I have an array list of Enemies and each enemy kind extends enemy. Now I don't wan't every same enemy kind to share all their stats, but I base my enemy selection of another array list. So I think the way to go would be to get the object of the array list containing all the options and then changing them to new Instances of the same class. My question is, how would I do that? Or do you guys have a better approach?
For easy of understanding here's what I mean abstracted
class shop{
ArrayList<Enemy> allEnemies;
}
class generator{
ArrayList<Enemies> selectedToGenerate = based on some of allEnemies
for(Enemy x : selectedToGenerate){ // i know this wouldn't work
x = newInstanceOf(x.getNonenemyThereforeChildclassClass());
}
}
hope this explains what I mean. Appreciate your time!
You can add a Builder to your Enemy.
abstract class Enemy {
private int strength;
public Builder<Enemy> getBuilder();
public static class Builder<T extends Enemy> {
int str;
public Builder<T> copyValues(T enemy) {
str = enemey.strength;
return this;
}
public Builder<T> strength(int s) {
str = s;
return this;
}
protected void fillValues(T toFill) {
toFill.strength = str;
}
protected abstract T createInstance();
public T build() {
T result = createInstance();
fillValues(result);
return result;
}
}
}
This Builder can create instances of your Enemy and fill it with values. For subclasses, you can extend the Builder by allowing it to fill more values.
class EnemyA extends EnemyA {
private int speed;
public Builder<EnemyA> getBuilder() {
return new Builder();
}
class EnemyABuilder extends Builder<EnemyA> {
int speed;
public EnemyABuilder copyValues(EnemyA enemy) {
super.copyValues(enemy);
speed = enemy.speed;
}
public EnemyABuilder speed(int s) {
speed = s;
return this;
}
protected void fillValues(EnemyA toFill) {
super.fillValues(toFill);
toFill.speed = speed;
}
protected EnemyA createInstance() {
return new EnemyA();
}
}
}
Now, you can create copies of the enemies by using their builders:
for(Enemy x : selectedToGenerate){ // i know this wouldn't work
Builder<? extends Enemy> builder = x.getBuilder();
builer.copyValues(x);
Enemy copy = builder.build();
}
As an additional bonus, you can use the builder to quickly create different versions of the same enemy.
EnemyA.Builder base = new Builder().strength(10);
EnemyA withSpeed1 = base.speed(1).build();
EnemyA withSpeed2 = base.speed(2).build();
EnemyA withSpeed3 = base.speed(3).build();
Related
I am attempting to implement my first Factory Design Pattern, and I'm not sure how to avoid using instanceof when adding the factory-made objects to lists. This is what I'm trying to do:
for (Blueprint bp : blueprints) {
Vehicle v = VehicleFactory.buildVehicle(bp);
allVehicles.add(v);
// Can I accomplish this without using 'instanceof'?
if (v instanceof Car) {
cars.add((Car) v);
} else if (v instanceof Boat) {
boats.add((Boat) v);
} else if (v instanceof Plane) {
planes.add((Plane) v);
}
}
From what I've read on Stack Overflow, using 'instanceof' is a code smell. Is there a better way to check the type of vehicle that was created by the factory without using 'instanceof'?
I welcome any feedback/suggestions on my implementation as I'm not even sure if I'm going about this the right way.
Full example below:
import java.util.ArrayList;
class VehicleManager {
public static void main(String[] args) {
ArrayList<Blueprint> blueprints = new ArrayList<Blueprint>();
ArrayList<Vehicle> allVehicles = new ArrayList<Vehicle>();
ArrayList<Car> cars = new ArrayList<Car>();
ArrayList<Boat> boats = new ArrayList<Boat>();
ArrayList<Plane> planes = new ArrayList<Plane>();
/*
* In my application I have to access the blueprints through an API
* b/c they have already been created and stored in a data file.
* I'm creating them here just for example.
