I've read following topic and found this formula there:
length = 4*(n/3)
I started to test it:
1 symbol:
Base64.getEncoder().encodeToString("1".getBytes()) =>MQ==(4 symbols)
2 symbols:
Base64.getEncoder().encodeToString("12".getBytes()) =>MTI= (4 symbols)
5 symbols:
Base64.getEncoder().encodeToString("12345".getBytes()) =>MTIzNDU=(8 symbols)
8 symbols:
Base64.getEncoder().encodeToString("12345678".getBytes()) =>MTIzNDU2Nzg=(12 symbols)
21symbols:
Base64.getEncoder().encodeToString("123456789012345678901".getBytes()) => MTIzNDU2Nzg5MDEyMzQ1Njc4OTAx (28 symbols)
Looks like this formula doesn't work.
Can you please explain mu results?
With 64 digits (26) one digit can represent 6 bits.
Hence 4 digits can represent exactly 4*6 bits = 3 bytes.
(Using ÷ for explicit integer division:)
With n bytes, 4*(n÷3) digits are needed plus for the remainder n%3 (0 < 3 bytes) there is a need for 0 upto 4 digits:
0 bytes (0 bits) 0 digits
1 byte (8 bits) 2 digits (12 bits) + "=="
2 bytes (16 bits) 3 digits (18 bits) + "="
Often there is a padding upto 4 digits/padding chars, using =.
This cannot be 0 as one then would add a byte 0x0.
Then the formula is 4 * Math.ceil(n / 3.0).
Without padding: Math.ceil(n * 8 / 6.0) = Math.ceil(n * 4 / 3.0) = (n * 4 + (3 - 1)) ÷ 3.
In java one should use int division only:
int base64Length(byte[] b) {
int n = b.length;
return (n * 4 + 2)/3;
}
Try length = 4*((n/3) + 1), where "/" is integer division.
Edit: Lexicore is correct, my formula fails when the remainder is zero.
int length = 4 * (n / 3);
if (n % 3 > 0) length++;
Related
This question already has answers here:
Int division: Why is the result of 1/3 == 0?
(19 answers)
Closed 3 years ago.
I have the following expression in my code
int n = ((int) Math.sqrt(4 * 4 + 5) - 1) / 2;
Can someone tell me the precedence in which the expression is evaluated?
Logically I would evaluate the expression in the following way:
4 * 4 + 5 = 16 + 5 = 21
Math.sqrt(21) ~ 4.58
4.58 - 1 = 3.58
(int) 3.58 = 3
3 / 2 = 1.5
However the code evaluates to 1.
You almost got it. The only difference (which doesn't matter for the result) is that the cast is evaluated
before the subtraction, and you're using integer division:
4 * 4 + 5 = 16 + 5 = 21
Math.sqrt(21) ~ 4.58
(int) 4.58 = 4 (cast first)
4 - 1 = 3
3 / 2 = 1 (integer division)
The order you suggest is correct.
The keypoint is the last operation: the result of an int divided by an int is an int as well.
To fix this, one of the two number should be a float (or a double):
float n = ((float)(int) (Math.sqrt(4 * 4 + 5) - 1)) / 2;
In this way you divide a float by an int, and the result will be a float.
Or better:
double n = (Math.sqrt(4 * 4 + 5) - 1) / 2;
Because the cast to int of Math.sqrt() isn't useful.
Please note that the first operation does exactly what you ask with the round of the Math.sqrt(), while the second one doesn't.
The following line of code is inside a for loop where j is incremented and ansString is a string of ASCII characters, like 000\Qg$M!*P000\gQYA+ h000\M|$skd 000\Qo}plsd000\.
ansString[j] = ((char)(paramString[j] >> j % 8 ^ paramString[j]));
I am having trouble with figuring out how to have XOR and all the other operators reversed to find paramString. Appreciate any help.
The right bitshift (>>) and modulo (%) are irreversible operations:
In the case of the right bitshift, underflowed bits are lost, so reversing a >> b would leave you with 2^b different possible results.
For the modulo operator, in x % 8 = y there are 32 possible values for x asuming it has a maximum length of 8 bits. (That would be every x * 8 + y that fit in 8 bits)
The xor operation is the only one reversible. If you have
a ^ b = c
then
c ^ b = a
So for more than one input you would have the same output. For example, lets take the case where j = 0
j % 8 = 0 % 8 = 0
paramString[j] >> (j % 8) = paramString[0] >> 0 = paramString[0]
paramString[0] ^ paramString[j] = paramString[0] ^ paramString[0] = 0
This means that for your first character and every 8th subsequent character (this is every character where its index j is a multiple of 8, so j % 8 = 0) the result will be 0, whichever the original character was (as you can see in your example output string).
