I am implementing an undo/redo function which requires me to use memento pattern.
The flow of the partial program : "...the program then store the previous Vector using Memento Pattern, then the newly created object will be added to the Vector. After that, user may choose a show command to show what is inside the Vector, he can also enter undo command to restore, the undo can be repeated until it is restored to the original state..."
From my research, I know there will be an originator, memento and caretaker.
Here's my caretaker program
public class CareTaker {
private Memento m;
private Stack s;
private Vector v;
// Some of the implementation are not shown
public void create() {
// Some of the implementation are not shown
// Assuming Vector is named "v"
// Passing Vector to memento
m = new Memento(v);
s.add(m);
}
public void undo() {
v = s.pop().restore();
}
}
public class Memento {
private Vector _v;
public Memento(Vector v) {
_v = v;
}
public Vector restore() {
return _v;
}
}
Unfortunately , I failed to identify the "Originator" nor I know which one will be.
Is this code fragment ever a correct Memento pattern if there is no Originator?
The memento pattern is used to save the state of an object without knowing it's internal data structures.
I try to explain it with an Iterator example
public class MementoListIterator<E> implements Iterator<E> {
public static class Memento {
private int savedIndex;
private Memento(MementoListIterator<?> mementoListIterator) {
this.savedIndex = mementoListIterator.index;
}
}
private List<E> elements;
private int index = 0;
public MementoListIterator(List<E> elements) {
this.elements = elements;
}
public Memento save() {
return new Memento(this);
}
public void restore(Memento memento) {
this.index = memento.savedIndex;
}
#Override
public boolean hasNext() {
return this.index < elements.size();
}
#Override
public E next() {
return elements.get(index++);
}
#Override
public void remove() {
throw new UnsupportedOperationException("Not implemented yet");
}
}
A client can now save any state of the iterator without knowing how the iterator internally manages it's state.
public class Main {
public static void main(String[] args) {
List<String> list = Arrays.asList("A", "B", "C", "D", "E");
MementoListIterator<String> mementoListIterator = new MementoListIterator<String>(
list);
Memento initialState = mementoListIterator.save();
while (mementoListIterator.hasNext()) {
String string = mementoListIterator.next();
System.out.println(string);
}
// Normally we can not re-use the iterator, but
// fortuanatly we saved the initial state.
// restore the initial state and we can use the Iterator again
mementoListIterator.restore(initialState);
while (mementoListIterator.hasNext()) {
String string = mementoListIterator.next();
System.out.println(string);
}
}
}
Related
I have this kind of class
public class AImpl implements A {
private String variable = "init";
#Override
public A choice(A... choices) {
return this;
}
#Override
public A execute() {
variable = "execute";
return this;
}
}
I can use it like this (simple example)
new AImpl().choice(
new AImpl[] {
new AImpl().execute(),
new AImpl()
};
)
or like this (more complex example, with variable expected value)
new AImpl().choice( //variable == "init"
new AImpl[] {
new AImpl().execute(), //variable == "init". Set to "execute"
new AImpl().choice( //variable == "init"
new AImpl[] {
new AImpl() //variable == "init"
}
),
new AImpl().execute().choice( //variable == "init". Set to "execute"
new AImpl[] {
new AImpl(), //variable == "execute"
new AImpl() //variable == "execute"
}
),
};
)
What I'm trying to achieve
Each time there is a choice, I would like to propagate the last value of variable to each new instances. Here is graph version of the complex example where I encircled what I called propagation
What is my question
How can I propagate this variable to all the objects in the choices list before calling any other function (before calling execute in the simple example above, because this function uses (and can modify) this variable).
What I have tried
I can not do it using the constructor since I don't have a reference to the variable
public AImpl(String variable) {
this.variable = variable;
}
This code will not work because the variable will be set after all functions
#Override
public A choice(A... choices) {
for(A a : choices) {
a.setVariable(variable);
}
}
I tried with a Builder (eg set all the values and only create the instance at the end, from the choice function for example). But it make sense to chained the functions execute or choice (...execute().execute().choice()...). So the builder become difficult to create and can become really big.