*/
Blueprint bp0 = new Blueprint(0);
Blueprint bp1 = new Blueprint(1);
Blueprint bp2 = new Blueprint(2);
blueprints.add(bp0);
blueprints.add(bp1);
blueprints.add(bp2);
for (Blueprint bp : blueprints) {
Vehicle v = VehicleFactory.buildVehicle(bp);
allVehicles.add(v);
// Can I accomplish this without using 'instanceof'?
if (v instanceof Car) {
cars.add((Car) v);
} else if (v instanceof Boat) {
boats.add((Boat) v);
} else if (v instanceof Plane) {
planes.add((Plane) v);
}
}
System.out.println("All Vehicles:");
for (Vehicle v : allVehicles) {
System.out.println("Vehicle: " + v + ", maxSpeed: " + v.maxSpeed);
}
System.out.println("Cars:");
for (Car c : cars) {
System.out.println("Car: " + c + ", numCylinders: " + c.numCylinders);
}
System.out.println("Boats:");
for (Boat b : boats) {
System.out.println("Boat: " + b + ", numRudders: " + b.numRudders);
}
System.out.println("Planes:");
for (Plane p : planes) {
System.out.println("Plane: " + p + ", numPropellers: " + p.numPropellers);
}
}
}
class Vehicle {
double maxSpeed;
Vehicle(double maxSpeed) {
this.maxSpeed = maxSpeed;
}
}
class Car extends Vehicle {
int numCylinders;
Car(double maxSpeed, int numCylinders) {
super(maxSpeed);
this.numCylinders = numCylinders;
}
}
class Boat extends Vehicle {
int numRudders;
Boat(double maxSpeed, int numRudders) {
super(maxSpeed);
this.numRudders = numRudders;
}
}
class Plane extends Vehicle {
int numPropellers;
Plane(double maxSpeed, int numPropellers) {
super(maxSpeed);
this.numPropellers = numPropellers;
}
}
class VehicleFactory {
public static Vehicle buildVehicle(Blueprint blueprint) {
switch (blueprint.type) {
case 0:
return new Car(100.0, 4);
case 1:
return new Boat(65.0, 1);
case 2:
return new Plane(600.0, 2);
default:
return new Vehicle(0.0);
}
}
}
class Blueprint {
int type; // 0 = car; // 1 = boat; // 2 = plane;
Blueprint(int type) {
this.type = type;
}
}
You could implement the Visitor pattern.
Detailed Answer
The idea is to use polymorphism to perform the type-checking. Each subclass overrides the accept(Visitor) method, which should be declared in the superclass. When we have a situation like:
void add(Vehicle vehicle) {
//what type is vehicle??
}
We can pass an object into a method declared in Vehicle. If vehicle is of type Car, and class Car overrode the method we passed the object into, that object would now be processed within the method declared in the Car class. We use this to our advantage: creating a Visitor object and pass it to an overriden method:
abstract class Vehicle {
public abstract void accept(AddToListVisitor visitor);
}
class Car extends Vehicle {
public void accept(AddToListVisitor visitor) {
//gets handled in this class
}
}
This Visitor should be prepared to visit type Car. Any type that you want to avoid using instanceof to find the actual type of must be specified in the Visitor.
class AddToListVisitor {
public void visit(Car car) {
//now we know the type! do something...
}
public void visit(Plane plane) {
//now we know the type! do something...
}
}
Here's where the type checking happens!
When the Car receives the visitor, it should pass itself in using the this keyword. Since we are in class Car, the method visit(Car) will be invoked. Inside of our visitor, we can perform the action we want, now that we know the type of the object.
So, from the top:
You create a Visitor, which performs the actions you want. A visitor should consist of a visit method for each type of object you want to perform an action on. In this case, we are creating a visitor for vehicles:
interface VehicleVisitor {
void visit(Car car);
void visit(Plane plane);
void visit(Boat boat);
}
The action we want to perform is adding the vehicle to something. We would create an AddTransportVisitor; a visitor that manages adding transportations:
class AddTransportVisitor implements VehicleVisitor {
public void visit(Car car) {
//add to car list
}
public void visit(Plane plane) {
//add to plane list
}
public void visit(Boat boat) {
//add to boat list
}
}
Every vehicle should be able to accept vehicle visitors:
abstract class Vehicle {
public abstract void accept(VehicleVisitor visitor);
}
When a visitor is passed to a vehicle, the vehicle should invoke it's visit method, passing itself into the arguments:
class Car extends Vehicle {
public void accept(VehicleVisitor visitor) {
visitor.visit(this);
}
}
class Boat extends Vehicle {
public void accept(VehicleVisitor visitor) {
visitor.visit(this);
}
}
class Plane extends Vehicle {
public void accept(VehicleVisitor visitor) {
visitor.visit(this);
}
}
That's where the type-checking happens. The correct visit method is called, which contains the correct code to execute based on the method's parameters.