This is why, even if you brute-force every possible input (a total of 256 * n possible input strings, being n the string length), you can never be sure of what was the original input, as many inputs yield the same output.
If j is a running index, you will know the shift amount in each iteration. With that, you can find a prefix and decrypt the string.
e.g. for j = 2 (0..7 are bit positions, double digits are XORed bits, x is 0):
Original: 0 1 2 3 4 5 6 7
Shifted: x x 0 1 2 3 4 5
Encrypted: 0 1 02 13 24 35 46 57
As you can see, the first 2 digits remain untouched. And those 2 digits are used to encrypt the next two, and so forth.
So to decrypt with j = 2, you find a 2 digit prefix unencrypted. This can be used to decrypt the next 2 bits (02 and 13):
Encrypted: 0 1 02 13 24 35 46 57
Shift-Mask: x x 0 1 x x x x
Temp1: 0 1 2 3 24 35 46 57
Now we know the first 4 digits, and also the decryption bits for the next 2:
Temp1: 0 1 2 3 24 35 46 57
Shift-Mask: x x x x 2 3 x x
Temp2: 0 1 2 3 4 5 46 57
And again:
Temp2: 0 1 2 3 4 5 46 57
Shift-Mask3: x x x x x x 4 5
Decrypted3: 0 1 2 3 4 5 6 7 <- Original string
Based on this idea, you can build the decryption algorithm
This question already has answers here:
Understanding The Modulus Operator %
(10 answers)
Closed 5 years ago.
I ran into some code containing the % symbol inside the array argument.
What does it mean and how does it work?
Example:
String[] name = { "a", "b", "c", "d" };
System.out.println(name[4 % name.length]);
System.out.println(name[7 % name.length]);
System.out.println(name[50 % name.length]);
Output:
a
d
c
That's the remainder operator, it gives the remainder of integer division. For instance, 3 % 2 is 1 because the remainder of 3 / 2 is 1.
It's being used there to keep a value in range: If name.length is less than 4, 7, or 50, the result of % name.length on those values is a value that's in the range 0 to name.length - 1.
So that code picks entries from the array reliably, even when the numbers (4, 7, or 50) are out of range. 4 % 4 is 0, 7 % 4 is 3, 50 % 4 is 2. All of those are valid array indexes for name.
Complete example (live copy):
class Example
{
public static void main (String[] args) throws java.lang.Exception
{
String[] name = { "a" , "b" , "c" , "d"};
int n;
n = 4 % name.length;
System.out.println(" 4 % 4 is " + n + ": " + name[n]);
n = 7 % name.length;
System.out.println(" 7 % 4 is " + n + ": " + name[n]);
n = 50 % name.length;
System.out.println("50 % 4 is " + n + ": " + name[n]);
}
}
Output:
4 % 4 is 0: a
7 % 4 is 3: d
50 % 4 is 2: c
Simple: this is the modulo, or to be precise the remainder operator.
This has nothing to do with arrays per se. It is just a numerical computation on the value that gets used to compute the array index.
I have an assignment question that I am struggling with and need some direction to solve.
Suppose i have a strip of paper and i fold it from the center such that the left half goes behind the right half. Then i number the folded peices in sequence i get the numbers when i unfold as follows.
1 : 2
If i fold twice i get the numbers when unfolded as follows
1 : 4 : 3 : 2
if I fold thrice i get as follows
1 8 5 4 3 6 7 2
I want to generate the array of numbers when I fold it n times. so if i fold it for example 25 times i will get 2^25 numbers in similar sequence.
These are the observations i made
the first and last numbers are always 1 and 2.
the middle two numbers are always 4 and 3
the number at index 1 is largest number and number at second last location is second largest number.
It looks like a preorder traversal of binary search tree but I dont know how that helps.
I tried to construct binary tree from the preorder and then convert it to inorder assuming that I can reverse this process to get the same series and I was wrong about it.
EDIT : For searching an element in this generated array I can do a sequential search which will be O(n) efficient. But I realise there has to be a much faster way to search for a number in this series.
I cannot do binary search because this is not sorted and there are over a billion numbers when 25+ foldings are done.
What kind of search tactics can i use to find a number and its index?
This was one of the reasons I wanted to convert it into a binary search tree which will have log(n) search efficiency.
EDIT 2: I tried the table folding algorithm as suggested by one of the answers and it is not memory efficient. I cannot store over a billion numbers in my memory so there has to be a way to find a numbers index without actually creating the array of numbers.
