How can I count the number of events in a given interval? - java

I need to know how frequency different events occur. For example how many HTTP requests have occurred in the last 15 minutes. Because there can be a large count of events (millions) this must be use a limited amount of memory.
It there any util class in Java that can do this?
How can I implement this self in Java?
Theoretical usage code can look like:
FrequencyCounter counter = new FrequencyCounter( 15, TimeUnit.Minutes );
...
counter.add();
...
int count = counter.getCount();
Edit: It must be a real time value which can changed thousand times the minute and will be query thousands times the minute. That a database or file based solution are not possible.

Here is my implementation of such a counter. The memory usage with the default precision is fewer as 100 bytes. The memory usage is independent of the event count.
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
/**
* A counter that counts events within the past time interval. All events that occurred before this interval will be
* removed from the counter.
*/
public class FrequencyCounter {
private final long monitoringInterval;
private final int[] details;
private final AtomicInteger currentCount = new AtomicInteger();
private long startInterval;
private int total;
/**
* Create a new instance of the counter for the given interval.
*
* #param interval the time to monitor/count the events.
* #param unit the time unit of the {#code interval} argument
*/
FrequencyCounter( long interval, TimeUnit unit ) {
this( interval, unit, 16 );
}
/**
* Create a new instance of the counter for the given interval.
*
* #param interval the time to monitor/count the events.
* #param unit the time unit of the {#code interval} argument
* #param precision the count of time slices for the for the measurement
*/
FrequencyCounter( long interval, TimeUnit unit, int precision ) {
monitoringInterval = unit.toMillis( interval );
if( monitoringInterval <= 0 ) {
throw new IllegalArgumentException( "Interval mus be a positive value:" + interval );
}
details = new int[precision];
startInterval = System.currentTimeMillis() - monitoringInterval;
}
/**
* Count a single event.
*/
public void increment() {
checkInterval( System.currentTimeMillis() );
currentCount.incrementAndGet();
}
/**
* Get the current value of the counter.
*
* #return the counter value
*/
public int getCount() {
long currentTime = System.currentTimeMillis();
checkInterval( currentTime );
long diff = currentTime - startInterval - monitoringInterval;
double partFactor = (diff * details.length / (double)monitoringInterval);
int part = (int)(details[0] * partFactor);
return total + currentCount.get() - part;
}
/**
* Check the interval of the detail counters and move the interval if needed.
*
* #param time the current time
*/
private void checkInterval( final long time ) {
if( (time - startInterval - monitoringInterval) > monitoringInterval / details.length ) {
synchronized( details ) {
long detailInterval = monitoringInterval / details.length;
while( (time - startInterval - monitoringInterval) > detailInterval ) {
int currentValue = currentCount.getAndSet( 0 );
if( (total | currentValue) == 0 ) {
// for the case that the counter was not used for a long time
startInterval = time - monitoringInterval;
return;
}
int size = details.length - 1;
total += currentValue - details[0];
System.arraycopy( details, 1, details, 0, size );
details[size] = currentValue;
startInterval += detailInterval;
}
}
}
}
}

The best way I can think to implement this is using another "time counting" thread.
If you're concerned about the amount of memory, you can add a threshold for the size of eventsCounter (Integer.MAX_VALUE seems like the natural choice).
Here's an example for an implementation, that is also thread-safe:
public class FrequencyCounter {
private AtomicInteger eventsCounter = new AtomicInteger(0);
private int timeCounter;
private boolean active;
public FrequencyCounter(int timeInSeconds) {
timeCounter = timeInSeconds;
active = true;
}
// Call this method whenever an interesting event occurs
public int add() {
if(active) {
int current;
do {
current = eventsCounter.get();
} while (eventsCounter.compareAndSet(current, current + 1));
return current + 1;
}
else return -1;
}
// Get current number of events
public int getCount() {
return eventsCounter.get();
}
// Start the FrequencyCounter
public void run() {
Thread timer = new Thread(() -> {
while(timeCounter > 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
timeCounter --;
}
active = false;
});
timer.start();
}
}

How about a scheduled executor service.
class TimedValue{
int startValue;
int finishedValue;
TimedValue(int start){
startValue = start;
}
}
List<TimedValue> intervals = new CopyOnWriteArrayList<>();
//then when starting a measurement.
TimeValue value = new TimedValue();
//set the start value.
Callable<TimedValue> callable = ()->{
//performs the task.
value.setValueAtFinish(getCount());
return value;
}
ScheduledExecutorService executor = Executors.newScheduledThreadPool(2);
ScheduledFuture<TimedValue> future = executor.schedule(
callable,
TimeUnit.MINUTES,
15);
executor.schedule(()->itervals.add(
future.get(),
TimeUnit.MINUTES,
future.getDelay(TimeUnit.MINUTES
);
This is a bit of a complicated method.
I would probably just have a List<LoggedValues> and accumulate values in that list at a fixed rate. Then it could be inspected whenever you want to know an intervals.

Related

execution timing using Java [duplicate]