The last problem is having the VehicleVisitor interact with the lists. This is where your VehicleManager comes in: it encapsulates the lists, allowing you to add vehicles through a VehicleManager#add(Vehicle) method.
When we create the visitor, we can pass the manager to it (possibly through it's constructor), so we can perform the action we want, now that we know the object's type. The VehicleManager should contain the visitor and intercept VehicleManager#add(Vehicle) calls:
class VehicleManager {
private List<Car> carList = new ArrayList<>();
private List<Boat> boatList = new ArrayList<>();
private List<Plane> planeList = new ArrayList<>();
private AddTransportVisitor addVisitor = new AddTransportVisitor(this);
public void add(Vehicle vehicle) {
vehicle.accept(addVisitor);
}
public List<Car> getCarList() {
return carList;
}
public List<Boat> getBoatList() {
return boatList;
}
public List<Plane> getPlaneList() {
return planeList;
}
}
We can now write implementations for the AddTransportVisitor#visit methods:
class AddTransportVisitor implements VehicleVisitor {
private VehicleManager manager;
public AddTransportVisitor(VehicleManager manager) {
this.manager = manager;
}
public void visit(Car car) {
manager.getCarList().add(car);
}
public void visit(Plane plane) {
manager.getPlaneList().add(plane);
}
public void visit(Boat boat) {
manager.getBoatList().add(boat);
}
}
I highly suggest removing the getter methods and declaring overloaded add methods for each type of vehicle. This will reduce overhead from "visiting" when it's not needed, for example, manager.add(new Car()):
class VehicleManager {
private List<Car> carList = new ArrayList<>();
private List<Boat> boatList = new ArrayList<>();
private List<Plane> planeList = new ArrayList<>();
private AddTransportVisitor addVisitor = new AddTransportVisitor(this);
public void add(Vehicle vehicle) {
vehicle.accept(addVisitor);
}
public void add(Car car) {
carList.add(car);
}
public void add(Boat boat) {
boatList.add(boat);
}
public void add(Plane plane) {
planeList.add(plane);
}
public void printAllVehicles() {
//loop through vehicles, print
}
}
class AddTransportVisitor implements VehicleVisitor {
private VehicleManager manager;
public AddTransportVisitor(VehicleManager manager) {
this.manager = manager;
}
public void visit(Car car) {
manager.add(car);
}
public void visit(Plane plane) {
manager.add(plane);
}
public void visit(Boat boat) {
manager.add(boat);
}
}
public class Main {
public static void main(String[] args) {
Vehicle[] vehicles = {
new Plane(),
new Car(),
new Car(),
new Car(),
new Boat(),
new Boat()
};
VehicleManager manager = new VehicleManager();
for(Vehicle vehicle : vehicles) {
manager.add(vehicle);
}
manager.printAllVehicles();
}
}
You can add method to vehicle class to print the text. Then override the method in each specialized Car class. Then just add all the cars to the vehicle list. And loop the list to print the text.
I'm not too happy with the lists of cars, boats and planes in the first place. You have multiple examples of reality but the list isn't inherently all-inclusive--what happens when your factory starts making submarines or rockets?
Instead, how about an enum with the types car, boat and plane. You have an array of lists of vehicles.
The generic vehicle has an abstract property CatalogAs, the various vehicles actually implement this and return the proper value.
Done some restructuring of your code. Hope that works for you. Check this:
import java.util.ArrayList;
class VehicleManager {
public static void main(String[] args) {
ArrayList<ABluePrint> bluePrints = new ArrayList<ABluePrint>();
ArrayList<AVehicle> allVehicles = new ArrayList<AVehicle>();
ArrayList<ACar> cars = null;
ArrayList<ABoat> boats = null;
ArrayList<APlane> planes = null;
/*
* In my application I have to access the blueprints through an API
* b/c they have already been created and stored in a data file.
