Java Future - postpone a task - java

I have the following 2 init methods that call doDataInit():
public void sessionBegin(SessionEvent event)
throws Exception {
....
doDataInit();
}
public void init() {
...
doDataInit();
}
and the method:
private Future<WorkItems>
doDataInit() {
//do some stuff
Callable<WorkItems> initData = getData();
Future<WorkItems> result = EXECUTOR.submit(initData);
return result;
}
Now what I want to do is have a check inside the doDataInit method, that if true is going to sleep the task execution. Or otherwise said - I want to block the execution of the task until a certain condition is met and periodically check if the given condition is met. Once it is - continue execution.
What is the best (most effective) way to achive that in this scenario?
What I can currently think of is:
sleep the thread - uneffective
somehow block the callable
block the Executor
have a for loop where I perform the checks s ceratain amount of times
Thanks in advance.

Related

How to stop all threads as soon as one is finished?

I have 5 threads (5 instances of one Runnable class) starting approximately at the same time (using CyclicBarrier) and I need to stop them all as soon as one of them finished.
Currently, I have a static volatile boolean field threadsOver that I'm setting to true at the end of doSomething(), the method that run() is calling.
private static final CyclicBarrier barrier = new CyclicBarrier(5);
private static volatile boolean threadsOver;
#Override
public void run() {
try {
/* waiting for all threads to have been initialised,
so as to start them at the same time */
barrier.await();
doSomething();
} catch (InterruptedException | BrokenBarrierException e) {
e.printStackTrace();
}
}
public void doSomething() {
// while something AND if the threads are not over yet
while (someCondition && !threadsOver) {
// some lines of code
}
// if the threads are not over yet, it means I'm the first one to finish
if (!threadsOver) {
// so I'm telling the other threads to stop
threadsOver = true;
}
}
The problem with that code is that the code in doSomething() is executing too fast and as a result, the threads that finish after the first one are already over by the time that the first thread noticed them.
I tried adding some delay in doSomething() using Thread.sleep(), which reduced the number of threads which finished even after the first one, but there are still some times where 2 or 3 threads will finish execution completely.
How could I make sure that when one thread is finished, all of the others don't execute all the way to the end?
First where I copied code snippets from: https://www.baeldung.com/java-executor-service-tutorial .
As you have 5 tasks of which every one can produce the result, I prefer Callable, but Runnable with a side effect is handled likewise.
The almost simultaneous start, the Future task aspect, and picking the first result can be done by invokeAny below:
Callable<Integer> callable1 = () -> {
return 1*2*3*5*7/5;
};
List<Callable<Integer>> callables = List.of(callable1, callable2, ...);
ExecutorService executorService = new ThreadPoolExecutor(5);
Integer results = executorService.invokeAny(callables);
executorService.shutDown();
invokeAny() assigns a collection of tasks to an ExecutorService, causing each to run, and returns the result of a successful execution of one task (if there was a successful execution).

How to accept Junit 5 test after timeout?

When I place #timeout above the test then it fails when runs too long.
Hot to mark it as passed instead?
Based on the documentation of #timeout, #timeout is made to fail the test if the method doesn't meet to finish its operation within the required time. Hence, you cannot use #timeout to mark it as passed if the method is taking longer than it's expected.
Otherwise, based on another question, to achieve your purpose, you can use Java Thread and sleep() method to check whether the Thread.isAlive() after some period of time.
Example:
...
// Create and start the task thread.
Thread taskThread = new Thread(){
public void run(){
System.out.println("Thread Running");
}
}
taskThread.start( );
// Wait 3 seconds.
sleep(3000);
boolean status = false;
// If after waiting 3 seconds the task is still running, stop it.
if (taskThread.isAlive( )) {
taskThread.interrupt( );
} else {
status = true;
}
assertTrue(status);
...