This question already has answers here:
How do I write a correct micro-benchmark in Java?
(11 answers)
Closed 4 years ago.
please i need help i am writing this code to be able to display my execution time anytime i run a program but i usually get different time even when its the same input
after importing all this
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
/** Class KnuthMorrisPratt **/
public class Knuth1
{
/** Failure array **/
private int[] failure;
/** Constructor **/
public Knuth1(String text, String pat)
{
/** pre construct failure array for a pattern **/
failure = new int[pat.length()];
fail(pat);
/** find match **/
int pos = posMatch(text, pat);
if (pos == -1)
System.out.println("\nNo match found");
else
System.out.println("\nMatch found at index "+ pos);
}
/** Failure function for a pattern **/
private void fail(String pat)
{
int n = pat.length();
failure[0] = -1;
for (int j = 1; j < n; j++)
{
int i = failure[j - 1];
while ((pat.charAt(j) != pat.charAt(i + 1)) && i >= 0)
i = failure[i];
if (pat.charAt(j) == pat.charAt(i + 1))
failure[j] = i + 1;
else
failure[j] = -1;
}
}
/** Function to find match for a pattern **/
private int posMatch(String text, String pat)
{
int i = 0, j = 0;
int lens = text.length();
int lenp = pat.length();
while (i < lens && j < lenp)
{
if (text.charAt(i) == pat.charAt(j))
{
i++;
j++;
}
else if (j == 0)
i++;
else
j = failure[j - 1] + 1;
}
return ((j == lenp) ? (i - lenp) : -1);
}
/** Main Function **/
public static void main(String[] args) throws IOException
{
//i think its here were i get the input
BufferedReader br = new BufferedReader(new InputStreamReader(System.in) ));
System.out.println("Knuth Morris Pratt Test\n");
System.out.println("\nEnter Text: ");
String text = br.readLine();
System.out.print("\nEnter Pattern");
String pattern = br.readLine();
double starttime = System.nanoTime();
Knuth1 kmp = new Knuth1(text, pattern);
double endtime = System.nanoTime();
double executiontime = (endtime - starttime )/1000000000;
// System.out.printf("%.4f","Execution Time = "+ executiontime + " Seconds");
System.out.print("Execution Time = ");
System.out.format("%.4f", executiontime);
System.out.print(" Seconds");
// System.out.println(starttime);
// System.out.println(endtime);
//I love programming with JAVA and Php. It’s fun and interesting.
}
}
this code will check an input strings and pick out the unique word and the try to also display the execution time for the program... what i really want now is to make sure the execution time remain the same when i input the same input.
If you don't care about reusing the timed functionality, use System.nanoTime()
long before;
long after;
// Get time before
before = System.nanoTime();
// Code you want to execute here
// Get time after
after = System.nanoTime();
// Calculate duration
long diff = after - before;
You can encapsulate any code you want into a Runnable or using any of Java 8's new Predicate or Function interfaces which are very similar. You can put the code that you want to run in a lambda expression (like an anonymous function) and pass it to a static method that calculates in nanoseconds the amount of time it takes the runnable object to execute.
This is more code than what is necessary, but it reusable in that you don't have to keep writing start = System.currentTimeMillis() or System.nanoTime()and doing arithmetic every time you want to time something. You can put this function in your static library and use it whenever you want.
/**
* Times a runnable. Note, there
* is probably overhead associated with
* creating a Runnable object, but if
* assume that's constant for all Runnable
* objects, then we can simply ignore it
*
* #param runnable Runnable to run
* #return Number of nanoseconds it took to run the Runnable
*/
public static long timedAction(Runnable runnable) {
long before;
long after;
before = System.nanoTime();
runnable.run();
after = System.nanoTime();
return after - before;
}
This is how I use this code block:
public static void main(String[] args) throws Exception {
final int numKeys = 1000000;
// Builds an AVL tree
Runnable snippet = () -> {
Tree<Integer, Object> avl = new AVLTree<>();
for (int i = 0; i < numKeys; i++) {
avl.insert(i, i);
}
};
long nanoSecond = Util.timedAction(snippet);
double seconds = Mathematics.nanosecondsToSeconds(nanoSecond);
System.out.println(seconds);
}
Output:
0.493316448