* I'm creating them here just for example.
*/
ABluePrint bp0 = new ABluePrint(0);
ABluePrint bp1 = new ABluePrint(1);
ABluePrint bp2 = new ABluePrint(2);
bluePrints.add(bp0);
bluePrints.add(bp1);
bluePrints.add(bp2);
for (ABluePrint bp : bluePrints) {
AVehicle v = AVehicleFactory.buildVehicle(bp);
allVehicles.add(v);
// Can I accomplish this without using 'instanceof'?
// dont add objects to list here, do it from constructor or in factory
/*if (v instanceof ACar) {
cars.add((ACar) v);
} else if (v instanceof ABoat) {
boats.add((ABoat) v);
} else if (v instanceof APlane) {
planes.add((APlane) v);
}*/
}
cars = ACar.getCars();
boats = ABoat.getBoats();
planes = APlane.getPlanes();
System.out.println("All Vehicles:");
for (AVehicle v : allVehicles) {
System.out.println("Vehicle: " + v + ", maxSpeed: " + v.maxSpeed);
}
System.out.println("Cars:");
for (ACar c : cars) {
System.out.println("Car: " + c + ", numCylinders: " + c.numCylinders);
}
System.out.println("Boats:");
for (ABoat b : boats) {
System.out.println("Boat: " + b + ", numRudders: " + b.numRudders);
}
System.out.println("Planes:");
for (APlane p : planes) {
System.out.println("Plane: " + p + ", numPropellers: " + p.numPropellers);
}
}
}
class AVehicle {
double maxSpeed;
AVehicle(double maxSpeed) {
this.maxSpeed = maxSpeed;
}
void add(){}
}
class ACar extends AVehicle {
static ArrayList<ACar> cars = new ArrayList<ACar>();
int numCylinders;
ACar(double maxSpeed, int numCylinders) {
super(maxSpeed);
this.numCylinders = numCylinders;
}
void add(){
cars.add(this);
}
public static ArrayList<ACar> getCars(){
return cars;
}
}
class ABoat extends AVehicle {
static ArrayList<ABoat> boats = new ArrayList<ABoat>();
int numRudders;
ABoat(double maxSpeed, int numRudders) {
super(maxSpeed);
this.numRudders = numRudders;
}
void add(){
boats.add(this);
}
public static ArrayList<ABoat> getBoats(){
return boats;
}
}
class APlane extends AVehicle {
static ArrayList<APlane> planes = new ArrayList<APlane>();
int numPropellers;
APlane(double maxSpeed, int numPropellers) {
super(maxSpeed);
this.numPropellers = numPropellers;
}
void add(){
planes.add(this);
}
public static ArrayList<APlane> getPlanes(){
return planes;
}
}
class AVehicleFactory {
public static AVehicle buildVehicle(ABluePrint blueprint) {
AVehicle vehicle;
switch (blueprint.type) {
case 0:
vehicle = new ACar(100.0, 4);
break;
case 1:
vehicle = new ABoat(65.0, 1);
break;
case 2:
vehicle = new APlane(600.0, 2);
break;
default:
vehicle = new AVehicle(0.0);
}
vehicle.add();
return vehicle;
}
}
class ABluePrint {
int type; // 0 = car; // 1 = boat; // 2 = plane;
ABluePrint(int type) {
this.type = type;
}
}
With the above code, the class will have to know about the collection to which it has to be added. This can be considered as a downside to a good design and it can be overcome using the visitor design pattern as demonstrated in the accepted answer (How to avoid 'instanceof' when implementing factory design pattern?).
I know its been a long time since this question was asked. I found http://www.nurkiewicz.com/2013/09/instanceof-operator-and-visitor-pattern.html which looks to be useful. Sharing it here in case if somebody is interested.