I also tried to move the variable to a context class, but it is not working if in the choices I have another choice (case of the more complex example). Here is my current context class
public class Context {
private static Context instance = null;
private String variable;
private Context(){};
public String getVariable() {
return variable;
}
public void setVariable(String variable) {
this.variable = variable;
}
public static void set(String variable) {
if(Context.instance == null)
Context.instance = new Context();
Context.instance.setVariable(variable);
}
public static String get() {
if(Context.instance == null)
throw new NullPointerException();
return Context.instance.getVariable();
}
}
The problem is that new AImpl instances need to inherit the context of their "parent" AImple instance, i.e. the one on which choice() is called. You can't do that using the new operator. You should instead have a method that creates the instances with an inherited variable.
public A[] createChoices(int count, A optionalDefaultValues...) {
// return an array of clones of itself (possibly with adjusted defaults)
}
I finally found a working solution based on the Context approach (see What I have tried ?)
The main idea
There are two mains ideas. The first one is to replace (inside the context object) the single variable by a Stack of variables like this one
Stack<String> variables = new Stack<>();
I push the first variable in the first constructor and them I can access and modify it using pop/push function
String variable = Context.pop();
//Do something with variable
Context.push("anotherValue");
The second main idea is to duplicate the value on the top of the stack each time I create a new choice and to remove it at the end of each choice.
My code
Here is my code, if it can help someone else. I'm sure there is a lot of things to do to improve it, but it solved my original problem.
TestSo.java
public class TestSo {
#Test
public void testSo() {
AImpl.create().choice(
new ChoiceList()
.add(AChoice.create().execute())
.add(AChoice.create().choice(
new ChoiceList().add(AChoice.create())
))
.add(AChoice.create().execute().choice(
new ChoiceList()
.add(AChoice.create())
.add(AChoice.create())
))
);
}
}
A.java
public interface A {
A choice(ChoiceList choices);
A execute();
}
AAbstract.java
public class AAbstract implements A {
#Override
public A choice(ChoiceList choices) {
return this;
}
#Override
public A execute() {
String variable = Context.get();
//...
Context.set("execute");
return this;
}
}
AImpl.java
public class AImpl extends AAbstract {
private AImpl() {
Context.set("init");
}
public static AImpl create() {
return new AImpl();
}
}
AChoice.java
public class AChoice extends AAbstract {
private AChoice() {
Context.duplicate();
}
public static AChoice create() {
return new AChoice();
}
#Override
public AChoice choice(ChoiceList choices) {
super.choice(choices);
return this;
}
#Override
public AChoice execute() {
super.execute();
return this;
}
}
ChoiceList.java
public class ChoiceList {
private List<AChoice> choices = new ArrayList<>();
public ChoiceList add(AChoice choice) {
Context.remove();
choices.add(choice);
return this;
}
}
Context.java
public class Context {
private static Context instance = null;
private Stack<String> variables = new Stack<>();
private Context(){};
public String peek() {return variables.peek();}
public String pop() {return variables.pop();}
public void fork() {variables.push(variables.peek());}
public void push(String variable) {variables.push(variable);}
public static void set(String variable) {
if(Context.instance == null)
Context.instance = new Context();
Context.instance.push(variable);
}
public static String get() {
if(Context.instance == null)
throw new NullPointerException();
return Context.instance.pop();
}
public static void remove() {
if(Context.instance == null)
throw new NullPointerException();
Context.instance.pop();
}
public static void duplicate() {
if(Context.instance == null)
throw new NullPointerException();
Context.instance.fork();
}
public static String read() {
if(Context.instance == null)
throw new NullPointerException();
return Context.instance.peek();
}
}
I'm trying to implement a Set which is ordered by the count of additions like this:
public class App {
public static void main(String args[]) {
FrequencyOrderedTreeSet<String> set = new FrequencyOrderedTreeSet<String>();
set.add("bar");
set.add("foo");
set.add("foo");
Iterator<String> i = set.iterator();
while (i.hasNext()) {
System.out.print(i.next());
}
// prints "foobar"
}
}
I've created a protected class FrequencyOrderedTreeSet.Element which implements Comparable and has a T entry and an int frequency property and extended TreeSet<FrequencyOrderedTreeSet.Element> with FrequencyOrderedTreeSet<T> and overrode the compareTo and equals methods on the Element.
One problem is that I can't override the add() method because of type erasure problems and also I can't call instanceof Element in the equals method, because in case object given to it is an Element, I have to compare their entries, but if it's not, I have to compare the object itself to this.entry.