Find missing date ranges in timeline using java

I have a custom java sync that fetch data by date range thoght SOAP service running on tomcat.
Ex:
getDataByDateRange(startDate,endDate)
getDataByDateRange('2016-01-01 10:00:00.00000','2016-01-01 11:00:00.00000')
I want to write a control program to check if any range has been missed by any kind of runtime or server error.
How can I find the missing date ranges?
Thanks.
Visually Example:
TimeLine : [------------------------------------------------------------------]
Processed Dates: [----1---][---2----]---[-3-][--4---]---[----5---][---6--]-----------
Missing Dates : -------------------[-1-]-----------[-2-]----------------[-----3----]
TimeLine:
1: '2016-01-01 10:00:00.00000','2016-02-01 09:00:00.00000'
Processed Dates:
1: '2016-01-01 10:00:00.00000','2016-01-01 11:00:00.00000'
2: '2016-01-01 11:00:00.00000','2016-01-01 12:00:00.00000'
3: '2016-01-01 13:00:00.00000','2016-01-01 13:30:00.00000'
4: '2016-01-01 13:30:00.00000','2016-01-01 14:30:00.00000'
5: '2016-01-01 15:30:00.00000','2016-01-01 16:30:00.00000'
6: '2016-01-01 16:30:00.00000','2016-01-01 17:00:00.00000'
Missing Dates:
1: '2016-01-01 12:00:00.00000','2016-01-01 13:00:00.00000'
2: '2016-01-01 14:30:00.00000','2016-01-01 15:30:00.00000'
3: '2016-01-01 17:00:00.00000','2016-01-02 09:00:00.00000'
According to your comment I post my previous comment as answer. This solution uses my library Time4J (including the range-module):
// prepare parser
ChronoFormatter<PlainTimestamp> f =
ChronoFormatter.ofTimestampPattern( // five decimal digits
"uuuu-MM-dd HH:mm:ss.SSSSS", PatternType.CLDR, Locale.ROOT);
// parse input to intervals - here the overall time window
TimestampInterval timeline =
TimestampInterval.between(
f.parse("2016-01-01 10:00:00.00000"),
f.parse("2016-02-01 09:00:00.00000"));
// for more flexibility - consider a for-each-loop
TimestampInterval i1 =
TimestampInterval.between(f.parse("2016-01-01 10:00:00.00000"), f.parse("2016-01-01 11:00:00.00000"));
TimestampInterval i2 =
TimestampInterval.between(f.parse("2016-01-01 11:00:00.00000"), f.parse("2016-01-01 12:00:00.00000"));
TimestampInterval i3 =
TimestampInterval.between(f.parse("2016-01-01 13:00:00.00000"), f.parse("2016-01-01 13:30:00.00000"));
TimestampInterval i4 =
TimestampInterval.between(f.parse("2016-01-01 13:30:00.00000"), f.parse("2016-01-01 14:30:00.00000"));
TimestampInterval i5 =
TimestampInterval.between(f.parse("2016-01-01 15:30:00.00000"), f.parse("2016-01-01 16:30:00.00000"));
TimestampInterval i6 =
TimestampInterval.between(f.parse("2016-01-01 16:30:00.00000"), f.parse("2016-01-01 17:00:00.00000"));
// apply interval arithmetic
IntervalCollection<PlainTimestamp> icoll =
IntervalCollection.onTimestampAxis().plus(Arrays.asList(i1, i2, i3, i4, i5, i6));
List<ChronoInterval<PlainTimestamp>> missed = icoll.withComplement(timeline).getIntervals();
// result
System.out.println(missed);
// [[2016-01-01T12/2016-01-01T13), [2016-01-01T14:30/2016-01-01T15:30), [2016-01-01T17/2016-02-01T09)]
The core of the whole interval arithmetic is just done by the code fragment icoll.withComplement(timeline). The rest is only about creation of intervals. By applying a for-each-loop you can surely minimize again the count of lines in presented code.
The output is based on the canonical description of the intervals implicitly using toString(), for example: [2016-01-01T12/2016-01-01T13) The square bracket denotes a closed boundary while the round bracket to the right end denotes an open boundary. So we have here the standard case of half-open timestamp intervals (without timezone). While other interval types are possible I have chosen that type because it corresponds to the type of your input strings.
If you plan to combine this solution with Joda-Time in other parts of your app then keep in mind that a) there is not yet any special bridge between both libraries available and b) the conversion looses microsecond precision (Joda-Time only supports milliseconds) and c) Time4J has much more power than Joda-Time (for almost everything). Anyway, you can do this as conversion (important if you don't want to do the effort of bigger rewriting of your app):
ChronoInterval<PlainTimestamp> missed0 = missed.get(0);
PlainTimestamp tsp = missed0.getStart().getTemporal();
LocalDateTime ldt = // joda-equivalent
new LocalDateTime(
tsp.getYear(), tsp.getMonth(), tsp.getDayOfMonth(),
tsp.getHour(), tsp.getMinute(), tsp.getSecond(), tsp.get(PlainTime.MILLI_OF_SECOND));
System.out.println(ldt); // 2016-01-01T10:00:00.000
About a Joda-only solution:
Joda-Time does only support instant intervals, not timestamp intervals without timezone. However, you could simulate that missing interval type by hardwiring the timezone to UTC (using fixed offset).
Another problem is missing support for five decimal digits. You can circumvent it by this hack:
DateTime start =
DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss.SSS")
.withZoneUTC()
.parseDateTime("2016-01-01 16:30:00.00000".substring(0, 23));
System.out.println(start); // 2016-01-01T16:30:00.000Z
DateTime end = ...;
Interval interval = new Interval(start, end);
The other more critical element of a solution is almost missing - interval arithmetic. You have to sort the intervals first by start instant (and then by end instant). After sorting, you can iterate over all intervals such that you find the gaps. The best thing Joda-Time can do for you here is giving you methods like isBefore(anotherInstant) etc. which you can use in your own solution. But it gets pretty much bloated.
Given that the frequency of date ranges is one hour, you can start with range start date, iterate till range end date and write a method that checks for an entry with dates. You can use DateUtils to add hour to date, as shown in the below pseudo code:
Date startDate = startDate;
Date endDate = endDate;
while (startDate.before(endDate){
if(!exists(startDate, DateUtils.addHours(startDate, 1), entries)){
//Add into missing entries
}
startDate = DateUtils.addHours(startDate, 1);
}
I posted my IntervalTree a while ago - it seems to work well with this kind of problem.
See the minimise method for what you are looking for.
/**
* Title: IntervlTree
*
* Description: Implements a static Interval Tree. i.e. adding and removal are not possible.
*
* This implementation uses longs to bound the intervals but could just as easily use doubles or any other linear value.
*
* #author OldCurmudgeon
* #version 1.0
* #param <T> - The Intervals to work with.
*/
public class IntervalTree<T extends IntervalTree.Interval> {
// My intervals.
private final List<T> intervals;
// My center value. All my intervals contain this center.
private final long center;
// My interval range.
private final long lBound;
private final long uBound;
// My left tree. All intervals that end below my center.
private final IntervalTree<T> left;
// My right tree. All intervals that start above my center.
private final IntervalTree<T> right;
public IntervalTree(List<T> intervals) {