Stopping thread Immediately

I want to stop a running thread immediately. Here is my code:
Class A :
public class A() {
public void methodA() {
For (int n=0;n<100;n++) {
//Do something recursive
}
//Another for-loop here
//A resursive method here
//Another for-loop here
finishingMethod();
}
}
Class B:
public class B() {
public void runEverything() {
Runnable runnable = new Runnable() {
#Override
public void run() {
try {
Thread.sleep(1000);
A a = new A();
a.methodA();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
};
Thread thread = new Thread(runnable);
thread.start();
}
My problem is that i need to be able to stop the thread in Class B even before the thread is finished. I've tried interrupt() method, but that doesn't stop my thread. I've also heard about using shared variable as a signal to stop my thread, but I think with long recursive and for-loop in my process, shared-variable will not be effective.
Any idea ?
Thanks in advance.
Thread.interrupt will not stop your thread (unless it is in the sleep, in which case the InterruptedException will be thrown). Interrupting basically sends a message to the thread indicating it has been interrupted but it doesn't cause a thread to stop immediately.
When you have long looping operations, using a flag to check if the thread has been cancelled is a standard approach. Your methodA can be modified to add that flag, so something like:
// this is a new instance variable in `A`
private volatile boolean cancelled = false;
// this is part of your methodA
for (int n=0;n<100;n++) {
if ( cancelled ) {
return; // or handle this however you want
}
}
// each of your other loops should work the same way
Then a cancel method can be added to set that flag
public void cancel() {
cancelled = true;
}
Then if someone calls runEverything on B, B can then just call cancel on A (you will have to extract the A variable so B has a reference to it even after runEverything is called.
I think you should persevere with using Thread.interrupt(). But what you need to do to make it work is to change the methodA code to do something like this:
public void methodA() throws InterruptedException {
for (int n=0; n < 100; n++) {
if (Thread.interrupted) {
throw new InterruptedException();
}
//Do something recursive
}
// and so on.
}
This is equivalent declaring and using your own "kill switch" variable, except that:
many synchronization APIs, and some I/O APIs pay attention to the interrupted state, and
a well-behaved 3rd-party library will pay attention to the interrupted state.
Now it is true that a lot of code out there mishandles InterruptedException; e.g. by squashing it. (The correct way to deal with an InterruptedException is to either to allow it to propagate, or call Thread.interrupt() to set the flag again.) However, the flip side is that that same code would not be aware of your kill switch. So you've got a problem either way.
You can check the status of the run flag as part of the looping or recursion. If there's a kill signal (i.e. run flag is set false), just return (after whatever cleanup you need to do).
There are some other possible approaches:
1) Don't stop it - signal it to stop with the Interrupted flag, set its priority to lowest possible and 'orphan' the thread and any data objects it is working on. If you need the operation that is performed by this thread again, make another one.
2) Null out, corrupt, rename, close or otherwise destroy the data it is working on to force the thread to segfault/AV or except in some other way. The thread can catch the throw and check the Interrupted flag.
No guarantees, sold as seen...
From main thread letsvsay someTask() is called and t1.interrput is being called..
t1.interrupt();
}
private static Runnable someTask(){
return ()->{
while(running){
try {
if(Thread.interrupted()){
throw new InterruptedException( );
}
// System.out.println(i + " the current thread is "+Thread.currentThread().getName());
// Thread.sleep( 2000 );
} catch (Exception e) {
System.out.println(" the thread is interrputed "+Thread.currentThread().getName());
e.printStackTrace();
break;
}
}
o/P:
java.lang.InterruptedException
at com.barcap.test.Threading.interrupt.ThreadT2Interrupt.lambda$someTask$0(ThreadT2Interrupt.java:32)
at java.lang.Thread.run(Thread.java:748)
the thread is interrputed Thread-0
Only t1.interuuption will not be enough .this need check the status of Thread.interrupted() in child thread.

How to test IO issues in Java?

How can I test behavior of my application code for the case of very bad IO performance without using mock streams that sleep (because they would react to interrupts)?
For instance, I want to test a ConcurrentWrapper utility that has a pool of threads for file IO. It submits each operation to an ExecutorService with invokeAll() with timeout. I want to confirm not only that the call with ConcurrentWrapper exits before timeout, but also that it somehow made the thread of its inner ExecutorService terminate (to avoid leakage).
I need to somehow simulate slow IO in the inner thread, but in a way that will ignore interrupts (like real IO does).
A bit of clarification: No answer like "sleep and swallow InterruptedException" or "sleep, catch InterruptedException and go back to sleep" is acceptable. I want to test how my code handles interrupts and such instrumentation would defeat the purpose by handling them itself.
You can sleep in a way that will insist on sleeping through interrupts:
long start = System.currentTimeMillis();
long end = start + sleepTime;
for (long now = start; now < end; now = System.currentTimeMillis()) {
try {
Thread.sleep(end - now);
} catch (InterruptedException ignored) {
}
}
For testing with timeouts, you can actually put a maximum time to execute the test, in JUnit you can include the annotation timeout:
#Test(timeout=100)
public void method_withTimeout() {
while(true);
}
For the part of testing that the method exits, you could use the Future interface that provides a timeout for getting the results.
If i understand your question correctly, ReentrantLock might help.
final ReentrantLock lock = new ReentrantLock();
Callable<Void> c = new Callable<Void>() {
public void call() {
lock.lock();
try {
if (Thread.currentThread().isInterrupted()) {
...
}
}
finally {
lock.unlock();
}
}
}
// Submit to the pool
Future<Void> future = executorService.submit(c);
// you might want to sleep a bit to give the pool a chance
// to pull off the queue.
// Issue a cancel
future.cancel();
// Now release the lock, which should let your
// callable continue onto to the interrupted check.
lock.unlock();
Note that the "lock" method does not throw any InterruptedException (though there is a method for that called "lockInterruptibly"), and if you look at the code for that class, it's not catching and swallowing (as you've stated would not be what you want).