1st fold: 1 2
2nd fold: 1 4 3 2
3rd fold: 1 8 5 4 3 6 7 2
4th fold: 1 16 9 8 5 12 13 4 3 14 11 6 7 10 15 2
Generate table (with example to 4th fold)
Imagine you have a nth fold paper and then unfold it.
Generate a table with size ( column = 1, row = 2^n ) and fill the column from down to up with values in ascending order
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Resize the table to size (column = org. column*2, row = org. row / 2) recursively by sticking top x row to bottom x row from back to front
8 9
7 10
6 11
5 12
4 13
3 14
2 15
1 16
4 13 12 5
3 14 11 6
2 15 10 7
1 16 9 8
2 15 10 7 6 11 14 3
1 16 9 8 5 12 13 4
1 16 9 8 5 12 13 4 3 14 11 6 7 10 15 2
Read the final 1 row table from front to end as result
1 16 9 8 5 12 13 4 3 14 11 6 7 10 15 2
The remaining work to you is to prove this work and then code it (I only test up to n=4 because I am lazy)
You can calculate the number of a fold without having to calculate the whole sequence by using bit-reversal (which reverses the binary representation of a number, so that e.g. 0001 becomes 1000).
These are the sequences you get with bit reversal:
1 bit: 0 1
2 bits: 0 2 1 3
3 bits: 0 4 2 6 1 5 3 7
4 bits: 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
And these are the paper-folding sequences (counting from 0):
1 fold: 0 1
2 folds: 0 3 2 1
3 folds: 0 7 4 3 2 5 6 1
4 folds: 0 15 8 7 4 11 12 3 2 13 10 5 6 9 14 1
If you split the paper-folding sequences into even and odd numbers, you get:
0
1
0 2
3 1
0 4 2 6
7 3 5 1
0 8 4 12 2 10 6 14
15 7 11 3 13 5 9 1
You'll see that the paper-folding sequences are the same as the bit-reversal sequences, but with the first half (even numbers) interlaced with the reverse of the second half (odd numbers).
You'll also notice that each pair of adjacent even/odd numbers adds up to 2n-1 (where n is the number of folds), which means they are each other's inverse, and you can calculate one from the other using a bit-wise NOT.
So, to get the paper-folding number of fold x (counting from 0) of a strip folded n times:
divide x by 2, perform bitwise NOT if x was odd, then bit-reverse (using n digits)
Example (folding 4 times):
fold x/2 binary inverted bit-reversed from 1
0 0 0000 0000 0 1
1 0 0000 1111 1111 15 16
2 1 0001 1000 8 9
3 1 0001 1110 0111 7 8
4 2 0010 0100 4 5
5 2 0010 1101 1011 11 12
6 3 0011 1100 12 13
7 3 0011 1100 0011 3 4
8 4 0100 0010 2 3
9 4 0100 1011 1101 13 14
10 5 0101 1010 10 11
11 5 0101 1010 0101 5 6
12 6 0110 0110 6 7
13 6 0110 1001 1001 9 10
14 7 0111 1110 14 15
15 7 0111 1000 0001 1 2
Example: billionth fold: (folding 30 times)
fold: 1,000,000,000
counting from 0: 999,999,999 (x is odd)
x/2: 499,999,999
binary: 011101110011010110010011111111 (30 digits)
bitwise NOT: 100010001100101001101100000000 (because x was odd)
bit-reversed: 000000001101100101001100010001
decimal: 3,560,209
counting from 1: 3,560,210
I don't speak Java, but something like this should do the trick:
public static long foldIndex(int n, long x) { // counting from zero
return Long.reverse((x & 1) == 0 ? x >>> 1 : ~(x >>> 1)) >>> (Long.SIZE - n);
}
Here'a an algorithm to find what index a number will be at after the
unfolding.
It keeps track of the coordinates of where your search number is moving to based on the folds. For example, if you are interested in 3 folds (n=3, numFolds) and you want to know where the number 7 will be (searchNumber), the algorithm runs as follows:
Initial State:
8
7
6
5
4
3
2
1
The 7 is at [1,7] - column 1, row 7
Now, when we fold the top half down:
4 5
3 6
2 7
1 8
The 7 is at [2, 1] - column 2, row 2
When we do the next fold the 7 does not move (hence the if (row > half) logic)
2 7 6 3
1 8 5 4
On the last fold:
1 8 5 4 3 6 7 2
The 7 is at [7, 1] - column 7, row 1 and the code will return 7.