In the add method I create a new element, find the element with the same entry in the set, set the frequency on the new element to "old+1", remove the old one and add the new one. I'm not even sure this is the best way to do this or if it would work even because the other problems I described.
The question is: what's the best way to implement such data structure? In case I'm somehow on the right track - how can I circumvent the problems I've mentioned above?
Here's a basic implementation. It's not the most optimal and will take some more work if you want to implement the full Set interface.
public class FrequencySet<T> implements Iterable<T>
{
private TreeSet<T> set;
private HashMap<T, Integer> elements = new HashMap<T, Integer>();
public FrequencySet()
{
set = new TreeSet<T>(new Comparator<T>()
{
public int compare(T o1, T o2)
{
return elements.get(o2)-elements.get(o1);
}
});
}
public void add(T t)
{
Integer i = elements.get(t);
elements.put(t, i == null ? 1 : i+1);
set.remove(t);
set.add(t);
}
public Iterator<T> iterator() {return set.iterator();}
public static void main(String [] args)
{
FrequencySet<String> fset = new FrequencySet<String>();
fset.add("foo");
fset.add("bar");
fset.add("foo");
for (String s : fset)
System.out.print(s);
System.out.println();
fset.add("bar");
fset.add("bar");
for (String s : fset)
System.out.print(s);
}
}
The key is in the add method. We change the counter for the given object (which changes the relation order), remove it from the backing set and put it back in.
This works the other way (count is increased when you use GET)
#SuppressWarnings("rawtypes")
final class Cache implements Comparable {
private String key;
private String value;
private int counter;
public String getValue() {
counter++;
return value;
}
private void setValue(String value) { this.value = value; }
public String getKey() { return key; }
private void setKey(String key) { this.key = key; }
public int getCounter() { return counter; }
public void setCounter(int counter) { this.counter = counter; }
public Cache(String key, String value) {
this.setKey(key);
this.setValue(value);
setCounter(0);
}
#Override
public int compareTo(Object arg0) {
if(!(arg0 instanceof Cache)) {
throw new ClassCastException();
}
return this.getCounter() - ((Cache) arg0).getCounter();
}
}
consider the below code:
public class Bid {
private double pe;
private List<ResChar> resourceList;
protected Map<Integer,Integer>scheduleOfSeller ;
public Map<Integer, Integer> getScheduleOfSeller() {
return scheduleOfSeller;
}
public void setScheduleOfSeller(Map<Integer, Integer> scheduleOfSeller) {
this.scheduleOfSeller = scheduleOfSeller;
}
private int bidId;
public int getBidId() {
return bidId;
}
public void setBidId(int bidId) {
this.bidId = bidId;
}
public double getPe() {
return pe;
}
public void setPe(double pe) {
this.pe = pe;
}
public List<ResChar> getResourceList() {
return resourceList;
}
public void setResourceList(List<ResChar> resourceList) {
this.resourceList = resourceList;
}
public Bid(int bidId,double pe, List<ResChar> resourceList){
setBidId(bidId);
setPe(pe);
setResourceList(resourceList);
this.scheduleOfSeller = new HashMap<Integer,Integer>();
}
}
I want to make a copy constructor of the bid like this :
public class BidCopy{
public Bid bid;
public BidCopy(Bid bidBuyer){
List<ResChar> resList = new LinkedList<ResChar>();
for (ResChar elt : bidBuyer.getResourceList()){
ResCharCopy eltCopy = new ResCharCopy(elt);
resList.add(eltCopy.elt);
}
this.bid = bidBuyer;
this.bid.setResourceList(resList);
}
}
The only solution that I know to make such copy is to proceed like follows :
public class BidCopy{
public Bid copy;
public BidCopy(Bid bid){
List<ResChar> resList = new LinkedList<ResChar>();
for (ResChar elt : bid.getResourceList()){
ResCharCopy eltCopy = new ResCharCopy(elt);
resList.add(eltCopy.elt);
}
this.copy = new Bid(bid.getBidId(), bid.getPe(), resList);
}
}
So I want to know if there is any other solution to make a copy of "Bid" Object more effectively ?