How can I wrap a method so that I can kill its execution if it exceeds a specified timeout?

I have a method that I would like to call. However, I'm looking for a clean, simple way to kill it or force it to return if it is taking too long to execute.
I'm using Java.
to illustrate:
logger.info("sequentially executing all batches...");
for (TestExecutor executor : builder.getExecutors()) {
logger.info("executing batch...");
executor.execute();
}
I figure the TestExecutor class should implement Callable and continue in that direction.
But all i want to be able to do is stop executor.execute() if it's taking too long.
Suggestions...?
EDIT
Many of the suggestions received assume that the method being executed that takes a long time contains some kind of loop and that a variable could periodically be checked.
However, this is not the case. So something that won't necessarily be clean and that will just stop the execution whereever it is is acceptable.
You should take a look at these classes :
FutureTask, Callable, Executors
Here is an example :
public class TimeoutExample {
public static Object myMethod() {
// does your thing and taking a long time to execute
return someResult;
}
public static void main(final String[] args) {
Callable<Object> callable = new Callable<Object>() {
public Object call() throws Exception {
return myMethod();
}
};
ExecutorService executorService = Executors.newCachedThreadPool();
Future<Object> task = executorService.submit(callable);
try {
// ok, wait for 30 seconds max
Object result = task.get(30, TimeUnit.SECONDS);
System.out.println("Finished with result: " + result);
} catch (ExecutionException e) {
throw new RuntimeException(e);
} catch (TimeoutException e) {
System.out.println("timeout...");
} catch (InterruptedException e) {
System.out.println("interrupted");
}
}
}
Java's interruption mechanism is intended for this kind of scenario. If the method that you wish to abort is executing a loop, just have it check the thread's interrupted status on every iteration. If it's interrupted, throw an InterruptedException.
Then, when you want to abort, you just have to invoke interrupt on the appropriate thread.
Alternatively, you can use the approach Sun suggest as an alternative to the deprecated stop method. This doesn't involve throwing any exceptions, the method would just return normally.
I'm assuming the use of multiple threads in the following statements.
I've done some reading in this area and most authors say that it's a bad idea to kill another thread.
If the function that you want to kill can be designed to periodically check a variable or synchronization primitive, and then terminate cleanly if that variable or synchronization primitive is set, that would be pretty clean. Then some sort of monitor thread can sleep for a number of milliseconds and then set the variable or synchronization primitive.
Really, you can't... The only way to do it is to either use thread.stop, agree on a 'cooperative' method (e.g. occassionally check for Thread.isInterrupted or call a method which throws an InterruptedException, e.g. Thread.sleep()), or somehow invoke the method in another JVM entirely.
For certain kinds of tests, calling stop() is okay, but it will probably damage the state of your test suite, so you'll have to relaunch the JVM after each call to stop() if you want to avoid interaction effects.
For a good description of how to implement the cooperative approach, check out Sun's FAQ on the deprecated Thread methods.
For an example of this approach in real life, Eclipse RCP's Job API's 'IProgressMonitor' object allows some management service to signal sub-processes (via the 'cancel' method) that they should stop. Of course, that relies on the methods to actually check the isCancelled method regularly, which they often fail to do.
A hybrid approach might be to ask the thread nicely with interrupt, then insist a couple of seconds later with stop. Again, you shouldn't use stop in production code, but it might be fine in this case, esp. if you exit the JVM soon after.
To test this approach, I wrote a simple harness, which takes a runnable and tries to execute it. Feel free to comment/edit.
public void testStop(Runnable r) {
Thread t = new Thread(r);
t.start();
try {
t.join(2000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
if (!t.isAlive()) {
System.err.println("Finished on time.");
return;
}
try {
t.interrupt();
t.join(2000);
if (!t.isAlive()) {
System.err.println("cooperative stop");
return;
}
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.err.println("non-cooperative stop");
StackTraceElement[] trace = Thread.getAllStackTraces().get(t);
if (null != trace) {
Throwable temp = new Throwable();
temp.setStackTrace(trace);
temp.printStackTrace();
}
t.stop();
System.err.println("stopped non-cooperative thread");
}
To test it, I wrote two competing infinite loops, one cooperative, and one that never checks its thread's interrupted bit.
public void cooperative() {
try {
for (;;) {
Thread.sleep(500);
}
} catch (InterruptedException e) {
System.err.println("cooperative() interrupted");
} finally {
System.err.println("cooperative() finally");