if (intervals == null) {
throw new NullPointerException();
}
// Initially, my root contains all intervals.
this.intervals = intervals;
// Find my center.
center = findCenter();
/*
* Builds lefts out of all intervals that end below my center.
* Builds rights out of all intervals that start above my center.
* What remains contains all the intervals that contain my center.
*/
// Lefts contains all intervals that end below my center point.
final List<T> lefts = new ArrayList<>();
// Rights contains all intervals that start above my center point.
final List<T> rights = new ArrayList<>();
long uB = Long.MIN_VALUE;
long lB = Long.MAX_VALUE;
for (T i : intervals) {
long start = i.getStart();
long end = i.getEnd();
if (end < center) {
lefts.add(i);
} else if (start > center) {
rights.add(i);
} else {
// One of mine.
lB = Math.min(lB, start);
uB = Math.max(uB, end);
}
}
// Remove all those not mine.
intervals.removeAll(lefts);
intervals.removeAll(rights);
uBound = uB;
lBound = lB;
// Build the subtrees.
left = lefts.size() > 0 ? new IntervalTree<>(lefts) : null;
right = rights.size() > 0 ? new IntervalTree<>(rights) : null;
// Build my ascending and descending arrays.
/**
* #todo Build my ascending and descending arrays.
*/
}
/*
* Returns a list of all intervals containing the point.
*/
List<T> query(long point) {
// Check my range.
if (point >= lBound) {
if (point <= uBound) {
// Gather all intersecting ones.
List<T> found = intervals
.stream()
.filter((i) -> (i.getStart() <= point && point <= i.getEnd()))
.collect(Collectors.toList());
// Gather others.
if (point < center && left != null) {
found.addAll(left.query(point));
}
if (point > center && right != null) {
found.addAll(right.query(point));
}
return found;
} else {
// To right.
return right != null ? right.query(point) : Collections.<T>emptyList();
}
} else {
// To left.
return left != null ? left.query(point) : Collections.<T>emptyList();
}
}
/**
* Blends the two lists together.
*
* If the ends touch then make them one.
*
* #param a
* #param b
* #return
*/
static List<Interval> blend(List<Interval> a, List<Interval> b) {
// Either empty - return the other.
if (a.isEmpty()) {
return b;
}
if (b.isEmpty()) {
return a;
}
// Where does a end and b start.
Interval aEnd = a.get(a.size() - 1);
Interval bStart = b.get(0);
ArrayList<Interval> blended = new ArrayList<>();
// Do they meet/cross?
if (aEnd.getEnd() >= bStart.getStart() - 1) {
// Yes! merge them.
// Remove the last.
blended.addAll(a.subList(0, a.size() - 1));
// Add a combined one.
blended.add(new SimpleInterval(aEnd.getStart(), bStart.getEnd()));
// Add all but the first.
blended.addAll(b.subList(1, b.size()));
} else {
// Just join them.
blended.addAll(a);
blended.addAll(b);
}
return blended;
}
static List<Interval> blend(List<Interval> a, List<Interval> b, List<Interval>... more) {
List<Interval> blended = blend(a, b);
for (List<Interval> l : more) {
blended = blend(blended, l);
}
return blended;
}
List<Interval> minimise() {
// Calculate min of left and right.
List<Interval> minLeft = left != null ? left.minimise() : Collections.EMPTY_LIST;
List<Interval> minRight = right != null ? right.minimise() : Collections.EMPTY_LIST;
// My contribution.
long meLeft = minLeft.isEmpty() ? lBound : Math.max(lBound, minLeft.get(minLeft.size() - 1).getEnd());
long meRight = minRight.isEmpty() ? uBound : Math.min(uBound, minRight.get(0).getEnd());
return blend(minLeft,
Collections.singletonList(new SimpleInterval(meLeft, meRight)),
minRight);
}
private long findCenter() {
//return average();
return median();
}
protected long median() {
if (intervals.isEmpty()) {
return 0;
}
// Choose the median of all centers. Could choose just ends etc or anything.
long[] points = new long[intervals.size()];
int x = 0;
for (T i : intervals) {
// Take the mid point.
points[x++] = (i.getStart() + i.getEnd()) / 2;
}
Arrays.sort(points);
return points[points.length / 2];
}
/*
* What an interval looks like.
*/
public interface Interval {
public long getStart();
public long getEnd();
}
/*
* A simple implemementation of an interval.
*/
public static class SimpleInterval implements Interval {
private final long start;
private final long end;
public SimpleInterval(long start, long end) {
this.start = start;
this.end = end;
}
#Override
public long getStart() {
return start;
}
#Override
public long getEnd() {
return end;
}
#Override
public String toString() {
return "{" + start + "," + end + "}";
}
}
/**
* Not called by App, so you will have to call this directly.
*
* #param args
*/
public static void main(String[] args) {
/**
* #todo Needs MUCH more rigorous testing.
*/
// Test data.
long[][] data = {
{1, 4}, {2, 5}, {5, 7}, {10, 11}, {13, 20}, {19, 21},};
List<Interval> intervals = new ArrayList<>();
for (long[] pair : data) {
intervals.add(new SimpleInterval(pair[0], pair[1]));
}
// Build it.
IntervalTree<Interval> test = new IntervalTree<>(intervals);
// Test it.
System.out.println("Normal test: ---");
for (long i = 0; i < 10; i++) {
List<Interval> intersects = test.query(i);
System.out.println("Point " + i + " intersects:");
intersects.stream().forEach((t) -> {
System.out.println(t.toString());
});
}
// Check minimise.
List<Interval> min = test.minimise();
System.out.println("Minimise test: ---");
System.out.println(min);
// Check for empty list.
intervals.clear();
test = new IntervalTree<>(intervals);
// Test it.
System.out.println("Empty test: ---");
for (long i = 0; i < 10; i++) {
List<Interval> intersects = test.query(i);
System.out.println("Point " + i + " intersects:");
intersects.stream().forEach((t) -> {
System.out.println(t.toString());
});
}
}
}
This gets close to what you are looking for. Here's some code to minimise your ranges into just 3.
static String[][] dates = {{"2016-01-01 10:00:00.00000", "2016-01-01 11:00:00.00000"}, {"2016-01-01 11:00:00.00000", "2016-01-01 12:00:00.00000"}, {"2016-01-01 13:00:00.00000", "2016-01-01 13:30:00.00000"}, {"2016-01-01 13:30:00.00000", "2016-01-01 14:30:00.00000"}, {"2016-01-01 15:30:00.00000", "2016-01-01 16:30:00.00000"}, {"2016-01-01 16:30:00.00000", "2016-01-01 17:00:00.00000"}};
static List<IntervalTree.SimpleInterval> ranges = new ArrayList<>();
static final DateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.S");
static {
for (String[] pair : dates) {
try {
ranges.add(new IntervalTree.SimpleInterval(df.parse(pair[0]).getTime(), df.parse(pair[1]).getTime()));
} catch (ParseException ex) {
Logger.getLogger(Test.class.getName()).log(Level.SEVERE, null, ex);
}
}
}
public void test() {
IntervalTree tree = new IntervalTree<>(ranges);
List<IntervalTree.Interval> min = tree.minimise();
//System.out.println("min->" + min);
for (IntervalTree.Interval i : min) {
System.out.println(df.format(new Date(i.getStart())) + " - " + df.format(new Date(i.getEnd())));
}
}
which prints
2016-01-01 10:00:00.0 - 2016-01-01 12:00:00.0
2016-01-01 13:00:00.0 - 2016-01-01 14:30:00.0
2016-01-01 15:30:00.0 - 2016-01-01 17:00:00.0
which is all of your Processed Dates joined into three date ranges.