I would suggest making a copy constructor for your Bid object (and not a specific class for copying), a Bid is made out of its fields and not methods, like so:
public class Bid {
int ID;
String description;
Object bidStuff;
// ...as before
public Bid(Bid bid) {
this.ID = bid.ID;
this.description = bid.description;
this.bidStuff = bid.bidStuff;
}
public static void main(String[] args) {
List<Bid> original = new ArrayList<>();
// ..populate it
List<Bid> copy = new ArrayList<>(original.size());
for (Bid b : original) {
copy.add(new Bid(b));
}
}
}
You can even make the copy constructor protected or package-protected if you don't want anyone else to mess around with making multiple copies of bids.
There is not. Even though some collections have "copy constructors", these constructors will copy the elements' references, they will not create new elements for you.
You can however "optimize" the list creation itself by submitting the size of the initial list to the constructor:
List<X> newList = new LinkedList<X>(oldList.size());
I'm creating a (atypical)tree in Java that will be composed of three classes: node, branch and leaf
Each node stores the branches it is connected to in a HashSet. The branch is supposed to lead to a descendent node or a leaf, but I'm not sure how to code that. Would I just have two separate variables, one Node and one Leaf in the branch class, along with two sets of getters and setters, even though I will never use both? Is there a best practice in this regard?
I was thinking maybe make node and leaf subclasses of the same superclass, but they have absolutely nothing in common in terms of code(i.e. different variable types, functions, etc.).
EDIT:
Node references branches and
each Branch references a Node or a Leaf
I'd probably go with something like this:
interface BranchDestination {
boolean isLeaf();
}
class Node implements BranchDestination {
private Set branches;
public boolean isLeaf() {
return false;
}
...
}
class Leaf implements BranchDestination {
public boolean isLeaf() {
return true;
}
...
}
class Branch {
BranchDestination destination;
...
}
I do like the idea of defining an interface for the leaf / node classes, and implement that interface in each. I would define a simple function in that interface (syntax might be wrong below, but it's pseduo-ish code):
interface BranchItem {
public object[] GetVals();
}
public class Branch
{
public BranchItem item;
}
public class Leaf implements BranchItem
{
private object myVal = <your data here>;
public object[] GetVals() {
return new object[] { myVal };
}
}
public class Node implements BranchItem
{
private myBranches[] = <List of Branches>;
public object[] GetVals() {
object[] myArray = new object[];
foreach (BranchItem b in myBranches)
{
myArray.addTo(b.item.GetVals());
}
return myArray;
}
}
When traversing your node, simply iterate over the Branches and call GetVals().
The Leaf class will simply returns it's stored value.
The Node Class will recursively loop over it's branches, calling GetVals() on each and add it to it's own returned array.
This is but a simple implementation. If you want sort order, handle collisions or duplicate data, or anything of that nature it could get more complicated.
Make the Leaf class with the basic information.
Make the Branch class which holds references to Leafs.
Make the Node class which holds references to Brahces.
Then try look up Recursion and how to use it to make such constructs :)
Here is my go at it. Though not very elegant, it gets the job done.
Here is the Leaf class:
public class Leaf {
private String text;
public Leaf(String text) {
this.text = text;
}
public String getText() {
return text;
}
public void setString(String newString) {
text = newString;
}
#Override
public String toString() {
return text;
}
}
And here is the Branch class:
public class Branch<T> {
private String text;
private HashSet<T> list;
public Branch(String text) {
this.text = text;
list = new HashSet<>();
}
public String getText() {
return text;
}
public void setText(String newText) {
text = newText;
}
public HashSet<T> getHashSet() {
return list;
}
public void setHashSet(HashSet<T> newList) {
list = newList;
}
public String getAllLeaves() {
StringBuilder sb = new StringBuilder();
sb.append(text).append("\n");
for(T t : list) {
sb.append("\t\t");
sb.append(t.toString()).append("\n");
}
return sb.toString();
}
#Override
public String toString() {
return text;
}
}
Lastly the Node class:
public class Node<T> {
private String text;
private HashSet<T> list;
public Node(String text) {
this.text = text;
list = new HashSet<>();
}
public String getText() {
return text;
}
public void setText(String newText) {
text = newText;
}
public HashSet<T> getHashSet() {
return list;
}
public void setHashSet(HashSet<T> newList) {
list = newList;
}
}
Little test program to try it out:
public class TreeConstruct {
public static void main(String[] args) {
Leaf l1 = new Leaf("Leaf 1");
Leaf l2 = new Leaf("Leaf 2");
Leaf l3 = new Leaf("Leaf 3");
Leaf l4 = new Leaf("Leaf 4");
Branch<Leaf> b1 = new Branch("Branch 1");
Branch<Leaf> b2 = new Branch("Branch 2");
Node<Branch> n1 = new Node("Node 1");
b1.getHashSet().add(l1);
b1.getHashSet().add(l2);
b1.getHashSet().add(l3);
b2.getHashSet().add(l4);
n1.getHashSet().add(b1);
n1.getHashSet().add(b2);
System.out.println(printNodeTree(n1));
}
public static String printNodeTree(Node<Branch> n) {
StringBuilder sb = new StringBuilder();
sb.append(n.getText()).append("\n");
for(Branch b : n.getHashSet()) {
sb.append("\t");
sb.append(b.getAllLeaves());
}
return sb.toString();
}
}
The output will be:
Node 1
Branch 1
Leaf 1
Leaf 3
Leaf 2
Branch 2
Leaf 4
Hope this helps!