Had a similar issue so I used this pattern, to understand it better I created a simple UML drawing showing the sequence of things in comments (follow the numbers). I used Vince Emighs solution above.. The pattern solution is more elegant but can requires some time to truly understand. It requires one interface and one class more then the original but they are very simple.
What if AVehicle classes are out of your control? E.g. you have it from some 3rd party lib? So you have no way to add the Visitor pattern accept() method. Also you could probably dislike boilerplate code in each of the AVehicle subclass and prefer to put everything in one special class keeping your classes clean.
For some cases it could be better just to use HashMap.
In your sample just use:
Map<Class<? extends AVehicle>, List<? extends AVehicle>> lists = new HashMap<>();
lists.put(ACar.class, new ArrayList<ACar>());
lists.put(ABoat.class, new ArrayList<ABoat>());
lists.put(APlane.class, new ArrayList<APlane>());
for (ABluePrint bp : bluePrints) {
AVehicle v = AVehicleFactory.buildVehicle(bp);
allVehicles.add(v);
lists.get(v.getClass()).add(v);
}
The problem with this HashMap approach is that you have to register all possible classes including all known subclasses. Although if you have huge hierarchy and it is not needed all classes for your task you can save lots of work registering in the Map just needed ones.
consider the below code:
public class Bid {
private double pe;
private List<ResChar> resourceList;
protected Map<Integer,Integer>scheduleOfSeller ;
public Map<Integer, Integer> getScheduleOfSeller() {
return scheduleOfSeller;
}
public void setScheduleOfSeller(Map<Integer, Integer> scheduleOfSeller) {
this.scheduleOfSeller = scheduleOfSeller;
}
private int bidId;
public int getBidId() {
return bidId;
}
public void setBidId(int bidId) {
this.bidId = bidId;
}
public double getPe() {
return pe;
}
public void setPe(double pe) {
this.pe = pe;
}
public List<ResChar> getResourceList() {
return resourceList;
}
public void setResourceList(List<ResChar> resourceList) {
this.resourceList = resourceList;
}
public Bid(int bidId,double pe, List<ResChar> resourceList){
setBidId(bidId);
setPe(pe);
setResourceList(resourceList);
this.scheduleOfSeller = new HashMap<Integer,Integer>();
}
}
I want to make a copy constructor of the bid like this :
public class BidCopy{
public Bid bid;
public BidCopy(Bid bidBuyer){
List<ResChar> resList = new LinkedList<ResChar>();
for (ResChar elt : bidBuyer.getResourceList()){
ResCharCopy eltCopy = new ResCharCopy(elt);
resList.add(eltCopy.elt);
}
this.bid = bidBuyer;
this.bid.setResourceList(resList);
}
}
The only solution that I know to make such copy is to proceed like follows :
public class BidCopy{
public Bid copy;
public BidCopy(Bid bid){
List<ResChar> resList = new LinkedList<ResChar>();
for (ResChar elt : bid.getResourceList()){
ResCharCopy eltCopy = new ResCharCopy(elt);
resList.add(eltCopy.elt);
}
this.copy = new Bid(bid.getBidId(), bid.getPe(), resList);
}
}
So I want to know if there is any other solution to make a copy of "Bid" Object more effectively ?
I would suggest making a copy constructor for your Bid object (and not a specific class for copying), a Bid is made out of its fields and not methods, like so:
public class Bid {
int ID;
String description;
Object bidStuff;
// ...as before
public Bid(Bid bid) {
this.ID = bid.ID;
this.description = bid.description;
this.bidStuff = bid.bidStuff;
}
public static void main(String[] args) {
List<Bid> original = new ArrayList<>();
// ..populate it
List<Bid> copy = new ArrayList<>(original.size());
for (Bid b : original) {
copy.add(new Bid(b));
}
}
}
You can even make the copy constructor protected or package-protected if you don't want anyone else to mess around with making multiple copies of bids.
There is not. Even though some collections have "copy constructors", these constructors will copy the elements' references, they will not create new elements for you.
You can however "optimize" the list creation itself by submitting the size of the initial list to the constructor:
List<X> newList = new LinkedList<X>(oldList.size());
I am a beginner in Java and i trying to understand the abstract classes.