public static long getIndexOfAfterFold (long numFolds, long searchNumber)
{
long total = (long) Math.pow(2, numFolds);
long [] coordsOfSearchNumber = new long [] {1, searchNumber};
int iterations = 0;
while (iterations < numFolds)
{
long half = total / 2;
long row = coordsOfSearchNumber[1];
// we are folding down
if (row > half)
{
long newRow = (total - row) + 1;
long col = coordsOfSearchNumber[0];
long newFoldThickness = (long) Math.pow(2, iterations + 1);
long newCol = newFoldThickness - (col - 1);
coordsOfSearchNumber[0] = newCol;
coordsOfSearchNumber[1] = newRow;
}
total = total / 2;
iterations++;
}
return coordsOfSearchNumber[0];
}
EDIT: Converted the above code to use long instead on int.
Notes:
It runs in O(n) time where n is the number of folds.
Usage: System.out.println(getIndexOfAfterFold(4, 13));
This code will give the list of all numbers after the folding
Note: This is based on the answer supplied by #hk6279 (the table folding algorithm)
public static void unFold (int numFolds)
{
int total = (int) Math.pow(2, numFolds);
List<ArrayList<Integer>> table = new ArrayList<ArrayList<Integer>> (total);
// populate the single column table
for (int i = 0; i < total; i++)
{
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(i + 1);
table.add(list);
}
int iterations = 0;
while (iterations < numFolds)
{
int half = table.size() / 2;
// place the fold back on itself
for (int i = 0; i < half; i++)
{
ArrayList<Integer> list = table.get(i);
ArrayList<Integer> foldList = table.get(table.size() - (i + 1));
// reverse the fold
Collections.reverse(foldList);
// add the fold to front
list.addAll(foldList);
}
// remove the part we folded
table.subList(half, table.size()).clear();
iterations++;
}
System.out.println(table);
}
This is what n=5 looks like:
1, 32, 17, 16, 9, 24, 25, 8, 5, 28, 21, 12, 13, 20, 29, 4, 3, 30, 19, 14, 11, 22, 27, 6, 7, 26, 23, 10, 15, 18, 31, 2
I don't know Java, but this should be easy to port and works for arbitrary numbers of folds. Idea's about the same as m69's, so I won't explain the logic myself.
#include <iostream>
size_t reverse(size_t n, int bits)
{
size_t result = 0;
size_t msb_value = 1 << (bits - 1);
while (n)
{
if (n & 1) result |= msb_value;
msb_value >>= 1;
n >>= 1;
}
return result;
}
struct Fold_Sequence
{
Fold_Sequence(size_t folds) : folds_(folds), max_(1 << folds) { }
size_t operator[](size_t i) const
{
size_t x = reverse((i / 2) % max_, folds_);
return i & 1 ? (max_ - x - 1) : x;
}
size_t folds_, max_, i = 0;
};
int main()
{
const size_t folds = 4;
const unsigned num_parts = 1 << folds;
Fold_Sequence seq{folds};
for (unsigned j = 0; j < num_parts; ++j)
std::cout << seq[j] + 1 << '\n';
}
I liked the elegance of hk6279's solution too, so I implemented it (also in C++, and I was too lazy to use a multidimensional array/vector<vector<>> and have to resize things carefully all the time, so it's inefficiently implemented using a map keyed on x,y coordinates):
#include <iostream>
#include <map>
#define DBG(X) do { std::cout << X << '\n'; } while (false)
typedef std::pair<size_t, size_t> Coord;
struct matrix : std::map<Coord, size_t>
{
matrix(size_t n)
: y_size_(n)
{
for (size_t i = 0; i < n; ++i)
(*this)[{0, i}] = i; // bottom left is 0,0; 0,1 is above
}
void fold()
{
size_t x_size_ = x_size();
for (size_t y = y_size_ / 2; y < y_size_; ++y)
for (size_t x = 0; x < x_size_; ++x)
move(x, y, x_size_ * 2 - x - 1, y_size_ - y - 1);
y_size_ /= 2;
}
void move(size_t from_x, size_t from_y, size_t to_x, size_t to_y)
{
DBG("move(" << from_x << ',' << from_y << " -> " << to_x << ',' << to_y
<< ") value " << ((*this)[{from_x, from_y}]));
(*this)[{to_x, to_y}] = (*this)[{from_x, from_y}];
erase({from_x, from_y});
}
size_t operator()(size_t x, size_t y) const
{
auto it = find({x, y});
if (it != end()) return it->second;
std::cerr << "m(" << x << ',' << y << ") doesn't exist\n";
exit(1);
}
size_t x_size() const { return size() / y_size_; }
size_t y_size() const { return y_size_; }
size_t y_size_;
};
std::ostream& operator<<(std::ostream& os, const matrix& m)
{
for (size_t y = m.y_size_ - 1; y <= m.y_size_; --y)
{
for (size_t x = 0; x < m.x_size(); ++x)
os << m(x, y) << ' ';
os << '\n';
}
return os;
}
int main()
{
const size_t n = 4;
matrix m(1 << n);
for (int i = 0; i < n; ++i)
{
m.fold();
std::cout << i+1 << " folds ==> " << m.x_size() << 'x' << m.y_size()
<< " matrix:\n" << m << '\n';
}
}
We can divide a number by subtraction and stop at the remainder as shown here.