My code is basically allocation free, however the GC runs every 30 seconds or so when at 60fps. Checking the app with DDMS for allocation shows there is ALOT of SimpleListIterator being allocated. There is also some stuff being allocated because i use Exchanger.
The SimpleListIterator comes from for each loops for (T obj : objs) {}. I was under the impression that the compilator/translator would optimize those to not use iterators for types that support it (I basically only use ArrayList) but that seems to not be the case.
How can I avoid allocating all these SimpleListIterators? One solution would be to switch to regular for loops for (int i = 0; i < size; ++i) {} but I like for each loops :(
Another way would be to extend ArrayList which returns an Iterator that is only allocated once.
A third way I hacked together is using a static helper function which returns a Collection which is reusing an Iterator. I hacked something like this together but the casting feels very hackish and unsafe. It should be thread safe though as I use ThreadLocal? See below:
public class FastIterator {
private static ThreadLocal<Holder> holders = new ThreadLocal<Holder>();
public static <T> Iterable<T> get(ArrayList<T> list) {
Holder cont = holders.get();
if (cont == null) {
cont = new Holder();
cont.collection = new DummyCollection<T>();
cont.it = new Iterator<T>();
holders.set(cont);
}
Iterator<T> it = (Iterator<T>) cont.it;
DummyCollection<T> collection = (DummyCollection<T>) cont.collection;
it.setList(list);
collection.setIterator(it);
return collection;
}
private FastIterator() {}
private static class Holder {
public DummyCollection<?> collection;
public Iterator<?> it;
}
private static class DummyCollection<T> implements Iterable {
private Iterator<?> it;
#Override
public java.util.Iterator<T> iterator() {
return (java.util.Iterator<T>) it;
}
public void setIterator(Iterator<?> it) {
this.it = it;
}
}
private static class Iterator<T> implements java.util.Iterator<T> {
private ArrayList<T> list;
private int size;
private int i;
#Override
public boolean hasNext() {
return i < size;
}
#Override
public T next() {
return list.get(i++);
}
#Override
public void remove() {
}
public void setList(ArrayList<T> list) {
this.list = list;
size = list.size();
i = 0;
}
private Iterator() {}
}
}
You should not use for each in Android games.
I think this official video talks about that too.
Probably the best approach would be to use a Decorator design. Create a class which takes a collection in the constructor and implements the Iterable interface by calling the wrapped class and reusing the iterator returned.
Two additional approaches for avoiding the allocation of iterators.
First is to use a callback idiom:
public interface Handler<T> {
void handle(T element);
}
public interface Handleable<T> {
void handleAll(Handler<T> handler);
}
public class HandleableList<T> extends ArrayList<T> implements Handleable<T> {
public void handleAll(Handler<T> handler) {
for (int i = 0; i < size(); ++i) {
handler.handle(get(i));
}
}
}
This approach still requires an instance of a Handler to receive the callback, but this can definitely reduce allocations when, for example, you are trying to visit the elements of several lists.
Second approach is to use a cursor idiom:
public interface Cursor<T> {
void reset();
boolean next();
T current();
}
public class CursoredList<T> extends ArrayList<T> implements Cursor<T> {
private int _index = -1;
public void reset() {
_index = -1;
}
public boolean next() {
return ++_index >= size();
}
public T current() {
return get(_index);
}
}
Sure, this is the same as implementing Iterable and Iterator on your subtype of ArrayList, but this clearly shows the cursor location as state on the collection itself.