Weblogic & Tomcat simple java loop performance varies

Have an issue where the performance of a simple loop (see code below in LoopTest.performTest) varies dramatically, but is consistent for the lifetime of the process.
For example, when run from within Weblogic/Tomcat it may achieve an average of 3.5 billion iterations per second. Re-start and it may only achieve 20 million iterations per second. This will remain consistent for the lifetime of the process. When it has been run directly from the command line, on every occasion, it has run fast.
This has been run under linux, windows, Tomcat & WebLogic. The slow execution occurs more regularly in WebLogic than Tomcat.
Test Specifics
The test code moves any potential OS calls (timing) to before and after the test, with differing size loops which should allow any slow OS calls to be apparent as a progressive apparent performance improvement as loop size increases.
The number of iterations performed by the test is determined by time (see runTest) rather than being fixed due to large variation in performance and is thus more complex than may initially be expected.
public static abstract class PerformanceTest {
private final String name;
public PerformanceTest(String name) {
this.name = name;
}
/**
* Return value to ensure loops etc not optimised away.
*
* #param loopCount
* #return
*/
public abstract long performTest(final long loopCount);
public String getName() {
return name;
}
}
private static class LoopTest extends PerformanceTest {
LoopTest() {
super("Loop");
}
#Override
public long performTest(final long loopCount) {
long sum=0;
for(long i=0;i<loopCount;i++) {
sum+=i;
}
return sum;
}
}
public static List<PerformanceTest> loadTests() {
List<PerformanceTest> performanceTests = new ArrayList<PerformanceTest>();
performanceTests.add(new LoopTest());
return performanceTests;
}
public static void main(String[] argv) {
int maxDuration = 30;
if (argv.length == 1) {
maxDuration = Integer.parseInt(argv[0]);
}
List<PerformanceTest> tests = loadTests();
for(PerformanceTest test : tests) {
runTest(test, maxDuration);
}
}
public static void runTest(PerformanceTest test, int maxDuration) {
System.out.println("Processing " + test.getName());
long stopDuration = 1000 * maxDuration;
long estimatedDuration = 1;
long priorDelta = 1;
long loopCount=10;
while (estimatedDuration < stopDuration) {
long startTime = System.currentTimeMillis();
test.performTest(loopCount);
long endTime = System.currentTimeMillis();
long delta = endTime - startTime;
estimatedDuration = delta * Math.max(10, delta / Math.min(estimatedDuration, priorDelta));
if (estimatedDuration <= 0) {
estimatedDuration = 1;
}
priorDelta = delta;
if (priorDelta <= 0) {
priorDelta = 1;
}
if (delta > 0) {
double itemsPerSecond = 1000 * (double)loopCount / (double)delta;
DecimalFormat formatter;
if (itemsPerSecond < 1) {
formatter = new DecimalFormat( "#,###,###,##0.000");
} else if (itemsPerSecond < 10) {
formatter = new DecimalFormat( "#,###,###,##0.0");
} else {
formatter = new DecimalFormat( "#,###,###,##0");
}
System.out.println(" " + loopCount + " : Duration " + delta + ", Items Per-Second: " + formatter.format(itemsPerSecond));
}
loopCount*=10;
}
}

How to make sure an instance is terminated?

I have easily written a Java method which waits for instance to change state from say "pending" to "running". It periodically (with delay of N seconds) polls the instance status using DescribeInstanceRequest.
However, it is tricky to find out whether it is really terminated as I never get the "terminated" instance status. Here is what I use at the moment, but I am not sure whether it is a good way...
/**
* Checks up to 20 times, with linearly increasing delay, for instance state change from the argFromState to the
* argToState.
*
* Typically you would call this method to wait until instance is "terminated", or when instance is "running".
*
* #param argInstanceID
* #param argFromState
* #param argToState
* #see waitForInstance(String argInstanceID)
*/
public void waitForStateChange(String argInstanceID, String argFromState, String argToState) {
List<InstanceStatus> statuses = null;
DescribeInstanceStatusRequest describeInstanceStatusRequest =
new DescribeInstanceStatusRequest().withInstanceIds(argInstanceID);
DescribeInstanceStatusResult describeInstanceResult = null;
LocalDateTime timeStart = LocalDateTime.now();
InstanceStatus status = null;
int code = 0;
String name = argFromState;
boolean inWantedState = false;
int cnt = 1;
while (!inWantedState && (cnt < 20)) {
describeInstanceResult = amazonEC2Client.describeInstanceStatus(describeInstanceStatusRequest);
int numberOfStatuses = describeInstanceResult.getInstanceStatuses().size();
if (numberOfStatuses > 0) {
// We can do this because we requested details of PARTICULAR instance
status = describeInstanceResult.getInstanceStatuses().get(0);
code = status.getInstanceState().getCode();
name = status.getInstanceState().getName();
inWantedState = name.equals(argToState);
} else {
// When instance is terminated, it does not show in the list. That is how we know it is terminated.
if ("terminated".equals(argToState)) {
inWantedState = true;
LOGGER.info("Instance terminated.");
} else {
LOGGER.info("Instance not in the list. It should be.");
}
}
if (!inWantedState) { // status may have just changed...
System.out.println(cnt + "(" + code + "/" + name + ") .. waiting " + (2 * cnt) + "sec for next try.");
try {
Thread.sleep(2 * cnt * 1000);
} catch (InterruptedException ex) {
Logger.getLogger(EC2Wrapper.class.getName()).log(Level.SEVERE, null, ex);
}
} // if
++cnt;
} // while
LocalDateTime timeEnd = LocalDateTime.now();
Duration duration = Duration.between(timeStart, timeEnd);
int secs = (int) duration.getSeconds();
if (secs >= 60) {
LOGGER.log(Level.INFO, "From `{0}` to `{1}` in {2} min.",
new Object[]{argFromState, argToState, secs / 60});
} else {
LOGGER.log(Level.INFO, "From `{0}` to `{1}` in {2} sec.",
new Object[]{argFromState, argToState, secs});
}
} // waitForStateChange() method
If you are talking about maintaining status then as we did in Async task .. setting Cancel(true) will fire a callback with new status.we can accesss the same callback like this in doinBackground().
while(getStatus() == AsyncTask.Status.RUNNING){
// Do ur code ..
}
value returned by getStatus is update with new value, courtesy cancel(true)
Same can be achieved in your code, It would be helpful if some snippet is posted here.

