a uniform distribution across the names.
To get a better distribution, you could first hash the barcode. For example name = names[String.valueOf(barcode).hashCode() % names.length];
This still might not be entirely uniform -- there are better but usually slower hash functions than String.hashCode -- but it probably avoids any major biases that there may be in real-life barcodes.
Also, I can't remember whether the Java modulus operator returns negative results for negative input - if so then you need to coerce it into a positive range:
int idx = String.valueOf(barcode).hashCode() % names.length;
if (idx < 0) idx += names.length;

Which is the best way to implement prime number finding algorithms in Java? How do we make library classes and use then in Java?

I want to make library classes in Java and use them in my future programs. I want these library classes to find prime numbers upto a certain number or even the next prime number or you can say solve most of the basic things related to prime numbers.
I have never made a Java Library Class. I aim to learn that doing this. Please help me without that by pointing out a tutorial or something. I am familiar with netbeans IDE.
I found out a few algorithms like Sieve of Eratosthenes and Sieve of Atkin. It would be great if you can point out a few more such efficient algorithms. I don't want them to be the best but at least good enough. My aim is to learn few things by implementing them. Because I have little practical coding experience I want to do it to improve my skills.
My friend suggested me to use Stream Classes and he was talking something about implementing it by giving the output of one file as an input to another to make my code clean. I didn't understand him very well. Please pardon me if i said anything wrong. What I want to ask in this point is, is that an efficient and OO way of doing what i want to do. If yes please tell me how to do that and if not please point out some other way to do it.
I have basic knowledge of the Java language. What I want to accomplish through this venture is gain coding experience because that is what everyone out here suggested, "to take up small things like these and learn on my own"
thanks to all of you in advance
regards
shahensha
EDIT:
In the Sieve of Eratosthenes and others we are required to store the numbers from 2 to n in a data structure. Where should I store it? I know I can use a dynamic Collection, but just a small question...If i want to find primes in the order of billions or even more (I will use Big Integer no doubt), but all this will get stored in the heap right? Is there a fear of overflow? Even if it doesn't will it be a good practice? Or would it be better to store the numbers or the list (on which we will perform actions depending on the algorithm we use) in a file and access it there? Sorry if my question was too noobish...
"Sieve of Eratosthenes" is good algorithm to find the prime numbers. If you will use google you can find ready implementation in java.
I'll add some thoughts to this:
There's nothing technically different about a Library Class, it's simply how you use it. To my mind, the most important thing is that you think hard about your public API. Make it bit enough to be useful to your prospective callers, keep it small enough that you have freedom to change the internal implementation as you see fit, and ensure that you have a good understanding of what your library does do and what it doesn't do. Don't try to do everything, just do one thing well. (And the API generally extends to documentation too, make sure you write decent Javadocs.)
Start with either of these as they are fine. If you design your API well, you can change this at any time and roll out version 1.1 that uses a different algorithm (or even uses JNI to call a native C library), and your callers can just drop in the new JAR and use your code without even recompiling. Don't forget that premature optimisation is the root of all evil; don't worry to much about making your first version fast, but focus on making it correct and making it clean.
I'm not sure why your friend was suggesting streams. Streams are a way of dealing with input and output of raw bytes - useful when reading from files or network connections, but generally not a good way to call another Java method. Your library shouldn't worry about input and output, it just needs to offer some methods for numerical calculations. So you should implement methods that take integers (or whatever is appropriate) and return integers.
For instance, you might implement:
/**
* Calculates the next prime number after a given point.
*
* Implementation detail: callers may assume that prime numbers are
* calculated deterministically, such that the efficiency of calling
* this method with a large parameter is not dramatically worse than
* calling it with a small parameter.
*
* #param x The lower bound (exclusive) of the prime number to return.
* Must be strictly positive.
* #return Colloquially, the "next" prime number after the given parameter.
* More formally, this number will be prime and there are no prime numbers
* less than this value and greater than <code>x</code> that are also
* prime.
* #throws IllegalArgumentException if <code>x</code> is not strictly
* positive.
*/
public long smallestPrimeGreaterThan(long x);
/**
* Returns all prime numbers within a given range, in order.
*
* #param lowerBound The lower bound (exclusive) of the range.
* #param upperBound The upper bound (exclusive) of the range.
* #return A List of the prime numbers that are strictly between the
* given parameters. This list is in ascending order. The returned
* value is never null; if no prime numbers exist within the given
* range, then an empty list is returned.
*/
public List<Long> primeNumbersBetween(long lowerBound, long upperBound);
No streams in sight! Uses of streams, such as outputting to the console, should be handled by applications that use your library and not by your library itself. This is what I meant in my first point about being clear of what your library does and doesn't do. You just generate the prime numbers; it's up to the caller to then do something cool with them.
But when you compare, the sieve of Atkin is faster than the sieve of Eratosthenes:
http://en.wikipedia.org/wiki/Prime_number_counting_function Also refer to this link where different functions are explained clearly :)
Good luck..
There is no such thing as "library class". I suppose you mean to make a class in such a way that does it's job in a reusable way. The way to do this is to have a clean interface - with minimal (if any) bindings to other libraries or to your execution environment (your main class etc).
The two you mention are "good enough". For your purpose you don't need to look any further.
Just read from System.in and write to System.out and that's it. Though, in your case, there is nothing to read.
To achieve what I think is your goal, you need to write a main class that hadles the execution environment - main function, initialize your algorithm, iteratively look for the next prime, and write it to System.out. Of course, you'll need another class to implement the algorithm. It should contain the internal state and provide a method for finding the next prime.
`IMO, keep aside the thought that you're making a library (.jar file according to my interpretation of this question).
Focus on creating a simple Java class first, like this:
//SieveOfEratosthenes.java
public class PrimeSieve{
public static void main(String args[])
{
int N = Integer.parseInt(args[0]);
// initially assume all integers are prime
boolean[] isPrime = new boolean[N + 1];
for (int i = 2; i <= N; i++) {
isPrime[i] = true;
}
// mark non-primes <= N using Sieve of Eratosthenes
for (int i = 2; i*i <= N; i++) {
// if i is prime, then mark multiples of i as nonprime
// suffices to consider mutiples i, i+1, ..., N/i
if (isPrime[i]) {
for (int j = i; i*j <= N; j++) {
isPrime[i*j] = false;
}
}
}
// count primes
int primes = 0;
for (int i = 2; i <= N; i++) {
if (isPrime[i]) primes++;
}
System.out.println("The number of primes <= " + N + " is " + primes);
}
}
Now, the next step; Implementing it for larger values, you can always use BigInteger. SO questions pertaining to the same:
Java BigInteger Prime numbers
Problems with java.math.BigInteger
BigNums Implementation
Try reading all questions related to BigInteger class on SO, BigInteger Tagged questions.
Hope this helps.

Categories