Below is the code that I've written; the question is: how do i write a method that will return an instance of that class.
public abstract class VehicleEngine
{
protected String name;
protected double fabricationCons;
protected double consum;
protected int mileage;
public VehicleEngine(String n, double fC)
{
name = n;
fabricationCons = fC;
mileage = 0;
consum = 0;
}
private void setFabricationCons(double fC)
{
fabricationCons = fC;
}
public abstract double currentConsum();
public String toString()
{
return name + " : " + fabricationCons + " : " + currentConsum();
}
public void addMileage(int km)
{
mileage += km;
}
public double getFabricationConsum()
{
return fabricationCons;
}
public String getName()
{
return name;
}
public int getMileage()
{
return mileage;
}
//public VehicleEngine get(String name){
//if(getName().equals(name)){
//return VehicleEngine;
//}
//return null;
//}
}
public class BenzinVehicle extends VehicleEngine
{
public BenzinVehicle(String n, double fC)
{
super(n, fC);
}
#Override
public double currentConsum()
{
if (getMileage() >= 75000) {
consum = getFabricationConsum() + 0.4;
} else {
consum = getFabricationConsum();
}
return consum;
}
}
public class DieselVehicle extends VehicleEngine
{
public DieselVehicle(String n, double fC)
{
super(n, fC);
}
#Override
public double currentConsum()
{
int cons = 0;
if (getMileage() < 5000) {
consum = getFabricationConsum();
} else {
consum = getFabricationConsum() + (getFabricationConsum() * (0.01 * (getMileage() / 5000)));
}
return consum;
}
}
This is the main.
public class Subject2
{
public static void main(String[] args)
{
VehicleEngine c1 = new BenzinVehicle("Ford Focus 1.9", 5.0);
DieselVehicle c2 = new DieselVehicle("Toyota Yaris 1.4D", 4.0);
BenzinVehicle c3 = new BenzinVehicle("Citroen C3 1.6",5.2);
c1.addMileage(30000);
c1.addMileage(55700);
c2.addMileage(49500);
c3.addMileage(35400);
System.out.println(c1);
System.out.println(c2);
System.out.println(VehicleEngine.get("Citroen C3 1.6")); //this is the line with problems
System.out.println(VehicleEngine.get("Ford Focus "));
}
}
And the output should be:
Ford Focus 1.9 : 5.0 : 5.4
Toyota Yaris 1.4D : 4.0 : 4.36
Citroen C3 1.6 : 5.2 : 5.2
null
You can not return an instance of an abstract class, by definition. What you can do, is return an instance of one of the concrete (non-abstract) subclasses that extend it. For example, inside the VehicleEngine you can create a factory that returns instances given the type of the instance and the expected parameters, but those instances will necessarily have to be concrete subclasses of VehicleEngine
Have a look at the Factory Method pattern. Your concrete classes will implement an abstract method that returns a class instance.
Abstract classes do not keep a list of their instances. Actually no Java class does that. If you really want to do that, you could add a static map to VehicleEngine like this:
private static Map<String, VehicleEngine> instanceMap = new HashMap<String, VehicleEngine>();
and change your get method to a static one like this:
public static VehicleEngine get(String name) {
return instanceMap.get(name);
}
and add this line to the end of the constructor of VehicleEngine:
VehicleEngine.instanceMap.put(n, this);
this way every new instance created puts itself into the static map. However this actually is not a good way to implement such a functionality. You could try to use a factory to create instances, or you could consider converting this class into an enum if you will have a limited predefined number of instances.
I am trying to understand extending inner classes in Java. I have read around but nothing I found quite answers my question. So here goes...