Throttling method calls to M requests in N seconds

I need a component/class that throttles execution of some method to maximum M calls in N seconds (or ms or nanos, does not matter).
In other words I need to make sure that my method is executed no more than M times in a sliding window of N seconds.
If you don't know existing class feel free to post your solutions/ideas how you would implement this.
I'd use a ring buffer of timestamps with a fixed size of M. Each time the method is called, you check the oldest entry, and if it's less than N seconds in the past, you execute and add another entry, otherwise you sleep for the time difference.
What worked out of the box for me was Google Guava RateLimiter.
// Allow one request per second
private RateLimiter throttle = RateLimiter.create(1.0);
private void someMethod() {
throttle.acquire();
// Do something
}
In concrete terms, you should be able to implement this with a DelayQueue. Initialize the queue with M Delayed instances with their delay initially set to zero. As requests to the method come in, take a token, which causes the method to block until the throttling requirement has been met. When a token has been taken, add a new token to the queue with a delay of N.
Read up on the Token bucket algorithm. Basically, you have a bucket with tokens in it. Every time you execute the method, you take a token. If there are no more tokens, you block until you get one. Meanwhile, there is some external actor that replenishes the tokens at a fixed interval.
I'm not aware of a library to do this (or anything similar). You could write this logic into your code or use AspectJ to add the behavior.
If you need a Java based sliding window rate limiter that will operate across a distributed system you might want to take a look at the https://github.com/mokies/ratelimitj project.
A Redis backed configuration, to limit requests by IP to 50 per minute would look like this:
import com.lambdaworks.redis.RedisClient;
import es.moki.ratelimitj.core.LimitRule;
RedisClient client = RedisClient.create("redis://localhost");
Set<LimitRule> rules = Collections.singleton(LimitRule.of(1, TimeUnit.MINUTES, 50)); // 50 request per minute, per key
RedisRateLimit requestRateLimiter = new RedisRateLimit(client, rules);
boolean overLimit = requestRateLimiter.overLimit("ip:127.0.0.2");
See https://github.com/mokies/ratelimitj/tree/master/ratelimitj-redis fore further details on Redis configuration.
This depends in the application.
Imagine the case in which multiple threads want a token to do some globally rate-limited action with no burst allowed (i.e. you want to limit 10 actions per 10 seconds but you don't want 10 actions to happen in the first second and then remain 9 seconds stopped).
The DelayedQueue has a disadvantage: the order at which threads request tokens might not be the order at which they get their request fulfilled. If multiple threads are blocked waiting for a token, it is not clear which one will take the next available token. You could even have threads waiting forever, in my point of view.
One solution is to have a minimum interval of time between two consecutive actions, and take actions in the same order as they were requested.
Here is an implementation:
public class LeakyBucket {
protected float maxRate;
protected long minTime;
//holds time of last action (past or future!)
protected long lastSchedAction = System.currentTimeMillis();
public LeakyBucket(float maxRate) throws Exception {
if(maxRate <= 0.0f) {
throw new Exception("Invalid rate");
}
this.maxRate = maxRate;
this.minTime = (long)(1000.0f / maxRate);
}
public void consume() throws InterruptedException {
long curTime = System.currentTimeMillis();
long timeLeft;
//calculate when can we do the action
synchronized(this) {
timeLeft = lastSchedAction + minTime - curTime;
if(timeLeft > 0) {
lastSchedAction += minTime;
}
else {
lastSchedAction = curTime;
}
}
//If needed, wait for our time
if(timeLeft <= 0) {
return;
}
else {
Thread.sleep(timeLeft);
}
}
}
My implementation below can handle arbitrary request time precision, it has O(1) time complexity for each request, does not require any additional buffer, e.g. O(1) space complexity, in addition it does not require background thread to release token, instead tokens are released according to time passed since last request.
class RateLimiter {
int limit;
double available;
long interval;
long lastTimeStamp;
RateLimiter(int limit, long interval) {
this.limit = limit;
this.interval = interval;
available = 0;
lastTimeStamp = System.currentTimeMillis();
}
synchronized boolean canAdd() {
long now = System.currentTimeMillis();
// more token are released since last request
available += (now-lastTimeStamp)*1.0/interval*limit;
if (available>limit)
available = limit;
lastTimeStamp = now;
if (available<1)
return false;
else {
available--;
return true;
}
}
}
Although it's not what you asked, ThreadPoolExecutor, which is designed to cap to M simultaneous requests instead of M requests in N seconds, could also be useful.
I have implemented a simple throttling algorithm.Try this link,
http://krishnaprasadas.blogspot.in/2012/05/throttling-algorithm.html
A brief about the Algorithm,
This algorithm utilizes the capability of Java Delayed Queue.
Create a delayed object with the expected delay (here 1000/M for millisecond TimeUnit).
Put the same object into the delayed queue which will intern provides the moving window for us.
Then before each method call take the object form the queue, take is a blocking call which will return only after the specified delay, and after the method call don't forget to put the object into the queue with updated time(here current milliseconds).
Here we can also have multiple delayed objects with different delay. This approach will also provide high throughput.
Try to use this simple approach:
public class SimpleThrottler {
private static final int T = 1; // min
private static final int N = 345;
private Lock lock = new ReentrantLock();
private Condition newFrame = lock.newCondition();
private volatile boolean currentFrame = true;
public SimpleThrottler() {
handleForGate();
}
/**
* Payload
*/
private void job() {
try {
Thread.sleep(Math.abs(ThreadLocalRandom.current().nextLong(12, 98)));
} catch (InterruptedException e) {
e.printStackTrace();
}
System.err.print(" J. ");
}
public void doJob() throws InterruptedException {
lock.lock();
try {
while (true) {
int count = 0;
while (count < N && currentFrame) {
job();