But how do we continue to divide the remainder by subtraction ? I looked on google and could not find such answers. They don't go beyond the remainder.
For example, lets say we have
7/3.
7-3 = 4
4-3 = 1
So, we have 2 & (1/3). How do we do the 1/3
division using only subtraction or addition ?
REPEAT -
Please note that I dont want to use multiplication or division operators to do this.
You can get additional "digits", up to any arbitrary precision (in any base you desire, I'll use base 10 for simplicity but if you're trying to implement an algorithm you'll probably choose base 2)
1) Perform division as you've illustrated, giving you a quotient (Q=2), a divisor (D=3), and a remainder (R=1)
2) If R=0, you're done
3) Multiply R by your base (10, R now =10)
4) Perform division by subtraction again to find R/D (10/3 = 3+1/3).
5) Divide the resulting quotient by your base (3/10 = 0.3) and add this to what you got from step 1 (now your result is 2.3)
6) Repeat from step 2, dividing the new remainder (1) by 10 again
While it sounds an awful lot like I just said division quite a few times, we're dividing by your base. I used 10 for simplicity, but you'd really use base 2, so step 3 is really a left shift (by 1 bit every time) and step 5 is really a right shift (by 1 bit the first time through, 2 bits the second, and so on).
7/3.
7-3 = 4
4-3 = 1
7/3 = 2 R 1
1*10 = 10
10-3 = 7
7-3 = 4
4-3 = 1
10/3 = 3 R 1
7/3 = 2 + 3/10 R 1
7/3 = 2.3 R 1
1*10 = 10
10-3 = 7
7-3 = 4
4-3 = 1
10/3 = 3 R 1
7/3 = 2.3 + 3/100 R 1
7/3 = 2.33 R 1
And so on until you reach any arbitrary precision.
If you want to keep going to get decimal digits, multiply the remainder by a power of 10.
E.g. if you want 2.333, then you can multiply remainder by 1000, and then repeat the algorithm.
It depends on what you are asking.
If you are asking how to get the end fraction and simply it, let's take a different example.
26 / 6.
26 - 6 = 20 count 1
20 - 6 = 14 count 2
14 - 6 = 8 count 3
8 - 6 = 2 count 4
(In code, this would be accomplished with a for loop)
Afterwards, we would have 4 2/6. To simplify, switch the dividend and divisor:
6 / 2.
6 - 2 = 4 count 1
4 - 2 = 2 count 2
2 - 2 = 0 count 3
If this finishes without a remainder, show as 1 over the count.
In pseudo-code:
int a = 26;
int b = 6;
int tempb = 6;
int left = 26;
int count = 0;
int count2 = 0;
left = a - b;
for(count; left > b; count++){
left -= b;
}
if(left > 0){
for(count2; tempb > left; count2++){
tempb -= left;
}
console.log("The answer is " + count + " and 1/" + count2);
I hope this answers your question!
Here is a complete program that uses only + and -, translate to your language of choice:
module Q where
infixl 14 `÷` `×`
a × 0 = 0
a × 1 = a
a × n = a + a×(n-1)
data Fraction = F Int [Int]
a ÷ 0 = error "division by zero"
a ÷ 1 = F a []
0 ÷ n = F 0 []
a ÷ n
| a >= n = case (a-n) ÷ n of
F r xs -> F (r+1) xs
| otherwise = F 0 (decimals a n)
where
decimals a n = case (a × 10) ÷ n of
F d rest = (d:rest)
instance Show Fraction where
show (F n []) = show n
show (F n xs) = show n ++ "." ++ concatMap show (take 10 xs)
main _ = println (100 ÷ 3)
It is easy to extend this in such a way that the periodic part of the fraction is detected, if any. For this, the decimals should be tuples, where not only the fractional digit itself but also the dividend that gave rise to it is kept.
The printing function could then be adjusted to print infinite fractions like 5.1(43), where 43 would be the periodic part.