I have...
public class Pie{
protected Slice[] slices;
// Pie constructor
public Pie(int n){
sliceGenerator(n)
}
private void sliceGenerator(int n){
slices = new Slice[n];
final float sweepAngle = 360.0f/(float)n;
float startAngle = 0;
for (int i=0;i<n;i++){
slices[i] = new Slice(startAngle);
startAngle += sweepAngle;
}
}
#Override
public String toString(){
for (Slice s:slices){
s.toString();
}
}
// Inner class...
public class Slice{
public Slice(float startAngle){
//set some private fields based on startAngle and generic pie
}
#Override
public String toString(){
return **string based on private fields**
}
}
}
Then I extend this...
public class ApplePie extends Pie{
protected Slice[] slices;
// Apple Pie constructor
public ApplePie(int n){
super(n);
}
// Inner class...
public class Slice extends Pie.Slice{
public Slice(float startAngle){
super(startAngle);
//set some **additional** private fields based on startAngle **specific to apple pie** appleness or something
}
#Override
public String toString(){
return **string based on apple pie specific private fields**
}
}
}
Now, when I make an Apple pie and call its toString method, like so...
ApplePie ap = new ApplePie(8);
System.out.println(ap.toString());
I do not get information about the apple pie slices, but information about the pie slices. It ignores my toString override, or more likely ignores my apple pie Slice. How can I arrange it such that apple pie slices refer to ApplePie?
Any help much appreciated! Sorry for pie references - it is the actual class I am working with...
I've changed your code to meet your requirements.
Your super class Pie is about to create a new instance of Slice, but the child class ApplePie's Slice does not override the Slice method of its super class'.
I added the functions below to enable the child class to create its own Slice.
protected void newSliceArray(int n) {
slices = new Slice[n];
}
protected Slice newSlice(float startAngle) {
return new Slice(startAngle);
}
Pie.java:
public class Pie {
private int a = 1;
protected Slice[] slices;
// Pie constructor
public Pie(int n) {
sliceGenerator(n);
}
private void sliceGenerator(int n) {
newSliceArray(n);
final float sweepAngle = 360.0f / n;
float startAngle = 0;
for (int i = 0; i < n; i++) {
slices[i] = newSlice(startAngle);
startAngle += sweepAngle;
}
}
protected void newSliceArray(int n) {
slices = new Slice[n];
}
protected Slice newSlice(float startAngle) {
return new Slice(startAngle);
}
#Override
public String toString() {
String t = "";
for (Slice s : slices) {
t += s.toString();
}
return t;
}
// Inner class...
public class Slice {
public Slice(float startAngle) {
// set some private fields based on startAngle and generic pie
}
#Override
public String toString() {
return "" + a;
}
}
}
ApplePie.java:
public class ApplePie extends Pie {
private int b = 2;
// protected Slice[] slices;
// Apple Pie constructor
public ApplePie(int n) {
super(n);
}
protected void newSliceArray(int n) {
slices = new Slice[n];
}
protected Slice newSlice(float startAngle) {
return new Slice(startAngle);
}
// Inner class...
public class Slice extends Pie.Slice {
public Slice(float startAngle) {
super(startAngle);
// set some **additional** private fields based on startAngle **specific to apple pie**
// appleness or something
}
#Override
public String toString() {
return b + "";
}
}
}
Test:
public static void main(String[] args) {
ApplePie ap = new ApplePie(8);
System.out.println(ap.toString());
}
The code will print 22222222
In your superclass, you are creating and storing Pie.Slice objects:
private void sliceGenerator(int n){
slices = new Slice[n];
final float sweepAngle = 360.0f/(float)n;
float startAngle = 0;
for (int i=0;i<n;i++){
slices[i] = new Slice(startAngle);
startAngle += sweepAngle;
}
}
These are the same objects being used by Pie.toString (which ApplePie doesn't override by the way).
Extending Pie with ApplePie and extending Pie.Slice with ApplePie.Slice doesn't change this. The new Slice(startAngle) in the above code does not magically switch to instantiating something different.
Aside from that, your Pie.toString() isn't returning anything - it shouldn't even compile:
#Override
public String toString(){
for (Slice s:slices){
s.toString();
}
}
I'm guessing you want to return a String representing all the slices. This would be a quick solution for example:
#Override
public String toString() {
return Arrays.toString(slices);
}
(Arrays.toString is just a utility method to get a String representing of an array.)
The answer lies within your program. When you instantiate Slice class, it gives call to the super class and invokes sliceGenerator. This method internally creates instances of Pie.Slice and not ApplePie.Slice. To get around this, make sliceGenerator method protected and override it in Apple.Slice class. Create the instances of Apple.Slice and it should work.