count++;
}
newFrame.await();
currentFrame = true;
}
} finally {
lock.unlock();
}
}
public void handleForGate() {
Thread handler = new Thread(() -> {
while (true) {
try {
Thread.sleep(1 * 900);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
currentFrame = false;
lock.lock();
try {
newFrame.signal();
} finally {
lock.unlock();
}
}
}
});
handler.start();
}
}
Apache Camel also supports comes with Throttler mechanism as follows:
from("seda:a").throttle(100).asyncDelayed().to("seda:b");
This is an update to the LeakyBucket code above.
This works for a more that 1000 requests per sec.
import lombok.SneakyThrows;
import java.util.concurrent.TimeUnit;
class LeakyBucket {
private long minTimeNano; // sec / billion
private long sched = System.nanoTime();
/**
* Create a rate limiter using the leakybucket alg.
* #param perSec the number of requests per second
*/
public LeakyBucket(double perSec) {
if (perSec <= 0.0) {
throw new RuntimeException("Invalid rate " + perSec);
}
this.minTimeNano = (long) (1_000_000_000.0 / perSec);
}
#SneakyThrows public void consume() {
long curr = System.nanoTime();
long timeLeft;
synchronized (this) {
timeLeft = sched - curr + minTimeNano;
sched += minTimeNano;
}
if (timeLeft <= minTimeNano) {
return;
}
TimeUnit.NANOSECONDS.sleep(timeLeft);
}
}
and the unittest for above:
import com.google.common.base.Stopwatch;
import org.junit.Ignore;
import org.junit.Test;
import java.util.concurrent.TimeUnit;
import java.util.stream.IntStream;
public class LeakyBucketTest {
#Test #Ignore public void t() {
double numberPerSec = 10000;
LeakyBucket b = new LeakyBucket(numberPerSec);
Stopwatch w = Stopwatch.createStarted();
IntStream.range(0, (int) (numberPerSec * 5)).parallel().forEach(
x -> b.consume());
System.out.printf("%,d ms%n", w.elapsed(TimeUnit.MILLISECONDS));
}
}
Here is a little advanced version of simple rate limiter
/**
* Simple request limiter based on Thread.sleep method.
* Create limiter instance via {#link #create(float)} and call {#link #consume()} before making any request.
* If the limit is exceeded cosume method locks and waits for current call rate to fall down below the limit
*/
public class RequestRateLimiter {
private long minTime;
private long lastSchedAction;
private double avgSpent = 0;
ArrayList<RatePeriod> periods;
#AllArgsConstructor
public static class RatePeriod{
#Getter
private LocalTime start;
#Getter
private LocalTime end;
#Getter
private float maxRate;
}
/**
* Create request limiter with maxRate - maximum number of requests per second
* #param maxRate - maximum number of requests per second
* #return
*/
public static RequestRateLimiter create(float maxRate){
return new RequestRateLimiter(Arrays.asList( new RatePeriod(LocalTime.of(0,0,0),
LocalTime.of(23,59,59), maxRate)));
}
/**
* Create request limiter with ratePeriods calendar - maximum number of requests per second in every period
* #param ratePeriods - rate calendar
* #return
*/
public static RequestRateLimiter create(List<RatePeriod> ratePeriods){
return new RequestRateLimiter(ratePeriods);
}
private void checkArgs(List<RatePeriod> ratePeriods){
for (RatePeriod rp: ratePeriods ){
if ( null == rp || rp.maxRate <= 0.0f || null == rp.start || null == rp.end )
throw new IllegalArgumentException("list contains null or rate is less then zero or period is zero length");
}
}
private float getCurrentRate(){
LocalTime now = LocalTime.now();
for (RatePeriod rp: periods){
if ( now.isAfter( rp.start ) && now.isBefore( rp.end ) )
return rp.maxRate;
}
return Float.MAX_VALUE;
}
private RequestRateLimiter(List<RatePeriod> ratePeriods){
checkArgs(ratePeriods);
periods = new ArrayList<>(ratePeriods.size());
periods.addAll(ratePeriods);
this.minTime = (long)(1000.0f / getCurrentRate());
this.lastSchedAction = System.currentTimeMillis() - minTime;
}
/**
* Call this method before making actual request.
* Method call locks until current rate falls down below the limit
* #throws InterruptedException
*/
public void consume() throws InterruptedException {
long timeLeft;
synchronized(this) {
long curTime = System.currentTimeMillis();
minTime = (long)(1000.0f / getCurrentRate());
timeLeft = lastSchedAction + minTime - curTime;
long timeSpent = curTime - lastSchedAction + timeLeft;
avgSpent = (avgSpent + timeSpent) / 2;
if(timeLeft <= 0) {
lastSchedAction = curTime;
return;
}
lastSchedAction = curTime + timeLeft;
}
Thread.sleep(timeLeft);
}
public synchronized float getCuRate(){
return (float) ( 1000d / avgSpent);
}
}
And unit tests
import org.junit.Assert;
import org.junit.Test;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class RequestRateLimiterTest {
#Test(expected = IllegalArgumentException.class)
public void checkSingleThreadZeroRate(){
// Zero rate
RequestRateLimiter limiter = RequestRateLimiter.create(0);
try {
limiter.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
#Test
public void checkSingleThreadUnlimitedRate(){
// Unlimited
RequestRateLimiter limiter = RequestRateLimiter.create(Float.MAX_VALUE);
long started = System.currentTimeMillis();
for ( int i = 0; i < 1000; i++ ){
try {
limiter.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
long ended = System.currentTimeMillis();
System.out.println( "Current rate:" + limiter.getCurRate() );
Assert.assertTrue( ((ended - started) < 1000));
}
#Test
public void rcheckSingleThreadRate(){
// 3 request per minute
RequestRateLimiter limiter = RequestRateLimiter.create(3f/60f);
long started = System.currentTimeMillis();
for ( int i = 0; i < 3; i++ ){
try {
limiter.consume();
Thread.sleep(20000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
long ended = System.currentTimeMillis();
System.out.println( "Current rate:" + limiter.getCurRate() );
Assert.assertTrue( ((ended - started) >= 60000 ) & ((ended - started) < 61000));
}
#Test
public void checkSingleThreadRateLimit(){
// 100 request per second
RequestRateLimiter limiter = RequestRateLimiter.create(100);
long started = System.currentTimeMillis();
for ( int i = 0; i < 1000; i++ ){
try {
limiter.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
long ended = System.currentTimeMillis();
System.out.println( "Current rate:" + limiter.getCurRate() );
Assert.assertTrue( (ended - started) >= ( 10000 - 100 ));
}
#Test
public void checkMultiThreadedRateLimit(){
// 100 request per second
RequestRateLimiter limiter = RequestRateLimiter.create(100);
long started = System.currentTimeMillis();
List<Future<?>> tasks = new ArrayList<>(10);