}
}
public void noncooperative() {
try {
for (;;) {
Thread.yield();
}
} finally {
System.err.println("noncooperative() finally");
}
}
Finally, I wrote the tests (JUnit 4) to exercise them:
#Test
public void testStopCooperative() {
testStop(new Runnable() {
#Override
public void run() {
cooperative();
}
});
}
#Test
public void testStopNoncooperative() {
testStop(new Runnable() {
#Override
public void run() {
noncooperative();
}
});
}
I had never used Thread.stop() before, so I was unaware of its operation. It works by throwing a ThreadDeath object from whereever the target thread is currently running. This extends Error. So, while it doesn't always work cleanly, it will usually leave simple programs with a fairly reasonable program state. For example, any finally blocks are called. If you wanted to be a real jerk, you could catch ThreadDeath (or Error), and keep running, anyway!
If nothing else, this really makes me wish more code followed the IProgressMonitor approach - adding another parameter to methods that might take a while, and encouraging the implementor of the method to occasionally poll the Monitor object to see if the user wants the system to give up. I'll try to follow this pattern in the future, especially methods that might be interactive. Of course, you don't necessarily know in advance which methods will be used this way, but that is what Profilers are for, I guess.
As for the 'start another JVM entirely' method, that will take more work. I don't know if anyone has written a delegating class loader, or if one is included in the JVM, but that would be required for this approach.
Nobody answered it directly, so here's the closest thing i can give you in a short amount of psuedo code:
wrap the method in a runnable/callable. The method itself is going to have to check for interrupted status if you want it to stop (for example, if this method is a loop, inside the loop check for Thread.currentThread().isInterrupted and if so, stop the loop (don't check on every iteration though, or you'll just slow stuff down.
in the wrapping method, use thread.join(timeout) to wait the time you want to let the method run. or, inside a loop there, call join repeatedly with a smaller timeout if you need to do other things while waiting. if the method doesn't finish, after joining, use the above recommendations for aborting fast/clean.
so code wise, old code:
void myMethod()
{
methodTakingAllTheTime();
}
new code:
void myMethod()
{
Thread t = new Thread(new Runnable()
{
public void run()
{
methodTakingAllTheTime(); // modify the internals of this method to check for interruption
}
});
t.join(5000); // 5 seconds
t.interrupt();
}
but again, for this to work well, you'll still have to modify methodTakingAllTheTime or that thread will just continue to run after you've called interrupt.
The correct answer is, I believe, to create a Runnable to execute the sub-program, and run this in a separate Thread. THe Runnable may be a FutureTask, which you can run with a timeout ("get" method). If it times out, you'll get a TimeoutException, in which I suggest you
call thread.interrupt() to attempt to end it in a semi-cooperative manner (many library calls seem to be sensitive to this, so it will probably work)
wait a little (Thread.sleep(300))
and then, if the thread is still active (thread.isActive()), call thread.stop(). This is a deprecated method, but apparently the only game in town short of running a separate process with all that this entails.
In my application, where I run untrusted, uncooperative code written by my beginner students, I do the above, ensuring that the killed thread never has (write) access to any objects that survive its death. This includes the object that houses the called method, which is discarded if a timeout occurs. (I tell my students to avoid timeouts, because their agent will be disqualified.) I am unsure about memory leaks...
I distinguish between long runtimes (method terminates) and hard timeouts - the hard timeouts are longer and meant to catch the case when code does not terminate at all, as opposed to being slow.
From my research, Java does not seem to have a non-deprecated provision for running non-cooperative code, which, in a way, is a gaping hole in the security model. Either I can run foreign code and control the permissions it has (SecurityManager), or I cannot run foreign code, because it might end up taking up a whole CPU with no non-deprecated means to stop it.
double x = 2.0;
while(true) {x = x*x}; // do not terminate
System.out.print(x); // prevent optimization
I can think of a not so great way to do this. If you can detect when it is taking too much time, you can have the method check for a boolean in every step. Have the program change the value of the boolean tooMuchTime to true if it is taking too much time (I can't help with this). Then use something like this:
Method(){
//task1
if (tooMuchTime == true) return;
//task2
if (tooMuchTime == true) return;
//task3
if (tooMuchTime == true) return;
//task4
if (tooMuchTime == true) return;
//task5
if (tooMuchTime == true) return;
//final task
}

Categories