I am trying to add weapons to a player inventory. It's kind of hard to explain, so I'll try my best. What I have are a class for each weapon, a class for Combat, and a class for the Player. I am trying to get it to where when the Random number equals a certain number, it will add a weapon to the player inventory. I will put my code Below.
Combat Class:
public class Combat {
M4 m4 = new M4();
M16 m16 = new M16();
M9 m9 = new M9();
Glock glock = new Glock();
SCAR Scar = new SCAR();
Player player = new Player();
final int chanceOfDrop = 3;
static boolean[] hasWeapon = {false, true};
public static int ranNumberGen(int chanceOfDrop) {
return (int) (Math.random()*5);
}
private void enemyDead() {
boolean canDrop = false;
if(ranNumberGen(chanceOfDrop)==0){
canDrop = true;
}
if(canDrop == true){
if(ranNumberGen(0) == 1) {
Player.addInvetory(m4.weaponName(wepName), m4.weaponAmmo(wepAmmo)); //Issues here. wepName & wepAmmo cannot be resolved into variable
//Should I just delete the line?
//Trying to get it to add the weapon M4 to the player inventory.
//Maybe use an ArrayList? If so I need a couple pointers on how to implement this.
}
}
}
}
M4 Class:
public class M4 implements Armory {
//Weapon classes are practically identical except for differences in the name wepDamage and wepAmmo.
public Integer weaponAmmo(int wepAmmo) {
wepAmmo = 10;
return wepAmmo;
}
public Integer weaponDamage(int wepDamage) {
wepDamage = 5;
return wepDamage;
}
public String weaponName(String wepName) {
wepName = "M4";
return wepName;
}
Player Class:
public class Player {
public static int health = 100;
//Player Class.
public static void addInvetory(String wepName, int wepAmmo) {
Player.addInvetory(wepName, wepAmmo);
}
public static void removeInventory(String wepName, int wepAmmo) {
Player.addInvetory(wepName, wepAmmo);
}
public static void removeAll(String wepName, int wepAmmo) {
Player.removeAll(wepName, wepAmmo);
}
Interface:
public interface Armory {
//Interface implemented by all of the weapons classes.
public Integer weaponAmmo(int wepAmmo);
public Integer weaponDamage(int wepDamage);
public String weaponName(String wepName);
Hope you can help!
class Weapon {
private final String name;
private final int damage;
private final int ammo;
public Weapon(final String name,final int damage,final int ammo) {
this.name = name;
this.damage = damage;
this.ammo = ammo;
}
public Weapon clone() {
return new Weapon(this.name,this.damage,this.ammo);
}
public String getName() {
return this.name;
}
public int getAmmo() {
return this.ammo;
}
public int getDamage() {
return this.damage;
}
}
class WeaponFactory {
static WeaponFactory factory;
public static WeaponFactory getWeaponFactory() {
if(factory == null) {
factory = new WeaponFactory();
}
return factory;
}
private ArrayList<Weapon> weapons = new ArrayList<Weapon>();
private Random random;
private WeaponFactory() {
//TODO: Fix Ammo and Damage
weapons.add(new Weapon("M4",0,0));
weapons.add(new Weapon("M16",0,0));
weapons.add(new Weapon("M9",0,0));
weapons.add(new Weapon("Glock",0,0));
weapons.add(new Weapon("SCAR",0,0));
}
public Weapon getWeapon() {
int w = random.nextInt(weapons.length);
return weapons.get(w).clone();
}
}
class Combat {
...
private void enemyDead() {
if(ranNumberGen(chanceOfDrop)==0){
Player.addInventory(WeaponFactory.getWeaponFactory().getWeapon());
}
}
}
You can use an array of Armory and the generate a random number from 0 to the size of the array as an index to the array to decide which weapon to add.
Okay dude, since your question about creating a programming language was closed, I'm answering it through here:
I think that your idea is great! Don't give up on it, yet don't get too excited. I would try all the options that you have heard of(interpreted route AND the Compiled route). If you can get either of those to work, then you may proceed to go into further detail with the language creation. It's going to take a while though. Be patient!