ExecutorService exec = Executors.newFixedThreadPool(10);
for ( int i = 0; i < 10; i++ ) {
tasks.add( exec.submit(() -> {
for (int i1 = 0; i1 < 100; i1++) {
try {
limiter.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}) );
}
tasks.stream().forEach( future -> {
try {
future.get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
});
long ended = System.currentTimeMillis();
System.out.println( "Current rate:" + limiter.getCurRate() );
Assert.assertTrue( (ended - started) >= ( 10000 - 100 ) );
}
#Test
public void checkMultiThreaded32RateLimit(){
// 0,2 request per second
RequestRateLimiter limiter = RequestRateLimiter.create(0.2f);
long started = System.currentTimeMillis();
List<Future<?>> tasks = new ArrayList<>(8);
ExecutorService exec = Executors.newFixedThreadPool(8);
for ( int i = 0; i < 8; i++ ) {
tasks.add( exec.submit(() -> {
for (int i1 = 0; i1 < 2; i1++) {
try {
limiter.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}) );
}
tasks.stream().forEach( future -> {
try {
future.get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
});
long ended = System.currentTimeMillis();
System.out.println( "Current rate:" + limiter.getCurRate() );
Assert.assertTrue( (ended - started) >= ( 10000 - 100 ) );
}
#Test
public void checkMultiThreadedRateLimitDynamicRate(){
// 100 request per second
RequestRateLimiter limiter = RequestRateLimiter.create(100);
long started = System.currentTimeMillis();
List<Future<?>> tasks = new ArrayList<>(10);
ExecutorService exec = Executors.newFixedThreadPool(10);
for ( int i = 0; i < 10; i++ ) {
tasks.add( exec.submit(() -> {
Random r = new Random();
for (int i1 = 0; i1 < 100; i1++) {
try {
limiter.consume();
Thread.sleep(r.nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}) );
}
tasks.stream().forEach( future -> {
try {
future.get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
});
long ended = System.currentTimeMillis();
System.out.println( "Current rate:" + limiter.getCurRate() );
Assert.assertTrue( (ended - started) >= ( 10000 - 100 ) );
}
}
My solution: A simple util method, you can modify it to create a wrapper class.
public static Runnable throttle (Runnable realRunner, long delay) {
Runnable throttleRunner = new Runnable() {
// whether is waiting to run
private boolean _isWaiting = false;
// target time to run realRunner
private long _timeToRun;
// specified delay time to wait
private long _delay = delay;
// Runnable that has the real task to run
private Runnable _realRunner = realRunner;
#Override
public void run() {
// current time
long now;
synchronized (this) {
// another thread is waiting, skip
if (_isWaiting) return;
now = System.currentTimeMillis();
// update time to run
// do not update it each time since
// you do not want to postpone it unlimited
_timeToRun = now+_delay;
// set waiting status
_isWaiting = true;
}
try {
Thread.sleep(_timeToRun-now);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// clear waiting status before run
_isWaiting = false;
// do the real task
_realRunner.run();
}
}};
return throttleRunner;
}
Take from JAVA Thread Debounce and Throttle
Here is a rate limiter implementation based on #tonywl (and somewhat relates to Duarte Meneses's leaky bucket). The idea is the same - use a "token pool" to allow both rate limiting and bursting (make multiple calls in a short time after idling for a bit).
This implementation offers two main differences:
Lock-less concurrent access using atomic operations.
Instead of blocking a request, calculate a delay needed to enforce the rate limit and offers that as the response, allow the caller to enforce the delay - this will work better with asynchronous programming that you can find in modern networking frameworks.
The full implementation with documentation can be found in this Github Gist, which is where I'll also post updates, but here's the gist of it:
import java.util.concurrent.atomic.AtomicLong;
public class RateLimiter {
private final static long TOKEN_SIZE = 1_000_000 /* tockins per token */;
private final double tokenRate; // measured in tokens per ms
private final double tockinRate; // measured in tockins per ms
private final long tockinsLimit;
private AtomicLong available;
private AtomicLong lastTimeStamp;
public RateLimiter(int prefill, int limit, int fill, long interval) {
this.tokenRate = (double)fill / interval;
this.tockinsLimit = TOKEN_SIZE * limit;
this.tockinRate = tokenRate * TOKEN_SIZE;
this.lastTimeStamp = new AtomicLong(System.nanoTime());
this.available = new AtomicLong(Math.max(prefill, limit) * TOKEN_SIZE);
}
public boolean allowRequest() {
return whenNextAllowed(1, false) == 0;
}
public boolean allowRequest(int cost) {
return whenNextAllowed(cost, false) == 0;
}
public long whenNextAllowed(boolean alwaysConsume) {
return whenNextAllowed(1, alwaysConsume);
}
/**
* Check when will the next call be allowed, according to the specified rate.
* The value returned is in milliseconds. If the result is 0 - or if {#code alwaysConsume} was
* specified then the RateLimiter has recorded that the call has been allowed.
* #param cost How costly is the requested action. The base rate is 1 token per request,
* but the client can declare a more costly action that consumes more tokens.
* #param alwaysConsume if set to {#code true} this method assumes that the caller will delay
* the action that is rate limited but will perform it without checking again - so it will
* consume the specified number of tokens as if the action has gone through. This means that
* the pool can get into a deficit, which will further delay additional actions.
* #return how long before this request should be let through.
*/
public long whenNextAllowed(int cost, boolean alwaysConsume) {
var now = System.nanoTime();
var last = lastTimeStamp.getAndSet(now);
// calculate how many tockins we got since last call
// if the previous call was less than a microsecond ago, we still accumulate at least
// one tockin, which is probably more than we should, but this is too small to matter - right?
var add = (long)Math.ceil(tokenRate * (now - last));
var nowAvailable = available.addAndGet(add);
while (nowAvailable > tockinsLimit) {
available.compareAndSet(nowAvailable, tockinsLimit);
nowAvailable = available.get();
}
// answer the question
var toWait = (long)Math.ceil(Math.max(0, (TOKEN_SIZE - nowAvailable) / tockinRate));
if (alwaysConsume || toWait == 0) // the caller will let the request go through, so consume a token now
available.addAndGet(-TOKEN_SIZE);
return toWait;
}
}

Categories